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Abstract Diffusion couple experiments between Ni and

Re at 1200 and 1350 �C were performed. These experi-

ments established the limits of the two-phase FCC ? HCP

region. No intermediate phase was observed at these tem-

peratures. Composition-dependent interdiffusion coeffi-

cients and associated uncertainties were estimated by three

methods. The first employed fitting of the penetration

curves in conjunction with the Sauer-Freise (SF) method.

The second method employed a numerical solution of the

Boltzmann-Matano ordinary differential equation for

composition-dependent interdiffusion coefficient functions

whose parameters were optimized by a least squares fitting

to the data. Discrepancies between the results of these

methods indicate typical uncertainties in experimental

determination of diffusion coefficients. To further assess

such discrepancies, a third method was employed to per-

form an uncertainty quantification of the diffusion coeffi-

cients via a statistical analysis based on the SF method.

Keywords alloy � binary diffusion � composition profiles �
diffusion couples � experimental study

1 Introduction

The Ni-Re alloys system is the subject of research because

of the importance of Re as an alloying addition to Ni-based

superalloys. The phase diagram of the Ni-Re system con-

sists of a peritectic reaction between liquid and the Re-rich

hexagonal-close-packed (HCP) solid phase to form the Ni-

rich face-centered-cubic (FCC) solid phase.[1,2] Recent

research[3] has suggested the existence of an additional

phase, Ni4Re, isomorphous with Ni4Mo having the D1a
structure that is an ordered variant of the FCC structure.

Although this phase is thought to be stable only at low

temperatures, the present work was conducted in part to

determine whether this phase might be present at high

temperatures where it might affect the solidification

microstructure development. The diffusion couple experi-

ments were also analyzed to reexamine the composition

dependence of the interdiffusion coefficients in the FCC

and HCP phases and to establish the uncertainty of these

measurements.

Diffusion in the Ni-Re system has been studied by

several authors. Neubauer et al.[4] performed diffusion

experiments with pure Ni and pure Re end members at 990,

1050 and 1110 �C. They employed the Boltzmann-Matano

method to obtain the value of the interdiffusion coefficient,
~D, at different compositions in the Ni-rich (FCC) and Re-

rich (HCP) phases and determined the solubility limits of

the FCC and HCP phases as approximately 10% Re and

75% Re, respectively. (All alloy compositions will be

given in atomic percentages unless otherwise noted.) They

reported no intermediate phase in this system at these

temperatures. Karunaraste et al.[5] extracted concentration-

dependent interdiffusion coefficients for the FCC phase

using diffusion couples between pure Ni and Ni-10% Re
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(mass) at temperatures between 900 and 1200 �C. They
found very little concentration dependence (a factor of two

at most). The data obtained by Ref 6 was used for hand-

book values for impurity diffusion of Re in Ni. At the

temperatures of the present study, 1200 and 1350 �C, these
values are 7.43 9 10-16 and 5.09 9 10-15 m2/s, respec-

tively. Zeng et al.[7] extracted interdiffusion coefficients in

the FCC phase from diffusion couples between Ni-1% Re

(mass) and Ni-4.8% Re (mass) at 1100, 1150, 1200 and

1250 �C. Hobbs et al.[8] report average values in the FCC

phase of 6.12 9 10-18 and 9.31 9 10-17 m2/s at 1000 and

1100 �C, respectively. Epishina et al.[9] performed diffu-

sion couple measurements for Ni-Re in the FCC region up

to 9% Re (mass) at temperatures between 1050 and

1350 �C. They observed no significant concentration

dependence. This prior research is summarized in Table 1

and plotted in Fig. 1.

The present paper analyzes the results of diffusion

couple experiments in order to determine (1) the compo-

sition-dependent interdiffusion coefficients, (2) the com-

position limits of the two phase FCC ? HCP region in the

phase diagram, and (3) associated uncertainties in these

quantities. To this end, we invoke three separate methods

for analyzing the experimental data, each providing their

own independent assessment of their corresponding

uncertainties.

2 Experiments

Diffusion couples were prepared from 5 mm cubes of Ni

and Re with 99.99% purity. The pure Ni end member was

cut from a swaged rod. The pure Re end member was cut

from an arc cast rod. Couples consisted of a Ni/Re/Ni stack

where the touching faces were polished to a metallographic

grade finish. A molybdenum alloy clamp was used. Two

samples were sealed separately in evacuated quartz

ampoules and annealed at 1350 �C for 5 h and at 1200 �C
for 160 h, respectively. Sectioning and polishing parallel to

the diffusion direction revealed no microstructure or

porosity. Microprobe analysis was performed using ele-

mental standards with 1 nA current at 15 kV with a

counting time of 400 s with a 1 lm spacing, a spacing that

corresponds to the approximate x-ray excitation volume

size in the sample. The Ni K and Re L lines were

employed. One sigma error of the measured Re content

given by the microprobe software is approximately 0.03%

Re in the Ni-rich FCC phase and 0.3% Re in the Re-rich

HCP phase. Two line scans from each diffusion couple

were employed and are referred to as 1200 A, 1200 B, 1350

A and 1350 B.

Chemical etching of the diffusion couples after micro-

probe measurements revealed the grain structure. The grain

size of the FCC phase was approximately 100-500 lm. The

grain size of the HCP phase was on the order of 10-40 lm.

Because the diffusion distance in the HCP phase was on the

order of 50 lm, the contribution to diffusion in the HCP by

grain boundaries cannot be excluded.

The molar volume Vm xReð Þ as a function of atomic

(mole) fraction Re, xRe, was assumed to obey a common

volume-based Vegard’s Law (constant partial molar vol-

umes) for both the FCC and HCP phases. Using the molar

volume values for pure Ni and Re from Ref 10, the molar

volume in (m3/mole) for the alloy is taken as

Table 1 Summary of literature

on measurements of

interdiffusion coefficients in Ni-

Re, ~D ¼ D0 exp �Q=RT½ �

References D0 (m
2/s) Q (kJ/mole) Comment

4 1.4E-8 196 FCC 5% Re, 900 to 1150 �C
4 6.0E-8 199 HCP 80% Re, 900 to 1150 �C
4 3.2E-8 206 HCP 90% Re, 900 to 1150 �C
5 8.2E-7 255 FCC 0-10% Re (mass), 900 to 1300 �C
7 5.96E-1 412 FCC 1-4.8% Re (mass), 1100 to 1250 �C
9 1.16E-4 317 FCC 0-9% Re (mass), 1050 to 1350 �C

Fig. 1 Arrhenius plots (colored lines) of various data sets from the

literature shown in the temperature range where measured. Black

lines with error bars show results from the present work for selected

compositions
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Vm ¼ 6:586� 10�6ð1� xReÞ þ 8:849� 10�6xRe: ðEq 1Þ

3 Diffusion Equation

For constant partial molar volumes, the diffusion equation in

a reference frame moving with the local center of volume is

ocRe

ot
¼ o

oz
~D
ocRe

oz

� �
; ðEq 2Þ

where cRe z; tð Þ is the concentration (moles/m3), z is the

spatial coordinate (m), and t is the time (s) of the diffusion

anneal. The concentration is obtained from the measured

atomic fraction profile xRe z; tð Þ via

cRe z; tð Þ ¼ xRe z; tð Þ=Vm xRe z; tð Þð Þ:

For the conditions of infinite diffusion couples, the

Boltzmann-Matano transformation

n ¼ z � z0

t1=2
; cRe z; tð Þ ¼ C nð Þ; ðEq 3Þ

reduces Eq 2 to the ordinary differential equation

� n
2

dC

dn
¼ d

dn
~D
dC

dn

� �
: ðEq 4Þ

The appropriate boundary conditions for Eq 4 are that

C nð Þ ! C� as n ! �1, where C� ¼ x�Re=Vm x�Re
� �

are

the far-field solute concentrations. There is also a conser-

vation jump condition relating the jumps in flux and con-

centration at the moving FCC-HCP phase boundary

position zphase. The Matano interface position is obtained

by finding the value z0 that satisfies the equation

Zz0
�1

cRe zð Þ � c�Re
� �

dz ¼
Z1

z0

cþRe � cRe zð Þ
� �

dz: ðEq 5Þ

For simplicity we henceforth suppress the explicit time

dependence in cRe z; tð Þ and xRe z; tð Þ; the time will always

correspond to the time of the diffusion anneal.

Finally, the interdiffusion coefficient can be obtained by

the Sauer-Freise equation in either of its forms:

~D zð Þ ¼ 1

cþRe � c�Reð Þ
1

2t dcRe=dzð Þ cþRe � cRe zð Þ
� � Z z

�1
cRe z0ð Þ � c�Re
� �

dz0
�

þ cRe zð Þ � c�Re
� � Z 1

z

cþRe � cRe z0ð Þ
� �

dz0
	
;

ðEq 6Þ

~D zð Þ ¼ Vm xRe zð Þð Þ
xþRe � x�Re

1

2t dxRe=dzð Þ xþRe � xRe zð Þ
� � Z z

�1

xRe z0ð Þ � x�Re
� �
Vm xRe z0ð Þð Þ dz0

�

þ xRe zð Þ � x�Re
� � Z 1

z

xþRe � xRe z0ð Þð Þ
Vm xRe z0ð Þð Þ dz0

	
:

ðEq 7Þ

Technically the interdiffusion coefficients from Eq 6

and 7 are with respect to the center of moles and center of

mass respectively. But for a binary alloy with constant

partial molar volumes as assumed in the present case, these

interdiffusion coefficients are identical.[11–13]

4 Results and Analysis

4.1 Experimental Data

Figure 2 and 3 show the measured penetration data points

for 1200 and 1350 �C respectively plotted as xRe nð Þ along
with the fits described below. The jump in composition at

the interface between the FCC and HCP phases is clearly

shown and the Matano positions for all diffusion couples,

n ¼ 0, lie within the HCP phase indicating that the FCC

phase is dissolving and the HCP phase is growing. There is

no evidence of any intermediate phase at the temperatures

studied.

The diffusion profiles in the HCP phase have a sharp

transition to pure Re. The curves fail to become shaped like

an error function for large n on the scale of the measure-

ment spacing. A similar shape was observed on the Ni-rich

side of Au-Ni diffusion couples.[14,15] Indeed, backscatter

images of the diffusion couple show an apparent sharp

change in contrast at this location that can be confused with

a phase interface. Significant data scatter is seen on the

HCP side of the diffusion couple. This is presumably due to

the small grain size of the Re end member.

4.2 Assessment of ~D Using the Sauer-Freise

Approach

Three different analysis methods were used in the present

research in order to gain insight into the uncertainty. In the

first approach (the ‘‘Sauer-Freise method’’) the atomic

fraction Re data xRe zð Þ was fit using a commercial software

package separately for the FCC and HCP phases. For the

FCC phase a function was used that guaranteed a zero

slope at minus infinity; viz.,

xRe zð Þ ¼ a exp z=bð Þ 1þ czþ dz2
� �

; ðEq 8Þ

where the lower case letters are fitting parameters. For the

HCP side the following function captured the general shape

of the penetration curve while still having a relatively

smooth derivative,

xRe zð Þ ¼ aþ bzþ cz2 þ dz3 þ e exp zð Þ: ðEq 9Þ

The exponential term in Eq 9 was found necessary to

capture the diffusion profile near the Re end member. The

fits are shown as the red lines in Fig. 2 and 3. The residuals
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(observed minus fit) are shown in Fig. 4 and 5 along with

the residuals for the other methods described below (the

‘‘ODE method’’ and the ‘‘UQ method’’).

From fits to the diffusion profiles, the compositions on

either side of the interphase interface can be established.

Under the assumption of local equilibrium, usually valid

for diffusion couples at late times, these values establish

the solubility limits of Re in FCC Ni and Ni in HCP Re.

The results are summarized in Tables 2 and 3. Table 2 also

gives the same information obtained from the other two

approaches. Upper and lower bound estimates are also

given. These bounds were determined by a procedure that

examined the uncertainties of profile fits and the interface

position, which cannot be resolved experimentally to better

than the 1 lm spacing of the microprobe measurements.

The ranges are not symmetric about the determined value.

Fig. 2 Measured composition vs. scaled distance for diffusion at 1200 �C for 160 h (pts.) and fit (red curve) used for the Sauer-Freise integration

Fig. 3 Measured composition vs. scaled distance data for diffusion at 1350 �C for 5 h(pts.) and fit (red curve) used for the Sauer-Freise

integration
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In Table 3 the mean and standard deviation obtained from

the six numbers from the three methods and A and B

profiles are given along with the phase boundary values

determined by Ref 1.

To obtain interdiffusion coefficients with the Sauer-

Freise approach, Eq 7 was employed. The integration was

performed using a piecewise function formed from the two

fitting functions, Eq 8-9, for each data set in Mathematica.1

The interdiffusion coefficient values as a function of

composition are shown as discrete points from each data

set at 1200 �C and at 1350 �C in Fig. 6 for the FCC and

HCP phases. Additional lines are shown that are obtained

from the other methods as described below. As usual with

the Sauer-Freise method, the values near the end members

(0 and 100% Re) are not reliable. The diffusion coefficients

for the FCC at each temperature are in good agreement: the

composition-dependent value of ~D is observed to decrease

with increasing Re content by a factor of three over the

range of solubility. For the HCP phase the agreement

between the two data sets at each temperature is not as

good as for the FCC phase, undoubtedly due to the larger

noise in the measured HCP penetration curve data. How-

ever, the HCP data at both temperatures show a maximum

at approximately 75% Re (mole fraction). The dramatic

drop of the values of ~D by a factor of ten or more as the

composition approaches pure Re is evident, a fact consis-

tent with the very sharp rises toward 100% Re in the

composition versus distance curves.

4.3 Assessment of ~D Using an Ordinary Differential

Equation (ODE) Solver

A second approach (the ‘‘ODE method’’) can be used to

determine the diffusion coefficients ~D xReð Þ for the FCC and

HCP phases from the measured solute profiles xRe zð Þ. This
method solves the Boltmann-Matano Eq 4 iteratively,

updating guesses for ~D xReð Þ until satisfactory agreement is

attained between the computed and measured profiles for

xRe zð Þ. Such a method has been applied to single phase

ternary diffusion couples by Ref 16. In the present two

phase diffusion couple, the functional form of the unknown

diffusion coefficient ~D xReð Þ is assumed to be given in terms

of a small set of fitting parameters,

~D xReð Þ ¼
exp A0 þ A1xRe þ A2 xReð Þ2

h i
; in the FCC phase z\zphase

� �
exp B0 þ B1xRe þ B2 xReð Þ2

h i
; in the HCP phase z[ zphase

� �
:

8><
>:

ðEq 10Þ

Given the far-field concentrations and the concentrations

at the phase boundary, and guesses for the parameters, Aj

and Bj, and the Matano position, z0, the ordinary differ-

ential Eq 4 is solved numerically to obtain a computed

solution. The difference between the computed solute

Fig. 5 Deviation of measured data from fits for 1350 �C diffusion

profiles. S-Fmethod (black),ODEmethod (red) andUQmethod (green)

Fig. 4 Deviation of measured data from fits for 1200 �C diffusion

profiles. S-Fmethod (black),ODEmethod (red) andUQmethod (green)

1 r Mention of trade names is for completeness only and does not

constitute an endorsement by the National Institute of Standards &

Technology.
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profile and the experimental data is then used to generate

an improved guess for the unknown parameters, and the

process is repeated until convergence is obtained. Details

about the numerical procedure are provided in Appendix 1.

With this approach it is not necessary to fit the measured

data with empirical functions, as is required to apply the

Sauer-Freise technique. If the numerical solution to Eq 4 is

determined over a large enough finite interval of n, the
computed solution asymptotes to the far-field values with

negligible solute gradients there, so the self-similarity

assumptions of the Boltzmann-Matano equation are

satisfied.

In practice we find that a good fit to the data can be

obtained by using a linear expression for ln ~D xReð Þ in the

FCC phase in Eq 4 with A2 = 0, whereas a quadratic

equation is more accurate in the HCP phase. The opti-

mized parameters for the interdiffusion coefficients as

defined in Eq 10 for the four data sets are given in

Table 4 and the values of ~D xReð Þ are plotted in Fig. 6. An

example of the quality of the fit using the ODE method is

shown in Fig. 7 along with a magnified view of the region

near the Re end of the couple. The decrease in the dif-

fusivity as the composition approaches pure Re produces

a distinct shoulder in the computed solute profile in the

HCP phase, which the solution to the Boltzmann-Matano

equation is able to reproduce quantitatively. The residuals

for the ODE method are shown in Fig. 4 and 5 and are

remarkably similarity to those obtained from the Sauer-

Freise method.

Taking means of the parameters for the two data sets

at each temperature from Table 4, one can determine the

composition dependence of the prefactor, D0, in (m2/s)

and the activation energy, Q, in (kJ/mole) in the

expression ~D ¼ D0 exp �Q=RT½ �. For the FCC phase we

obtain

lnD0 ¼ �8:52� 17:2xRe;

Q ¼ 314:9� 85:9xRe;
ðEq 11Þ

and for the HCP phase we obtain

lnD0 ¼ �57:3þ 81:3xRe � 33:0x2Re;

Q ¼ 49:6þ 3:5xRe þ 304x2Re:
ðEq 12Þ

For pure Ni this gives lnD0 ¼ �8:52 and Q ¼ 314:9 in the

units stated above. For pure Re this gives lnD0 ¼ �9:0 and

Q ¼ 357:1.

4.4 Assessment of ~D and Uncertainty Quantification

(UQ) Using a Statistical Method

The third approach, a statistical uncertainty quantification

method (the ‘‘UQ method’’), tries to reconcile differences

between the previous methods by independently estimating

uncertainties in ~D xReð Þ. This third approach, which is based
on the Sauer-Freise method, is comprised of two main

steps. First, a smooth function is fit to the penetration

profile and the associated residuals (i.e. measured minus

fit) are used to construct a noise model. This model is

formulated so as to partially compensate for small sys-

tematic deviations of the fit relative to the data, thereby

making the choice of the fitting function less critical.

Second, the noise model is numerically sampled to rapidly

create multiple (e.g., 1000) synthetic penetration profiles.

Refitting each synthetic penetration profile and analyzing

each with the SF formula results in a distribution of dif-

fusion coefficients that should be consistent with the noise

in the underlying data. From this distribution, it is

straightforward to extract mean diffusion coefficients and

uncertainties as needed.

We begin by examining fits to and residuals of the data

using the function

Table 2 Summary of solubility limits (%) established from the Sauer-Freise method, the ODE method and the UQ method: value (lower bound,

upper bound)

FCC limit SF FCC limit ODE FCC limit UQ HCP limit SF HCP limit ODE HCP limit UQ

1200 A 13.0 (12.9, 14.2) 13.7 (13.0, 15.1) 14.2 (12.2, 16.4) 68.0 (66.9, 68.8) 68.3 (68.2, 68.5) 68.8 (67.1, 69.8)

1200 B 12.4 (12.3, 13.3) 13.5 (13.1, 15.1) 13.5 (12.3, 15.1) 65.4 (64.4, 66.8) 65.0 (64.8, 65.6) 66.5 (63.9, 68.2)

1350 A 16.0 (15.9, 18.5) 16.6 (15.9, 18.7) 17.5 (15.8, 19.7) 64.3 (62.3, 65.1) 63.7 (63.3, 64.5) 63.5 (61.3, 65.2)

1350 B 15.0 (14.9, 17.2) 16.3 (15.9, 18.7) 16.2 (14.9, 18.6) 64.4 (62.0, 65.5) 65.0 (64.8, 65.6) 65.0 (63.1, 66.5)

Table 3 Mean and standard deviations of solubility limits determined by the three methods for the A and B data sets

T, �C FCC limit % Re HCP limit % Re FCC limit[1] HCP limit[1]

1200 13.4 ± 0.6 67.0 ± 1.6 14.6 71

1350 16.3 ± 0.8 64.3 ± 0.6 16.8* 68*

* Interpolated from data at 1200 and 1500 �C
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xReðzÞ ¼ x�Re þ f ðzÞf1� erf ½a5ðz� zphaseÞ�g
þ hðzÞf1 þ erf ½a5ðz� zphaseÞ�gHðzcorner � zÞ
þ xþReHðz� zcornerÞ;

ðEq 13Þ

where

f ðzÞ ¼ ða1=2Þf1 þ erf ½a2sgnðz� a3Þjz� a3ja4 �g;
hðzÞ ¼ ða7=2Þ 1 þ a8erf

�1½a9ðz� a10Þ�

 �

;

ðEq 14Þ

and sgn(x) = ± 1 is the sign of x, H(x) is the Heaviside

step function, and the erf-1 function is the inverse error

function restricted to the domain over which it is strictly

real. The position zcorner is the location where the extremely

sharp transition of the penetration curve to pure Re occurs.

As such it satisfies h zcornerð Þ ¼ xþRe, where it is further

assumed that 1=2ð Þ 1 þ erf a5 z� zphase
� �� �
 �

� 1 at the

corner, or equivalently, that a5 is large relative to the

horizontal spacing of the data points. The profiles in the

FCC and HCP phases have different behaviors character-

ized by f zð Þ and h zð Þ, respectively. The terms

1� erf a5 z� zphase
� �� �
 �

act as switching functions that

allow the penetration profile to transition between these

two behaviors. At the sharp phase-transition interface, we

expect the concentration profile to change over a charac-

teristic length-scale equal to the spacing of the measure-

ment. This sets a lower limit on plausible values of 1=a5.

Moreover, by symmetry of the error function, we also

Fig. 6 Compositiondependenceof the interdiffusion coefficient obtained for theNi-richFCCphase and theRe-richHCPphase by twomethods at 1350

and 1200 �C: S-F method (points), ODE method (black lines). Upper and lower uncertainty bounds (�3r) established by the UQ method (red lines)
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identify a6 as the interface position, zphase. The residuals of

the fits using Eq 13 and 14 are given in Fig. 4 and 5. They

are very similar to those obtained from the other methods.

To construct the noise model, we treat the residuals (cf.

Fig. 4 and 5) as a random sample of the noise in our data.

By eye, it is obvious that these residuals have structure as a

function of distance. Given this observation, there are

many reasonable procedures for constructing a noise

model. Here we invoke a Gaussian-process analysis[17] that

views the residuals as evaluations of a random function

with an undetermined smoothness and spatial correlation

structure characterized in terms of a set of free parameters

/ (see Appendix 2). Importantly, individual points on this

function are Gaussian random variables, while collections

of points are multivariate Gaussian random variables with a

covariance determined partially by the data. While details

of this analysis are provided in Appendix 2, we note here

that this procedure yields j synthetic concentration profiles

of the form

x
j
Re;synth zið Þ ¼ xRe zið Þ þ g j zi;uð Þ; ðEq 15Þ

where xRe zið Þ is the fit, Eq 13, evaluated at the discrete

points, zi, and g j is the jth realization of the postulated

noise model with parameters / determined to match the

spatial correlation structure of the experimental residuals

(see Appendix 2). Therefore, the synthetic noise realiza-

tions have (random) features that are qualitatively similar

to those of the residuals in Fig. 4 and 5.

Given the specification of the noise model (via the

parameters /), we then use random number generators to

create on the order of 1000 realizations of x
j
Re;syn zið Þ, each

of which is subsequently analyzed using the Sauer-Freise

formalism. Figure 8 shows an example of five fits to syn-

thetic xRe nð Þ profiles generated for the 1200 A data.

Notably, the profiles show a much larger spread on the Re-

rich side of the diffusion couple, consistent with the larger

scatter in the data there. The insets in Fig. 8 show examples

of a synthetic penetration curve. Its noise is similar to the

raw data.

Given the 1000 determinations of ~D xReð Þ, we then

compute an average diffusion coefficient and standard

deviation at each composition over the synthetic sets.

Figure 6 includes the combined ± 3 sigma uncertainties of

the A and B data sets for the composition-dependent

interdiffusion coefficient as red lines. The choice of three

times the standard deviation is somewhat arbitrary and was

chosen because the residuals are not Gaussian. Cheby-

shev’s rule states that at least 89% of data lie within three

standard deviations in such cases.

For the 1200 �C FCC case (Fig. 6) the uncertainty in the

determination of ~D expands in the positive and negative

directions near pure Ni and near the limit of solubility of

the FCC phase. A similar expansion of the uncertainty

ranges near the HCP solubility limit are noted. The

expansion of the uncertainty bounds near pure Ni reflects

the usual difficulty of the SF method and/or the end cor-

rections described in Eq 17 below. Near the phase

boundary the increase in uncertainty is likely due to

uncertainty in fitting end of range data. The reason that the

uncertainty range for the 1350 �C FCC diverges in only the

positive directions near pure Ni is a result of the smaller

values determined for the exponent, a4, in Eq 14 generated

by fitting of the synthetic data generated by the noise

model.

Table 4 Optimized parameters

for ~D xReð Þ in Eq 10 obtained

from the four data sets

Set A0 A1 A2 B0 B1 B2

1 (1350 A) -31.792434 -10.906097 0 -72.292549 111.18898 -75.399494

2 (1350 B) -31.926384 -10.78129 0 -49.728444 50.930777 -35.760985

3 (1200 A) -34.128757 -11.300799 0 -55.980823 69.271011 -51.600557

4 (1200 B) -34.343263 -9.0894963 0 -66.789142 92.796541 -64.15788

Fig. 7 Example of fit using ODE method for 1200 A data. Inset

shows ODE solution near xRe ¼ 1
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5 Discussion

The interdiffusion coefficients and the associated uncer-

tainties have been determined for the FCC and HCP phases

in the Ni-Re system at 1200 and 1350 �C as summarized in

Fig. 6. Three methods were employed: a traditional Sauer-

Freise method, a method that solved the diffusion equation

for composition-dependent interdiffusion coefficients and a

Sauer-Freise method using different fitting functions that

were applied to synthetic data generated from a statistical

model of the noise in the experimental data. The agreement

of the ~D values obtained by the three methods for the FCC

phase are within a factor of 1.3 at intermediate composi-

tions in the FCC solubility range. Agreement of a factor of

two occurs near pure Ni and near the solubility limit. For

the HCP phase the three methods give results that differ by

a factor of two except near the HCP solubility limit where

the deviation is a factor of seven.

For the FCC phase over its solubility range, ~D decreases

by a factor of three with increasing Re content at 1200 �C
and by a factor of 4.5 at 1350 �C. The limiting value of ~D

as xRe ! 0 corresponds to the Re impurity diffusion

coefficient in FCC Ni. The values obtained by the ODE

method for 1200 and 1350 �C respectively are

1.35 9 10-15 and 1.46 9 10-14 m2/s respectively. As can

be seen in Fig. 1, the values from the present work are

larger than those of Ref 5 which were selected by Ref 6 as

reference values for impurity diffusion of Re in Ni. The

activation energy obtained for the diffusion in the FCC

phase in the present work is given by Eq 11. Its value

ranges from 314.9 kJ/mole as xRe ! 0 to 306.3 kJ/mole at

xRe ¼ 0:1. This agrees most closely with the value reported

by Ref 9 of 317 kJ/mole (Table 1).

For the HCP phase a maximum value of ~D is observed

near 75% Re at each temperature. The interfusion coeffi-

cient decreases by a factor of 10 or more as pure Re is

approached at each temperature.

In addition to the results of Fig. 6, Table 5 gives the

mean and standard deviation of the 6 determinations of ~D
at selected compositions at 1200 and 1350 �C. In general,

but not always, the bounds provided by the UQ method

(red lines in Fig. 6) are about plus and minus two times the

standard deviations given in Table 5.

As a byproduct of the fitting of the diffusion penetration

curves near the FCC-HCP phase interface in the diffusion

couples, the compositions at the moving FCC/HCP inter-

face have been determined by the three methods. Under the

assumption of local equilibrium usually valid for diffusion

couple experiments at long times, these numbers give the

boundaries of the FCC ? HCP two phase region in the Ni-

Re system. At 1200 �C the mean values for the FCC and

HCP phases from Tables 2 and 3 are 13.4% Re and 67.0%

Re, respectively. At 1350 �C the mean values for the FCC

and HCP phases are 16.3% Re and 64.3% Re, respectively.

The uncertainty of these values can be assessed by exam-

ination of the minimum and maximum values for these

parameters that are given in Tables 2 and 3. No interme-

diate phase was observed in the diffusion couples. The

solubility limits for the FCC and HCP phases obtained in

this work can be compared to those measured by Ref 1 at

1200 �C of 14.6% Re and 71% Re. Their FCC value is

within the uncertainty estimate for the FCC but their value

for HCP is outside the uncertainty limits.

Formal uncertainty limits for these quantities were

established by generating synthetic penetration curves

based on the statistics of the deviation of the experimental

data from fits. Applying the Sauer-Freise method to each of

these synthetic penetration curves gave a corresponding
~D xReð Þ curve. These 1000 curves were examined to

established upper and lower bounds on the diffusion

coefficients. These bounds approximated the variations

observed using the initial Sauer-Freise method and the

ODE method; see Fig. 6. Regarding these uncertainty

estimates, it is worth noting that the analysis operates in a

relatively data poor regime insofar as there are only two

penetration profiles each for samples annealed at 1200 and

1350 �C. As such, traditional notions of uncertainty, e.g.

characterized in terms of standard errors, may be unreli-

able, since the available data is insufficient to inform sta-

tistical information about an underlying probability

density. Rather, the analysis should be viewed as an

attempt to quantify the extent to which one can identify a

‘‘unique’’ interdiffusion coefficient given noise in the data

Fig. 8 Plot of measured profile for Set 1200 A (diamonds) and fits to

five synthetic data sets(lines). The insets show original data for the

FCC and HCP regions and an example of synthetic data for each
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and a model for the diffusion process. For extensions of

this analysis that address analogs of standard error across

many datasets (which we do not have), see papers on sta-

tistical inference of interlaboratory studies of key-com-

parison experiments.

In order to better understand the analytical underpin-

nings of uncertainty and the corresponding role of the sharp

break of the penetration profiles near the pure Re end of the

diffusion couples (where the measured gradient is not

zero), a detailed examination of the end conditions was

performed. The relation in Eq 5 for the Matano interface

position z0 and the Sauer-Freise expressions in Eq 6 and 7

apply to an idealized infinite diffusion couple for which the

solute gradients vanish in the far-field. They both are

obtained by taking appropriate limits of the relation derived

by integrating Eq 4 over an interval n1 � n� n2 that lies in
a single phase,

Zn2
n1

n
dCðnÞ
dn

dn ¼ ~DðCðn2ÞÞ
dCðn2Þ
dn

� ~DðCðn1ÞÞ
dCðn1Þ
dn

ðEq 16Þ

and using the relation between z and n at fixed t given in

Eq 3. By using this expression, the generalization of Eq 5

Table 5 ~D versus xRe, mean and standard deviation in m2/s

FCC at 1200 �C HCP at 1200 �C FCC at 1350 �C HCP at 1350 �C

xRe Mean Std xRe Mean Std xRe Mean Std xRe Mean Std

0.005 1.24E-15 1.29E-16 0.68 3.65E-15 1.64E-15 0.005 1.33E-14 1.14E-15 0.66 1.64E-14 9.65E-16

0.010 1.15E-15 1.15E-16 0.69 3.86E-15 1.24E-15 0.010 1.22E-14 1.05E-15 0.67 1.83E-14 1.85E-15

0.015 1.08E-15 1.06E-16 0.70 4.44E-15 1.29E-15 0.015 1.14E-14 1.01E-15 0.68 1.93E-14 1.42E-15

0.020 1.03E-15 9.85E-17 0.71 4.57E-15 1.01E-15 0.020 1.07E-14 9.54E-16 0.69 2.02E-14 1.31E-15

0.025 9.78E-16 9.01E-17 0.72 4.71E-15 8.73E-16 0.025 1.02E-14 8.84E-16 0.7 2.09E-14 1.60E-15

0.030 9.35E-16 8.18E-17 0.73 4.85E-15 1.08E-15 0.030 9.68E-15 8.12E-16 0.71 2.16E-14 1.97E-15

0.035 8.95E-16 7.35E-17 0.74 4.77E-15 1.18E-15 0.035 9.22E-15 7.41E-16 0.72 2.20E-14 2.39E-15

0.040 8.58E-16 6.51E-17 0.75 4.40E-15 8.26E-16 0.040 8.79E-15 6.73E-16 0.73 2.21E-14 2.77E-15

0.045 8.22E-16 5.66E-17 0.76 3.96E-15 4.63E-16 0.045 8.38E-15 6.09E-16 0.74 2.20E-14 3.05E-15

0.050 7.88E-16 4.80E-17 0.77 3.54E-15 2.20E-16 0.050 8.00E-15 5.48E-16 0.75 2.17E-14 3.22E-15

0.055 7.56E-16 3.93E-17 0.78 3.16E-15 1.26E-16 0.055 7.63E-15 4.92E-16 0.76 2.11E-14 3.28E-15

0.060 7.24E-16 3.10E-17 0.79 2.80E-15 1.54E-16 0.060 7.28E-15 4.40E-16 0.77 2.02E-14 3.22E-15

0.065 6.94E-16 2.35E-17 0.80 2.48E-15 1.70E-16 0.065 6.95E-15 3.94E-16 0.78 1.91E-14 3.07E-15

0.070 6.65E-16 1.78E-17 0.81 2.18E-15 1.78E-16 0.070 6.63E-15 3.54E-16 0.79 1.80E-14 2.84E-15

0.075 6.37E-16 1.56E-17 0.82 1.91E-15 1.65E-16 0.075 6.33E-15 3.21E-16 0.8 1.67E-14 2.47E-15

0.080 6.11E-16 1.72E-17 0.83 1.67E-15 1.34E-16 0.080 6.04E-15 2.96E-16 0.81 1.53E-14 2.17E-15

0.085 5.85E-16 2.11E-17 0.84 1.45E-15 1.07E-16 0.085 5.76E-15 2.80E-16 0.82 1.40E-14 1.83E-15

0.090 5.61E-16 2.56E-17 0.85 1.24E-15 8.86E-17 0.090 5.50E-15 2.68E-16 0.83 1.26E-14 1.48E-15

0.095 5.37E-16 2.99E-17 0.86 1.06E-15 8.12E-17 0.095 5.25E-15 2.64E-16 0.84 1.13E-14 1.15E-15

0.100 5.14E-16 3.39E-17 0.87 8.99E-16 7.72E-17 0.100 5.02E-15 2.60E-16 0.85 9.98E-15 8.32E-16

0.105 4.92E-16 3.72E-17 0.88 7.59E-16 8.77E-17 0.105 4.79E-15 2.61E-16 0.86 8.74E-15 6.69E-16

0.110 4.70E-16 4.08E-17 0.89 6.25E-16 8.92E-17 0.110 4.58E-15 2.60E-16 0.87 7.47E-15 4.78E-16

0.115 4.48E-16 4.47E-17 0.90 5.10E-16 8.66E-17 0.115 4.37E-15 2.60E-16 0.88 6.34E-15 6.57E-16

0.120 4.25E-16 4.88E-17 0.91 4.09E-16 7.83E-17 0.120 4.17E-15 2.59E-16 0.89 5.30E-15 9.10E-16

0.92 3.09E-16 5.18E-17 0.125 3.98E-15 2.55E-16 0.9 4.41E-15 1.09E-15

0.93 2.28E-16 3.59E-17 0.130 3.80E-15 2.51E-16 0.91 3.65E-15 1.16E-15

0.94 1.61E-16 1.90E-17 0.135 3.62E-15 2.45E-16 0.92 3.00E-15 1.17E-15

0.95 1.15E-16 1.69E-17 0.140 3.45E-15 2.38E-16 0.93 2.45E-15 1.11E-15

0.96 7.80E-17 1.35E-17 0.145 3.27E-15 2.38E-16 0.94 1.98E-15 1.02E-15

0.97 5.35E-17 1.35E-17 0.150 3.12E-15 2.61E-16 0.95 1.57E-15 9.11E-16

0.98 3.81E-17 1.58E-17 0.155 2.91E-15 2.79E-16 0.96 1.23E-15 7.85E-16

0.99 2.40E-17 1.47E-17 0.97 9.25E-16 6.57E-16

0.98 6.61E-16 5.42E-16

0.99 3.90E-16 4.22E-16
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for the Matano position for data collected over a finite

length zL � z� zR that spans both phases is then

Zz0
zL

cRe zð Þ � cRe zLð Þ½ � dz�
ZzR
z0

cRe zRð Þ � cRe zð Þ½ � dz

¼ 2t ~DðcReðzRÞÞ
dcRe zRð Þ

dn
� 2t ~DðcReðzLÞÞ

dcRe zLð Þ
dn

;

ðEq 17Þ

where the two terms on the right are end corrections that

may be non-zero if the measured solute gradients at the

ends of the range of data measurement are non-negligible.

Similar end corrections to the Sauer-Freise Eq 6 and 7 can

be obtained. When applying Eq 5, 6, or 7 to experimental

data obtained over a finite distance range, it is important to

check that the resulting end corrections are negligible. In

our case, the experimental data for compositions that

approach pure Re have steep and poorly resolved solute

gradients. To avoid contributions from end corrections, the

fits to the data should employ functions that extend beyond

the experimental data set with extrapolations that have

small gradients in the far field. The fits that are obtained

using the ODE method can be explicitly checked for self-

consistency by evaluating the Matano position expressions

and Sauer-Freise expressions using the computed solution.

By choosing a large enough fitting interval, we could

obtain satisfactory agreement between all three methods.

The consideration of end corrections for a finite couple

also enters into the question of uniqueness of diffusion

coefficients that can be computed from experimental data.

For example, the end-corrected Sauer-Freise expressions

for data on a finite interval with non-negligible solute

gradients shows that the resulting diffusion constants

determined may not be unique, and depend on how the data

near the end of the couple is treated. When Eq 5, 6, or 7 are

applied for experimental data on a finite interval where the

solute gradients are not small, this type of underlying non-

uniqueness may be reflected in the relatively large mag-

nitude of the uncertainties in the computed diffusion con-

stants near the ends of the sample.

The ODE method in particular can be used to highlight

the large uncertainties, or even non-uniqueness, in the

diffusivities by its propensity to obtain good fits to the

penetration curve data by using significantly different

composition-dependent diffusivity functions. For example,

by using starting estimates for the diffusion coefficients in

the ODE method’s iterative procedure that are obtained

from various fits to the diffusivities obtained by the other

two methods (for example, by assuming higher degree

polynomial fits than assumed in Eq 10), diffusivities that

lie at the extremes of the uncertainty intervals can easily be

obtained.

Finally, we comment on the various optimizations per-

formed in the present paper. The least square error of the

fits cFITRe ðzjÞ to the experimental solute data cReðzjÞ at the

positions zj; j ¼ 1; 2; . . .;N; is denoted by

ELS ¼ 1

N

XN

j¼1
jcReðzjÞ � cFITRe ðzjÞj

2

� 	1=2
: ðEq 18Þ

The error ELS is the quantity that is minimized in using

the ODE method, and is also used to determine fits to the

data in the other two methods. Whether this measure of

error is the best one to use is perhaps an open question; for

example, given the larger scatter in the experimental data

in the HCP phase relative to the FCC phase, a version of

least square error with unequal weights in each phase (or,

for example, one that highlights the data near the phase

boundary) might be preferable in some ways.

6 Conclusion

• The interdiffusion coefficients have been determined

from diffusion couple experiments by three methods for

the FCC and HCP phases in the Ni-Re system at

1200 �C and 1350 �C. Two of the methods employ the

Sauer-Friese method but with different smoothing

methods. The third (called the ODE method) determi-

nes an optimal ~D xReð Þ function by comparing the

measured data to the solution to the diffusion equation.

A linear ~D xReð Þ function was found adequate for the

FCC phase, but a quadratic ~D xReð Þ function was nec-

essary for the HCP phase. Higher order functions did

not improve the fit, but cannot be excluded as possible

results. The results are given from all three methods are

shown in Fig. 6.

• Mean values for the diffusion coefficients obtained

from the three methods are given in Table 5 along with

the associated standard deviation.

• Composition dependent Arrhenius expressions deduced

from the ODE results are given by Eq 11 and 12.

• The agreement of the three methods for the FCC phase

are within a factor of 1.3 at intermediate compositions

in the FCC solubility range. Agreement of a factor of

two occurs near pure Ni and near the solubility limit.

For the HCP phase the three methods give results that

differ by a factor of two except near the HCP solubility

limit where the deviation is a factor of seven and near

pure Re where the deviation is more than a factor of 30.

• For the FCC phase over its solubility range, ~D

decreases by a factor of three with increasing Re

content at 1200 �C and by a factor of 4.5 at 1350 �C.
The limiting value of ~D as xRe ! 0 corresponds to the

Re impurity diffusion coefficient in FCC Ni. The values
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obtained by the ODE method for 1200 �C and 1350 �C,
considered more reliable in this limit than the SF

method, are 1.35 9 10-15 and 1.46 9 10-14 m2/s

respectively.

• For the HCP phase, a maximum value of ~D is observed

near 75% Re at each temperature. The interfusion

coefficient decreases by a factor of 10 or more as pure

Re is approached at each temperature.

• At 1200 �C the mean values for the FCC and HCP

phases at the interphase interface are 13.4% Re and

67.0% Re, respectively. At 1350 �C the mean values

for the FCC and HCP phases are 16.3% Re and 64.3%

Re, respectively.

• No intermediate phase was observed in the diffusion

couples.

• Uncertainty limits were established by generating

synthetic penetration curves based on the statistics of

the deviation of the experimental data from fits.

Applying the Sauer-Freise method to these synthetic

penetration curves established upper and lower bounds

on the diffusion coefficients that were consistent with

the variations observed using the initial Sauer-Freise

method and the ODE method.

• Broadly speaking, no matter which technique is used

there is a relatively large uncertainty associated with

the determination of diffusion coefficients from mea-

sured solute profiles. Given a measured profile xRe zð Þ
that exhibits experimental scatter, two equally reason-

able fits to within the noise levels can lead to

corresponding diffusion coefficients that can differ by

as much as a factor of two.

• The raw data can be found at the NIST Materials

Repository (http://hdl.handle.net/11256/944).
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Appendix 1: The ODE Method

Given an estimate for the diffusion coefficient ~D xReð Þ, the
ordinary differential equation (ODE) (4) is solved[18,19] by

a shooting method. Since the diffusivity is nonlinear and

can vary by over an order of magnitude, the ODE is stiff

and care must be exercised in the numerical procedure.

Starting from provisional values for Cðn1Þ and its

derivative C0ðn1Þ at a given point n1 in the FCC phase, the

ODE is integrated to the left hand endpoint n ¼ nL and the

resulting concentration CL ¼ CðnLÞ is recorded. The ODE

is also integrated rightward from n1 until the phase

boundary at n ¼ nphase is detected, at which point the jump

conditions are applied and the integration is resumed until

the right hand endpoint is reached at n ¼ nR. The resulting
values of CL and CR are then compared to the desired end

conditions c�Re, and the process is repeated by iterating on

the values of Cðn1Þ and C0ðn1Þ until convergence is

obtained. A good starting guess is required for Cðn1Þ and
C0ðn1Þ, and the steps taken by the root solver must be small

enough that the ODE solver does not fail via solution blow-

up from a bad guess. Suitable starting guesses can be

obtained by continuation from a previous solution or an

analytical solution for constant ~D.

The resulting composition profiles are compared with

the measured profile at the experimental data points, and

the least square error between the profiles is used to iterate

on ~D until convergence is obtained. Again it is necessary to

control the size of the correction to ~D in order to avoid

blow-up of the ODE solution. In practice, the initial

guesses for ~D can be obtained from a previous solution or

an analytical solution, and small trial-and-error changes to
~D suffice to obtain an approximate solution. An opti-

mization routine[18,19] can then be employed to determine a

final solution, again being careful to avoid large steps by

the optimizer that can lead to solution blow-up.

The solution to the ODE is smooth in each phase, and

the fit to the experimental data generates a least square

error that is comparable to that obtained by the purely

functional fits used in the Sauer-Freise and UQ methods as

shown by Fig. 4 and 5. The error is dominated by the

scatter in the experimental data.

The compositions at the phase boundaries are pre-

scribed during this procedure and are not determined self-

consistently by the iteration procedure (although the

location of the phase boundary itself is an output of the

procedure). The reason for prescribing the compositions

in advance is that the least square error in the fit is not

sensitive to these values once they are given to the pre-

cision of the scatter in the data. Instead, provisional val-

ues of the phase boundary compositions are determined

by visual inspection of the raw data, and the resulting fit

to the data is examined in the locality of the phase

boundary. Small changes to the prescribed phase bound-

ary compositions that improve the local fit are then

applied, and the overall procedure is repeated. The pos-

sible ranges of the phase boundary compositions that do

not change the least square error can be taken as a

measure of their uncertainty.

Finally, there is an additional complication that is par-

ticular to the two-phase problem. If the current numerical

solution computes an interface location that is one or more

mesh points distant from the location indicated by the
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experimental data, there is an associated local error in the

fit that is of order unity. On the other hand, if the computed

and experimental phase boundaries occur at the same mesh

point, this component of the error can be significantly

smaller. The computed interface position is most sensitive

to the value of the Matano position z0, but also depends on

the diffusion parameters Aj and Bj. As an optimizer scans

parameter space in search of an accurate fit, the computed

error in the fit can appear to change discontinuously as the

numerical solution goes into and out of alignment with the

experimental position of the phase boundary, which can

significantly interfere with the optimizer’s smoothness

assumptions. It is primarily this feature of the two-phase

couple that prevents the success of an automated global

optimization approach for the ODE method for this two

phase diffusion couple.

Appendix 2: The UQ Method

In the uncertainty quantification and machine learning

communities, Gaussian-processes (GPs) are well known

tools for modeling noise and uncertainty in data. As there

are many references that provide comprehensive reviews of

the subject, we only introduce the main ideas and highlight

issues that are relevant for constructing synthetic

datasets.[17,20,21]

To begin, let z ¼ z1; . . .; zNð Þ be a vector of the N

positions at which we know the residuals

r zð Þ ¼ r z1ð Þ; . . .; r zNð Þð Þ; see Fig. 4 and 5. The starting

point of our analysis is to assume that the r zð Þ are sampled

from a Gaussian stochastic process, i.e. a random function

whose joint probabilities between finitely many values are

multivariate Gaussian random variables. Mathematically,

this means that the probability density of the residuals

taking values r at positions z is given by

P r zð Þ½ � ¼ 1

2pð ÞN=2 K z; zð Þj j
exp

�1

2
rTK z; zð Þ�1r

� 

;

ðEq A1Þ

where K z; zð Þ is defined as

K z; zð Þ ¼
K z1; z1ð Þ � � � K z1; zNð Þ

..

. . .
. ..

.

K zN ; z1ð Þ � � � K zN ; zNð Þ

2
64

3
75: ðEq A2Þ

K zi; zj
� �

is a covariance matrix element indicating the

extent to which the residual at zi is correlated with the

residual at zj, and K z; zð Þj j is the determinant of K z; zð Þ.
The goal of our noise modeling is to use the experimental

residuals to determine the function K.

Now, it is generally impossible for data to effect a

regression by itself; we must invoke some additional or

outside information. In the case of GP modeling, one

postulates a functional form of the covariance K, parame-

terized by some unknown set of constants u. The constants
are often referred to as hyperparameters. For all of the

regression in this work, we use the Matérn covariance

function

K zi; zj; r; m; q
� �

¼ r2
21�m

C mð Þ
ffiffiffiffiffi
2m

p zi � zj
�� ��

q

� �m

jm
ffiffiffiffiffi
2m

p zi � zj
�� ��

q

� �
;

ðEq A3Þ

where jm is the modified Bessel function of the second kind

of order m, C is the gamma function, r is the amplitude of

the noise, and q is a length specifying the characteristic

distance over which residuals are correlated. Here we

identify the free parameters as u ¼ r; m; qð Þ. Notably, this
covariance is sometimes recommended for spatial data that

may not be very smooth,[22] as is the case with our data,

especially on the Re-rich HCP side of the diffusion couple.

To generate synthetic data, we first determine the set u
via a maximum likelihood analysis. Specifically, we insert

K z; zð Þ in Eq A1 and maximize the probability our resid-

uals as a function of these three parameters; that is, we

determine the set of u that is most likely to reproduce our

experimental residuals. This computation can be done

using canned routines in, e.g. Matlab. Given these param-

eters, we then compute the Cholesky decomposition (i.e.

matrix square root) L such that K z; zð Þ ¼ LLT. Using a

random number generator, one requests N independent,

identically distributed Gaussian random variables with unit

variance. Denoting the jth realization as a vector Hj, we

then compute the jth realization of synthetic residuals as

the matrix product g j ¼ L Hj for g j ¼
g j z1;uð Þ; g j z2;uð Þ; . . .ð Þ appearing in Eq 15. Repeating

this process with new random numbers generates different

synthetic residuals.[17]

Given that the FCC and HCP phases generally exhibit

different residuals, we use the functions f(z) and h(z) (cf.

Eq 13) to construct separate noise models associated with

each phase. Then, we generate a full synthetic dataset by

combining one realization from both models. This full

dataset is subsequently analyzed using the procedure

described above in the section, Assessment of ~D and

uncertainty using a statistical method.
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