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In the present paper (1) the Hall method (HM) (specifically designed for determining the
interdiffusion coefficient at the low and high composition limits of the corresponding interdif-
fusion composition profile) is further developed in order to be applied to the whole composition
profile resulting in the Extended Hall method (EHM); (2) A comparative study of the HM, EHM,
Boltzmann-Matano (BM) and Sauer and Freise (SF) methods is performed using composition
profiles generated by computer simulation. The results clearly indicate that the HM/EHM
technique is only applicable when the interdiffusion coefficient is constant (i.e. independent of
composition) or almost constant at the low composition regions. In all other cases, the BM and
SF methods give the best agreement with the input interdiffusion function even at the ends of the
composition profiles.

Keywords computational studies, diffusion modelling, interdif-
fusion, inverse methods

1. Introduction

The study of the composition dependence of mass
diffusion is important in the field of metals and semicon-
ductors. There is also considerable demand for information
on accurate diffusion coefficients, including interdiffusion
coefficients. For a comprehensive older compilation of
experimental interdiffusion studies see Ref. 1. Recently,
numerous experimental studies have been conducted on
binary systems, such as Pd-Pt, Cu-Pt, Ni-Pt, Co-Pt, Ni-Al,
Ti-Al, dilute Cu(Sn), Ni-Nb, Mo-Si, Nb-Si, V-Si, Co-Ni, Fe-
Nb, Ni-Mo, Mg-Al, Mg-Zn, U-Fe, U-Mo, Mo-Zr and Zr-
Al.[2–25]

Usually, the experimental data for the single-phase binary
interdiffusion couples are processed using the standard
analytical technique, Sauer and Freise (SF) or Boltzmann-
Matano (BM). There are cases when the experimental data
were also processed using the Hall method (HM) technique.
This latter method was designed to be applicable at the
dilute ends of the composition profiles. While the SF and
BM techniques usually agree with each other, the results of
the HM analysis can be quite different.[26–29] In the present
paper, using numerically simulated interdiffusion profiles
we will test the validity of these three methods at the dilute
ends and along the bulk of the composition profiles.

Historically, the first analytical method for calculating the
diffusion coefficients was developed by Boltzmann.[30] This
method was then used by Matano[31] to analyze experimen-
tal interdiffusion composition profiles. Matano also ex-
tended Boltzmann’s[30] method by introducing the new
concept of a ‘special’ plane. This plane was later named
after Matano. In[31] Matano proposed that the location of the
Matano plane be determined from the condition of mass
conservation. Nowadays, this method is known generally as
the BM method. The BM method, at first, was introduced as
a graphical method to find the interdiffusion coefficient. But
a graphical method has some disadvantages for calculating
an accurate interdiffusion coefficient. For this reason, Sauer
and Freise[32] proposed a new equation for calculating the
interdiffusion coefficient which is, in fact, a elegant
modification of the BM method. With this method, it is
possible to find an accurate interdiffusion coefficient as a
function of composition, thereby avoiding the calculation of
the Matano plane location. Den Broeder[33] proposed a
general simplification and improvement of the BM method
for calculating interdiffusion coefficients in binary systems.
Wagner[34] suggested a simplified derivation of the SF
equation for calculation of the interdiffusion coefficient as a
function of composition. Kailasam et al.[35] studied the BM,
SF, Wagner and den Broeder methods for calculating the
composition-dependent interdiffusion coefficient in binary
systems. Appel[36] investigated a further development of the
BM method analytically for a multiphase system. Hall[26]

developed an analytical method which is, in fact, a further
modification of the BM method. Hall also suggested that the
resulting method, (called the HM), gives an accurate
estimation of the diffusion coefficients near the high and
low composition limits. It was slightly modified by
Crank[37] using the Boltzmann variable divided by two.
Finally, the HM was extended by Sarafianos.[38] Okino
et al.[39] studied an analytical solution of the Boltzmann
transformation equation with non-linear interdiffusion coef-
ficients.
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Stenlund[40] studied three methods (two methods for
three-dimensional and a third one for the one-dimensional
case) to calculate the interdiffusion coefficient from a
composition profile without any limitations on the boundary
conditions. These methods are suitable for numerical
analysis only because there is no closed form solution.
Zhang and Zhao[41] developed a MATLAB-based program
to calculate the interdiffusion coefficients for binary diffu-
sion couples using traditional methods i.e. BM method, SF
method, the HM, and the Wagner method and a forward-
simulation method. Recently, Belova et al.[42] derived a
novel way of measuring interdiffusion and tracer diffusion
coefficients in one experiment with an analysis based on the
application of linear response theory. They showed that the
SF method can be modified for the analysis of the combined
tracer and interdiffusion experiment. Kass and O’Keeffe[43]

studied the numerical solution of the Diffusion Equa-
tion with composition-dependent diffusion coefficients. This
method is applicable to two different types of boundary
condition corresponding to physical situations. Mittemeijer
and Rozendaal[44] applied a step method for numerical
solution of the Diffusion Equation and developed an
iterative procedure when the diffusion coefficient is com-
position-dependent. They proposed that their iterative
method takes less calculation time than other procedures.
Garcia et al.[45] studied a finite difference scheme to solve
the one-dimensional Diffusion Equation with special focus
on the stability and convergence of the scheme. They
outlined the better numerical methodology and its applica-
bility for a metal-metal system. In addition, a finite
difference method was used by Wei et al.[46] for determining
the interdiffusion coefficient of an aluminide coating formed
on a superalloy.

The principal aim of the present study is to investigate
the applicability of the HM for the analysis of interdiffusion
composition profiles in comparison with the BM and SF
methods. Originally the HM was developed for application
only at the dilute ends of the profile. We will extend this
method for application to the whole profile. The Extended
Hall method (EHM) will be compared with the original HM
and with the BM and SF methods as well. In order to
perform this investigation we will first generate the numer-
ical solution of the Diffusion Equation by using an explicit
finite difference method. Then we will investigate the
analysis of the thus generated composition profiles by
means of the BM, SF, HM and EHM techniques to find the
interdiffusion coefficient and compare them with the input
one. Note that for the implementation of the HM, EHM and
BM method we will need to numerically determine the
location of the Matano plane as accurately as possible.

In choosing this strategy of investigation we reasonably
assume that if the HM does not perform well when the
‘smooth’ profiles are used (simulated using numerical
methods as in the present study) then it will never perform
better on the ‘less smooth’ profiles (as in the real
experiments). Furthermore, the well-known high sensitivity
of the interdiffusion profiles (the small differences in the
profiles usually produce large differences in the correspond-
ing interdiffusion coefficients) dictates the use of very
accurately simulated profiles.

2. Mathematical Formulation

The governing equation of the standard interdiffusion
process in a binary alloy is the one-dimensional Diffusion
Equation:

@C

@t
¼ @

@x
D
@C

@x

� �
ðEq 1Þ

where C is the (composition) mole fraction of one of the
diffusing atomic components, C is a function of distance, x
and time, t, D is the interdiffusion coefficient. It could be a
constant but, in general, it depends on composition. In
writing Eq 1 we assume that in the diffusion process the
molar volume does not change. The Diffusion Equation 1 is
to be solved subject to the following boundary conditions
for all t> 0:

C ¼ 1:0;x¼�1; andC ¼ 0:0;x¼þ1 and initial conditions:

C ¼ 1:0;x<0 andC ¼ 0:0;x� 0:

We should emphasise here that the analysis of this study can
easily be applied to a general case when C = C�¥ at
x = �¥, and C = C+¥at x = ¥.Then C should be replaced
with a normalised composition as:

Y ¼ C � Cþ1

C�1 � Cþ1 : ðEq 2Þ

In the interdiffusion experiment the composition depth
profile is measured as a function of distance. Then using one
of the appropriate analytical methods, the interdiffusion
coefficient is obtained. As was mentioned above there are
three main methods to use: the BM, SF and HMs. The latter
was designed especially to deal with the experimental
uncertainties at the dilute ends of the composition profile in
order to improve the accuracy of the interdiffusion coeffi-
cient. The purpose of the present analysis is to test these
three methods using numerical techniques to simulate the
interdiffusion composition profiles and to make conclusions
about the applicability of all methods.

2.1 BM Method

With the known composition profile C(x, t) the BM
method can be applied to determine the composition-
dependent diffusion coefficient D(C) as:

DðC�Þ ¼ � 1

2t

RC�

0

ðx� xMÞdC

dC
dx

� �
C�

; ðEq 3Þ

where xM is the position of the Matano plane. The location
of the Matano plane is determined from the following (flux)
conservation condition:

ZxM
�1

ð1� CðxÞÞdx ¼
Zþ1

xM

CðxÞdx: ðEq 4Þ
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A further development of the BM method has been
proposed by Eversole et al.[47] for dilute solutions. They
simply evaluated the integral term in Eq 3 by parts. Then
the following expression was found:

DðC�Þ ¼ � 1

2t

ðx� � xMÞC� þ
Rþ1

x�
Cdx

dC
dx

� �
C�

ðEq 5Þ

Moreover, it is easy to show that the position of the Matano
plane, xM is given exactly by the following integral
relations:

xM ¼
Z 1

0
xdC ¼

Z 0

�1
ð1� CðxÞÞdxþ

Z þ1

0
CðxÞdx:

ðEq 6Þ

2.2 SF Method

According to the SF method, the interdiffusion coeffi-
cient D(C) is given as:

DðC�Þ ¼� 1

2t

dx

dC

� �
C�

C�
Zx�

�1

ð1�CÞdxþð1�C�Þ
Zþ1

x�

Cdx

2
4

3
5

ðEq 7Þ

In the derivation of the SF method the BM expression
Eq 3 was combined with the expression for the Matano
plane Eq 4. As a result, SF method does not require xM
explicitly and therefore is more convenient from an
experimental perspective.

Wagner[34] provided a simplified derivation of the SF
relation (Eq 7) for the calculation of the interdiffusion
coefficient. However the main significance of his paper is in
developing the SF relation further to apply to the interdif-
fusion profiles with multiple phases. In[34] it was shown that
in multiphase systems with intermediate compounds which
have a narrow composition range, it is possible to calculate
the values of the integral �DdC, extended over the compo-
sition range of the compounds. These values then serve as
the integrated (or average) interdiffusion coefficients. In the
present paper, we will restrict our study only to the case of a
single phase in the diffusion zone.

2.3 Hall Method (HM)

The main requirement for the HM is that one of the
diffusion couple sides should have a zero composition. Then
in the HM, the following supplementary transform is used
for the dilute tail in the composition profile:

C ¼ erfcðuÞ; ðEq 8Þ

where (as defined at the time by Hall) erfcðuÞ �
1
2 ð1þ erf ðuÞÞ, u = hk + k and k ¼ x�xMffiffi

t
p , and it is assumed

that the dilute end/tail of the profile has a characteristic
linear behaviour. Hall evaluated the derivative and integral

terms in Eq 3 by using the following relations (for the
derivation, see Ref. 26):

dC

dx
¼ 1ffiffi

t
p dC

dk
¼ 1ffiffi

t
p hffiffiffi

p
p expð�u2Þ ðEq 9Þ

ZC�
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ffiffi
t

p ZC�

0

kdC ¼�
ffiffi
t

p 1

2h
ffiffiffi
p

p expð�u2Þþ kC

h

� �

ðEq 10Þ

Combining these relations together with Eq 3 we have the
final expression for the HM:

DðCÞ ¼ 1

4h2
þ k

ffiffiffi
p

p

2h2
C expðu2Þ: ðEq 11Þ

2.4 Extended Hall Method (EHM)

The HM was originally described[26] for implementation
only at that end of the composition profile where the
composition is approaching zero in a linear fashion when
presented on a probability plot. Here we develop this
approach in such a way that the whole composition profile
can be analysed. The starting point should still be chosen at
the zero composition end. The new development of HM can
be readily obtained when the basic integration and differ-
entiation steps and the combination of them into the
interdiffusion coefficient (Eq 9-11 above) are performed in
a piece-wise fashion at every two neighbouring composition
points. Then the new set of composition points C¢ and
corresponding sets of u¢ and k¢ can be simply defined as:

C0ðiÞ ¼ 0:5ðCðiÞ þ Cðiþ 1ÞÞ; u0ðiÞ ¼ 0:5ðuðiÞ þ uðiþ 1ÞÞ;
k0ðiÞ ¼ 0:5ðkðiÞ þ kðiþ 1ÞÞ;

ðEq 12Þ

and the coefficients for the piece-wise linear fits
u¢ = h¢k¢ + k¢ are:

h0ðiÞ ¼ uðiþ 1Þ � uðiÞ
kðiþ 1Þ � kðiÞ ; ðEq 13Þ

and

k0ðiÞ ¼ kðiþ 1ÞuðiÞ � kðiÞuðiþ 1Þ
kðiþ 1Þ � kðiÞ ðEq 14Þ

for all i points. This procedure should be performed
consecutively, starting with the very first point at the chosen
side of the diffusion profile. Then it is easy to show that the
final iterative expression for the interdiffusion coefficient is
as follows:

DðC0ðiÞÞ ¼ DðiÞ ¼ � 1

2

ffiffiffi
p

p

h0ðiÞ e
u0 ið Þf g2 Iðiþ 1Þ; ðEq 15Þ

where
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IðiÞ ¼ Iði� 1Þ þ IIði� 1Þ þ IIIði� 1Þ ðEq 16Þ

and

Ið1Þ ¼ � 1

2h0ð1Þ
ffiffiffi
p

p e �u0 1ð Þ2f g � k0ð1ÞC0ð1Þ
h0ð1Þ ;

IIð1Þ ¼ 0; IIIð1Þ ¼ 0;

ðEq 17Þ

IIðiÞ ¼ � 1

2h0ði� 1Þ
ffiffiffi
p

p ef�uðiÞ2g
h

� ef�u0ði�1Þ2g
�

� k0ði� 1Þ
h0ði� 1Þ ðCðiÞ � C0ði� 1ÞÞ;

ðEq 18Þ

IIIðiÞ ¼ � 1

2h0ðiÞ
ffiffiffi
p

p e �u0ðiÞ2f g � e �uðiÞ2f g
h i

� k0ðiÞ
h0ðiÞ ðC

0ðiÞ � CðiÞÞ
ðEq 19Þ

for all i points. The choice of the starting point should be
done in such a way that C¢(i) is as close to zero as possible.

3. Numerical Solution for Composition Profiles

In this section we solve numerically the Diffusion
Equation (Eq 1), with the associated initial and boundary
conditions. The explicit finite difference method is used.
The present problem requires a finite difference mesh. The
region along the coordinate x is divided into equally spaced
m + 1 mesh points (see Fig. 1). The maximum length
(dimensionless) was chosen xmax = 16, with x-¥ = �8 and
x+¥ = 8 and these points correspond to x fi �¥ and
x fi �¥. The number of mesh spacings in the x direction
was chosen as m = 200, hence the constant mesh size along
x axis becomes Dx = 0.08, (�8 £ x £ 8) with a small enough
time-step Dt = 0.0001 that was chosen in such a way that
the stability condition (see further) is satisfied.

Let Cn denote the value of C at the end of the nth time-
step. Using the explicit finite difference approximation, the
following finite difference equation is obtained:

Cnþ1
i � Cn

i

Dt
¼ Dn

i

Cn
iþ1 � 2Cn

i þ Cn
i�1

ðDxÞ2
þ @D

@C

����
n

i

Cn
iþ1 � Cn

i�1

2Dx

� �2

ðEq 20Þ

with the boundary conditions, C�¥
n = 1 and C+¥

n = 0. (Note
that these conditions were used only for monitoring, not
assigning, the C values at the ends of the calculation region.
In other words, at each time step we monitor that the initial
values 1 and 0 were not changed at the boundary points
i = 1, 2 and i = m, m + 1. If they were changed (from 1 andFig. 1 Finite difference system mesh for the binary system

Fig. 2 Composition profiles for the different cases (1-4). Total computational diffusion time t = 0.40

Fig. 3 Interdiffusion coefficient as a function of composition as
input (marked Actual) and as-calculated using numerically gener-
ated composition profiles and the Boltzman-Matano (marked as
BM) method, The Sauer and Freiser (marked as SF) and the Hall
methods (marked as HM). Results for case 1 are presented in
(a); for case 2—in (b); for case 3—in (c); for case 4—in (d)

c
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0 respectively) then the calculations would have to be
stopped with the appropriate warning message and the
numerical interval would have to be extended. Descriptions
of this procedure can be found in standard handbooks on
finite difference methods.[48,49] In our simulations for a
chosen maximum time t these conditions were always
satisfied.

As usual, in Eq 20 the subscript i denotes the grid points
along the x coordinate and the superscript n denotes a step in
time, t = nDt where n = 0,1,2, … with Dt = 0.0001. The
composition C at all interior mesh points is computed by
successive applications of the above finite difference
equations. The stability condition and convergence criterion
for the finite difference solution is given by (e.g.[45,46])
maxðDn

i ÞDt
ðDxÞ2 � 1

2. For all cases that were considered in the

present paper this parameter was< 0.02.
In this paper, we studied the following four test cases:

Case-1 (constant interdiffusion coefficient): D = D0.
Case-2 (linear composition dependence): D = (0.5 +
0.5C)D0.

Case-3 (quadratic composition dependence): D = (1�
2C(1�C))D0.

Case-4 (quadratic composition dependence): D =
(2C(1�C) + 0.5)D0.

D0 is a constant with units of diffusion coefficient. In
Fig. 2 we show the profiles generated for all studied cases as
functions of ¼ðx� xMÞ=

ffiffi
t

p
. Total computational diffusion

time is 0.4 in arbitrary time units that are consistent with
chosen units of diffusion coefficient and the x-axis. If, as a
practical example, D0 = 0.1 lm2/s and the unit distance in
the x-direction is equal to 100 lm then the total diffusion
time will be 49104 s = 11.1 h and in Fig. 2 the unit of k is
equal to 0.316 lm/s1/2.

4. Mass Conservation

The Law of Mass Conservation states that mixtures can
be made or separated, but the total amount of mass must be
constant for all times. It is easy to show that for the
considered diffusion processes in the binary systems the
total amount of mass is proportional to the integral
MðtÞ ¼

R 8
�8 CðtÞdx: The mass conservation tests for all the

composition profiles and all times returned near constant
values that remain within the O(Dx2) error term and this is in
agreement with the specified error/tolerance for the chosen
finite difference scheme. Therefore we can safely conclude
that all our simulated systems obey the Mass Conservation
law.

5. Results and Discussion

To obtain the finite difference solutions, the computations
have been carried out for t = 0.4 (arbitrary units). Then we
calculated the interdiffusion coefficient making use of the
BM, SF, and original HM for all of the above test cases. In
application of the BM and SF methods, the integration terms
were calculated by the Trapezoidal Rule and the derivative
was calculated using the central difference scheme, both of
the second order of accuracy. The newly developed EHM
was applied to the Cases 2-4. For Case 1 there was
obviously no need for the use of the EHM. The original HM
was applied to Case 1 from each dilute end up to the middle
point and, as a result, covered the whole composition range.
For Cases 2-4 the original HM technique was only applied
at the dilute ends. For implementation of the BM and both
HM and EHM methods we calculated the Matano plane
numerically and obtained the following values: Case 1:
xM = �0.0400; Case 2: xM = �0.0467; Case 3: xM =

Fig. 3 continued
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�0.0400; Case 4: xM = �0.0400. Graphical representations
of the resulting interdiffusion coefficients for Cases 1-4 are
given in Fig. 3(a)-(d) respectively. (It was found that the
accuracy of xM has a profound effect on the resulting
diffusion coefficient.) In each figure we presented the
overall results to cover a 0-100% composition range
together with two inserts to cover the first and the last 3%
of composition with magnifications of up to factor of 10. In
the inserts we have used lines with symbols for the results of
the SF, HM and for the original input D function whereas
for the overall results we used the same type of lines but
without symbols to avoid cluttering the figures.

We would like to point out that a similar strategy was
used in[35,50] where the authors used the closed form
solutions for generation of the discretized composition
profiles followed by application of the inverse analysis
using SF and BM methods. The closed form solution exists
only for the constant interdiffusion coefficient and some
transcendental functions.[35,50] In our study we choose to
investigate three basic functional dependencies: constant,
linear and quadratic.

In Fig. 3(a) we plot the actual (input) interdiffusion
coefficient and results of application of BM, SF and original
HM techniques to the profiles generated for the constant
interdiffusion coefficient, according to the Case-1 study. In
this case, it was possible to apply the original HM to the
whole composition profile. It can be seen that both the BM
method and SF methods give the same results for this case
(see inserts and the overall coverage). But the (original) HM
gives better results than the other two methods at the initial
and final 3% of the composition range. For the remaining
part of the composition range all three methods give
comparable results.

Here we would like to point out that results of this case,
namely application SF and BM methods, can be directly
compared with the results of application of these inverse
methods in[35,50] to the same constant interdiffusion case. It
is clear that the accuracy is higher in our application and this
can be linked directly to the accuracy of the chosen
numerical integration and differentiation as parts of the
implementation of the SF and BM methods.

In Fig. 3(b) we plot the actual (input) interdiffusion
coefficient and results of application of the considered
techniques to the profiles generated for the interdiffusion
coefficient that is linearly dependent on composition,
according to the Case-2 study. The original HM was applied
only at the ends of the profile. It can be seen that in this case
the BM and SF methods give better results than the EHM at
the ends of the composition range (see inserts). And the
EHM gives better results than the original HM. This makes
the original HM technique the worst for this case. For the
remaining internal part of the composition range all three
methods again give comparable results.

In Fig. 3(c) we plot the actual (input) interdiffusion
coefficient together with the results of application of the
considered techniques to the profiles generated for the
interdiffusion coefficient that is a concave quadratic func-
tion of composition, according to the Case-3 study. It can be
seen that for this case, at the ends of the composition range
(see insets) again the BM and SF methods give the same

results that are comparable with the results of the EHM
technique. The original HM again gives the worst agreement
with the input interdiffusion coefficient. For the remaining
internal part of the composition range all three methods
again give comparable results.

In Fig. 3(d) we plot the actual (input) interdiffusion
coefficient together with the results of application of the
considered techniques to the profiles generated for the
interdiffusion coefficient that is a convex quadratic function
of composition, according to the Case-4 study. In this case,
the same behaviour of the SF and BM results as for Case 3
can be observed. But at the ends of the composition range
the EHM technique gives a much poorer result for this test.
And again application of the original HM at the ends of the
composition range gives the worst agreement with the input
interdiffusion coefficient. As for the other cases for the
remaining internal part of the composition range all three
methods again give comparable results.

It is obvious that apart from the case of a constant
interdiffusion coefficient (Fig. 3a)) the EHM and especially
the HM do not in fact do well at the dilute ends of the
composition profile where C� 0.0 or C� 1.0. This result
contradicts the original claim[26] that HM should give a
superior accuracy at these limits. It seems that the reason
for this effect is that together with magnification of the
composition profile the probability plot magnifies the
errors (of the applied computational techniques for differ-
entiation and integration in Eq 9, 10) at the composition
profile ends as well. Even application of the EHM does not
bring the accuracy of the resulting interdiffusion coefficient
to the level of SF/BM accuracy. Therefore, we must make
the unavoidable conclusion that the improvements of the
interdiffusion coefficients found in, for example,[26] and
in[27] for the Cu-Ni system are not in fact real improve-
ments and the standard SF/BM analysis gives the correct
results.

On the other hand, from the analysis of the Fig. 3(a) it is
clear that the SF and BM methods do not do well at the first
and the last 10% of composition range for the Case 1 of the
constant interdiffusion coefficient. In fact, the HM (and
EHM) give much better results there. Therefore we can
make the following suggestion for the improved analysis of
experimentally obtained interdiffusion composition profiles.
We suggest that the EHM is applied (separately from the left
side to the center and from the right side to the center)
together with the SF/BM techniques. If at the first 5-10% the
EHM gives a clear constant interdiffusion coefficient this
must be accepted as the correct one; otherwise the results of
the SF/BM techniques should be treated as the correct ones.
A similar strategy should be applied for the last 5-10% of
the composition range.

6. Conclusions

In this research, the explicit finite difference numerical
solution of the Diffusion Equation for binary alloy systems
with composition-dependent interdiffusion coefficients has
been used to generate interdiffusion composition profiles for
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several test cases. Three methods, BM, SF and Hall (original
(HM) and a newly developed extended (EHM)) methods,
were used to obtain the interdiffusion coefficient as a
function of composition for those test cases. With the
Matano plane calculated numerically, it was found that the
results of the BM method and SF method were generally the
best compared with the results of the HM and EHM
especially at the dilute ends of the profile where the HM was
originally[26] designed to improve the accuracy. Only for a
constant interdiffusion coefficient did the HM (EHM was
not needed for this case) give the best agreement with the
required interdiffusion coefficient. Apart from the case of a
constant interdiffusion coefficient, results of the EHM
method were usually in a better agreement with the input
data than the original HM. Therefore it was concluded that
for the determination of the interdiffusion coefficient at or
near to the low and high composition levels the HM should
only be used with considerable care.

Acknowledgments

This research was supported by the Australian Research
Council through its Discovery Project Grants
Scheme (DP130101464).

References

1. G.E. Murch and C.M. Bruff, Chemical Diffusion in Inhomo-
geneous Binary Alloys Diffusion in Solid Metals and Alloys,
Landolt-Börnstein—Group III Condensed Matter, H. Mehrer,
Ed., Vol 26, Springer, Berlin, 1990, p 279-371

2. V.A. Baheti, R. Ravi, and A. Paul, Interdiffusion Study in the
Pd-Pt System, J. Mater. Sci. Mater. Electron., 2013, 24,
p 2833-2838

3. B. Mishra, P. Kiruthika, and A. Paul, Interdiffusion in the Cu-Pt
System, J. Mater. Sci. Mater. Electron., 2014, 25, p 1778-1782

4. A. Paul, A.A. Kodentsov, and F.J.J. van Loo, On Diffusion in
the b-NiAl Phase, J. Alloys Compd., 2005, 403(1-2), p 147-153

5. V.D. Divya, U. Ramamurty, and A. Paul, Interdiffusion and the
Vacancy Wind Effect in Ni-Pt and Co-Pt Systems, J. Mater.
Res., 2011, 26(18), p 2384-2394

6. S. Santra and A. Paul, Vacancy Wind Effect on Interdiffusion
in a Dilute Cu(Sn) Solid Solution, Philos. Mag. Lett., 2012,
92(8), p 373-383

7. S.S.K. Balam, H.Q. Dong, T. Laurila, V. Vuorinen, and A.
Paul, Diffusion and Growth of the l Phase (Ni6Nb7) in the Ni-
Nb System, Metall. Mater. Trans., 2011, 42(7), p 1727-1731
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Volumenänderung, Z. Elektrochem., 1962, 66, p 353-362, in
German

33. F.J.A. den Broeder, A General Simplification and Improve-
ment of the Matano-Boltzmann Method in the Determination

Journal of Phase Equilibria and Diffusion Vol. 36 No. 4 2015 373



of the Interdiffusion Coefficients in Binary Systems, Scripta
Metall., 1969, 3, p 321-325

34. C. Wagner, The Evaluation of Data Obtained with Diffusion
Couples of Binary Single-Phase and Multiphase Systems, Acta
Metall., 1969, 17, p 99-107

35. S. Kailasam, J. Lacombe, and M. Glicksman, Evaluation of the
Methods for Calculating the Composition-Dependent Diffusiv-
ity in Binary Systems, Met. Mater. Trans. A, 1999, 30, p 2605

36. M. Appel, Solution for Fick’s 2nd Law with Variable
Diffusivity in a Multi-phase system, Scripta Metall., 1968, 2,
p 217-221

37. J. Crank, The Mathematics of Diffusion, Oxford University
Press, London, 1979

38. N. Sarafianos, An Analytical Method of Calculating Variable
Diffusion Coefficients, J. Mater. Sci., 1986, 21, p 2283-2288

39. T. Okino, T. Shimozaki, R. Fukuda, and H. Cho, Analytical
Solutions of the Boltzmann Transformation Equation, Defect
Diffus. Forum, 2012, 322, p 11-31

40. H. Stenlund, Three Methods for Solution of Composition
Dependent Diffusion Coefficient. Tech. Rep., Visilab Signal
Technologies Oy, Mäntsälä, 2011
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