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Abstract Assessing the predictive power of any compu-

tational model requires the definition of an appropriate

metric or figure-of-merit (e.g. mean square error, maximum

error, etc). However, quantifying errors in an alloy phase

diagram with a single figure-of-merit is a considerably

more complex problem. The ‘‘distance’’ between phase

boundaries is not a uniquely defined concept and different

phase diagrams may differ in the possible stable phases

which they predict, making it unclear which ‘‘distance’’ to

measure. Given the difficulty associated with such metrics,

we instead propose to use differences in predicted phase

fractions between different phase diagrams as the basis of a

suitable metric. We prove that our criterion satisfies all the

properties of the mathematical notion of a norm or of a

metric, in addition to other properties directly relevant to

phase stability problems. We illustrate the use of such

criterion to the study of the convergence of assessments

performed on the same alloy system by different authors

over time.

Keywords figure-of-merit � materials informatics � metric �
norm

1 Introduction

One of the underlying assumption of the goal of achieving

‘‘predictive science’’ is the availability of suitable metric to

quantify the accuracy of the predictions. Although mean

square error-type quantities are often well-suited for this

purpose when the predicted quantities are simple functions

or vectors, quantifying errors in a more general graph,

such as phase diagram, in a single figure-of-merit repre-

sents a considerably more complex problem. Given this, it

is perhaps not surprising that the area of research focus-

ing on the construction of thermodynamic models

[often referred to as CALculation of PHAse Dia-

gram (CALPHAD)][5,10–12,15] is currently lacking a theo-

retically justified and widely adopted figure-of-merit to

quantify the discrepancies between two possible phase

diagrams obtained via different routes. This paper intends

to fill this gap by building upon earlier proposals.[17]

There are multiple challenges associated with this task,

as illustrated in Fig. 1. Phase boundaries cannot be con-

sidered single-valued functions: For instance, in a binary

phase diagram, a phase boundary might cross a given

vertical line (see label 1 on the figure) multiple times, thus

precluding the use of simple ‘‘mean-square error along one

axis’’ criteria. The same can occur for horizontal lines (see

label 2 on the figure). More generally, no matter which

‘‘axes’’ one uses, the phase boundaries will generally be

defined on different domains (label 3). The use of per-

pendicular distances between two curves is also ambigu-

ous: To which of the two curves should the distance be

perpendicular to (label 4)? What does ‘‘perpendicular’’

mean when the axes have different units so that their rel-

ative scaling is arbitrary (label 5)? For the same reason, the

use of the Hausdorff metric[2] is also affected by the fact

that different axes may have different units. Boundary

distance-based metrics are also unable to handle the fact

that, sometimes, phases are entirely absent from one phase

diagram but present in another (label 6). How should a

figure-of-merit quantify this situation?

Given these issues, we instead propose to quantify the

differences between two phase diagrams via differences in
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the predicted phase fractions of the corresponding phases.

Phase fractions have been put forward as powerful and

fundamental descriptors of phase equilibria.[16] Phase

fractions are scalar, dimensionless, everywhere defined and

merely take the value 0 when a phase is not stable. These

desirable properties solve all of the aforementioned prob-

lems. We prove that a criterion based on phase fractions

satisfies all the properties of the mathematical notion of a

norm or of a metric, in addition to other properties directly

relevant to phase stability problems. We illustrate the use

of such a criterion to the study of the convergence of

assessments performed on the same alloy system by dif-

ferent authors over time.

2 Definition and Motivation

Let f cð Þ ¼ f1 cð Þ; . . .; fp cð Þ
� �T

denote a p-dimensional vec-

tor of the phase fractions of all possible phases in the

system under conditions c ¼ x; Tð Þ, where T is temperature

and x is a vector of overall compositions (omitting one

composition, to avoid redundancy). One could also include

pressure into the vector c, if desired. The knowledge of this

vector-valued function over some region R fully defines the

phase diagram over that region.

We propose to quantify the difference between two

phase diagrams f 1; f 2 in a region R of interest via the fol-

lowing figure-of-merit:

f 1 � f 2
�� ��

R
�
R
c2R
Pp

a¼1 f 1a cð Þ � f 2a cð Þ
�� ��dc
R
c2R dc

; ðEq 1Þ

where the integrals are multivariate, i.e. dc is a (hy-

per)volume element. This definition exhibits a number of

desirable properties. It has the natural interpretation of the

expected total absolute error in phase fraction for a con-

dition chosen at random in region R.

Since this definition is mathematically equivalent to a so-

called weighted L1 norm
[18] defined on a vector-valued field,

it automatically inherits all the natural properties of norm: It

is zero if only if the two phase diagrams f 1 and f 2 agree,1 it is

symmetric ( f 1 � f 2
�� ��

R
¼ f 2 � f 1
�� ��

R
) and it obeys the tri-

angular inequality f 1 � f 2
�� ��

R
� f 1 � f 3
�� ��

R
þ f 3 � f 2
�� ��

R
,

for 3 phase diagrams f 1; f 2; f 3. (A norm also satisfies afk k ¼
aj j fk k but this property is not useful in this context, since

the phase fractions must sum up to one.) Since a norm is a

special case of a metric, our proposal also defines a proper

metric.

Definition (1) provides a dimensionless quantity, which

facilitates its interpretation. Another desirable property is

that it naturally handles the case when one phase is simply

missing in one phase diagram. This possibility is not

uncommon when comparing experimental and ab initio

phase diagrams. Also, in novel systems that are not yet well

characterized, there may not be perfect knowledge of

which phases are stable or metastable and it is useful to be

able to quantify this type of discrepancy. It is not clear how

missing phases could be handled with a figure-of-merit

based on distances between phase boundaries. This defi-

nition also applies a less severe penalty in situations in

which only one phase is in disagreement while the others

agree. This makes sense, since this situation typically arises

when two phases have very similar free energies and can

easily be mispredicted without affecting the reliability of

the phase diagram elsewhere.

Our approach also makes it simple to account for the

fact that Gibbs triangles (or, more generally, Gibbs sim-

plexes) are the most natural way to represent multiple

composition axes. The fact that the axes are not orthogonal

can be ignored in definition (1) because the same Jacobian

terms appear in both the numerator and denominator. One

can thus simply integrate over all but one composition

using orthogonal axes, whether these axes are truly

orthogonal or not in the phase diagram’s representation.

The definition (1) is also computationally attractive

since it can easily be calculated via Monte Carlo sampling.

Let ci, i ¼ 1; . . .; n denote independent random draws from

a uniform distribution over the region R, then, by the Law

of large numbers
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Fig. 1 Problems associated with metrics based on distance between

phase boundaries. Solid and dashed curves distinguish two different

phase diagrams while thicker curves mark potential problems:

multiple crossing of a vertical (1) or horizontal (2) axis, different

domains of definition (3) of the functions defining the boundaries,

ambiguities is defining the orthogonal distance between 2 curves (4),

ambiguity of the notion of orthogonality when axes have arbitrary

relative scales due to differing units (5) and potential absence of a

phase (6)

1 Except perhaps on an irrelevant set of zero measure.
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1

n

Xn

i¼1

Xp

a¼1

f 1a cið Þ � f 2a cið Þ
�� �� ðEq 2Þ

converges in probability to f 1 � f 2
�� ��

R
as n �! 1. In

multicomponent systems, some care must be taken to

ensure that the compositions are indeed drawn uniformly.

For instance, in a ternary system, picking 3 composition

uniformly on 0; 1½ � and scaling them so their sum is one

does not generate a uniform distribution. However, picking

the 3 composition from an exponential distribution and

then normalizing them to sum to 1, does generate a uniform

distribution (see Ref 19). This Monte Carlo algorithm

scales very favorably with the number of components in

the system, unlike a standard grid integration.

The definition does exhibit some limitations. Most

importantly, it is dependent on the choice of the region of

interest R. This could be mitigated by agreeing on stan-

dardized regions. For instance, one can use a region

including the entire composition range and temperatures

from absolute zero (or room temperature) to the highest

phase transformation temperature of all systems

considered.

As an alternative, one could also use

f 1 � f 2
�� ��

q;R
�

R
c2R
Pp

a¼1 f 1a cð Þ � f 2a cð Þ
�� ��qdc
R
c2R dc

 !1=q

ðEq 3Þ

for some q� 1 to obtain analogues of any of the familiar Lq
norms.[18] For single phase regions, this substitution has no

effect since 0q ¼ 0 and 1q ¼ 1. For multiphase equilibria,

the choice of q does matter, but we suggest keeping the

q ¼ 1 choice due to its ease of interpretation.

Another possible alternative to Definition (1), which is

related to a previously proposed figure-of-merit,[17] is to

only compare the presence or absence of a phase, inde-

pendently of its phase fraction and define the metric:

dR f 1; f 2
� �

�
R
c2R
Pp

a¼1 1þ f 1a cð Þ
� �

� 1þ f 2a cð Þ
� ��� ��dc

R
c2R dc

:

ðEq 4Þ

where the function 1þ fð Þ is equal to 1 if f [ 0 and 0

otherwise. This definition has the interpretation of the

expected number of mismatched phases for a point c

picked at random in R. It also can be roughly interpreted as

the fraction of the (hyper)volume of the phase diagram

where disagreements between the nature of the

stable phases exist, weighted by the number of mismatches

[One could eliminate this weighting by replacing
Pp

a¼1 by

maxa2 1;...;pf g in (4)]. The notation dR f 1; f 2ð Þ (instead of

f 1 � f 2
�� ��

R
) is used because Eq 4 does not define a norm

when viewed as a function of the f ia cð Þ, since it cannot be

written as a function of f 1a cð Þ � f 2a cð Þ. However, it is a

norm when viewed as a function of the 1þ f ia cð Þ
� �

. This

definition therefore still defines a proper metric dR f 1; f 2ð Þ,
since the knowledge of 1þ fa cð Þð Þ also fully characterizes

the phase diagram. Definition (4) may be easier to imple-

ment if one only has access to the picture of the phase

diagram (instead of its underlying thermodynamic model),

because it avoids implementing the level rule to recover the

phase fractions (which becomes difficult beyond binary

systems). It is also in the same spirit as recent efforts to cast

inverse problems in thermodynamics modeling as con-

straint satisfaction problems.[8]

The presence of a miscibility gap leads to a subtle

complication in Definition (1) [or (4)]. In this case, mul-

tiple phases exhibiting the same crystal structure but at

different compositions could be in a multiphase equilib-

rium. We handle this by considering each phase (even with

the same crystal structure) as distinct but when comparing

the resulting phase fractions across two phase diagrams, we

always re-order the phase fractions (among phases sharing

the same crystal structure) so as to minimize (1). If the

number of phases with the same crystal structure is dif-

ferent in the two phase diagrams, we then add the appro-

priate number of phases with a zero phase fraction. In the

limit where the differences between the two phases dia-

grams are small, this simple rule yields differences in phase

fraction between corresponding phases.

The proposed metrics have been implemented as the

phasenorm command in the ATAT package[23–25] and

this implementation relies on OpenCalphad[21,22] to com-

pute phase equilibria. It has the following syntax:

phasenorm -tdb1=tdbfile1 -tdb2= tdbfile2

-e=element1,element2,... -n=nb of samples -T0=min

temperature -T1=max temperature [-01]

where

• tdbfile1 and tdbfile2 are the two thermodynamic

database files (in the TDB format[1]) of the assessments

to be compared;

• element1,element2,... is a comma-separated list of the

elements involved in the phase diagram of interest

(which allows the user to extract a subsystem from the

TDB files);

• nb of samples specifies the number of Monte Carlo

sampling steps performed;

• min temperature and max temperature define the

temperature range of the region R of interest (the full

composition range is assumed);

• the optional -01 switch instructs the use of Eq 4

instead of (1).

172 J. Phase Equilib. Diffus. (2019) 40:170–175

123



When using this tool, it is important to ensure that the

two thermodynamic database files use the same naming

conventions for the phases.

3 Application Example

The figure-of-merit proposed here enables instructive

quantitative studies of the accuracy of phase diagrams. One

natural question, for instance, is whether the assessments of

an alloy system are actually converging, that is, becoming

more accurate over time as more data because available

and more researchers study the same system.

Since one never actually knows for sure what is the

‘‘true’’ phase diagram, it may not be obvious if any con-

vergence of our knowledge of given system is really taking

place. One needs to study convergence through an internal

consistency criterion that does not require that the true

phase diagram be perfectly known. Given a sequence

s1; s2; . . ., how can one know if it converges without first

calculating the limit limn�!1 sn? The way out of this cir-

cular reasoning is to check if the sequence snf g forms a

Cauchy sequence, i.e., whether it has the property that

lim
n�!1

max
i;j� n

si � sj
�� �� ¼ 0:

It can be shown that any such Cauchy sequence necessarily

converges[18] (under a technical condition known as com-

pleteness of the space in which the sn live, which is typi-

cally satisfied for vector spaces commonly used to

represent scientific data).

In our context, this amounts to checking if the distance

between all phase diagrams f if g published on a given

system after some time t decreases significantly as time t

progresses:

Dt ¼ max
i;j such that ti � t and tj � t

f i � f j
�� ��

R
; ðEq 5Þ

where ti is the publication time of phase diagram i. Of

course, by construction, the quantity Dt necessarily

decreases with increasing t, but the rate at which this

happens is instructive and the absolute magnitude of Dt is

indicative of the expected remaining errors at time t.

Using the recently developed Thermodynamic DataBase

DataBase (TDBDB),[26] one can easily identify popular

alloy systems that have been repeatedly assessed, so that

the Cauchy property can be tested. We have selected the

many assessments of the Fe-Ti system[3,4,7,9,13,27] and of

the Al-Cu system[6,14,20,22,28] that are available in the

TDBDB and that can be parsed by OpenCalphad. We have

used the Monte Carlo algorithm (Eq 2) with 2000 draws

and a region bounded by 300 and 2000 K that covers the

entire composition range.

In Fig. 2, it can be seen that the distances between

assessments do clearly decrease sharply over time, indi-

cating that a consensus regarding the Fe-Ti phase diagram

is steadily emerging. In contrast, in the Al-Cu system

(shown in Fig. 3), it appears that disagreements have per-

sisted for many years, although the two latest assessments

reported in 2016[20,22] do seem to show good mutual

agreement. This analysis implicitly assumes that even if a

recent study re-uses older assessments, its authors consider

it as the current state-of-the-art, so that this data set inherits

the ‘‘time stamp’’ of its most recent (re)use.

We can also use our metric to identify clusters of work

that report mutually consistent results. Figure 4 and 5
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report all pairwise distances between the assessments. For a

given similarity threshold (here 1 or 2%), one can find

groups of assessments that lie close to each other, within

that threshold. Encouragingly, these clusters seem to pri-

marily consist of recent publications thus again suggesting

an emerging consensus.

4 Conclusion

We have described a formal methodology to quantify, in a

single figure-of-merit, the level of agreement between two

phase diagrams. Our proposal not only satisfies the math-

ematical requirements of a norm or a metric, but also has a

sound physical basis, is invariant to scaling of the graph

axes, and is easy to compute via Monte Carlo sampling,

with or without access to the thermodynamic model

underlying each phase diagram. We illustrate its usefulness

in a meta-analysis of a set of thermodynamic assessments

in popular alloy systems, in an effort to determine whether

the most current assessments have reached a consensus.

Our metric may find applications in other areas as well, for

instance, to report how well phase diagrams generated

purely via ab initio methods agree with the corresponding

experiments-based thermodynamic assessements.
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