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Thermodynamic descriptions of the Fe-Mo-P system and its binary sub-system, Mo-P, are
developed in the frame of a new Fe-X-P (X = Al, Cr, Cu, Mn, Mo, Nb, Ni, Si, Ti) database. The
thermodynamic parameters of the binary sub-systems, Fe-Mo and Fe-P, are taken from earlier
assessments (modifying slightly the Fe-Mo description) and those of the Fe-Mo-P and Mo-P
systems are optimized in this study using experimental thermodynamic and phase equilibrium
data available in the literature. The solution phases (i.e., bcc_A2, fcc_A1, Liquid) are described
with the substitutional solution model. The binary compounds: Fe2Mo, FeP, Mo3P and MoP, are
treated as stoichiometric phases, while for Fe3P and Fe2P two-sublattice models accounting for
the dissolution of Mo were applied. Some intermetallic compounds (Mu, R and Sigma) are
described with three-sublattice models.
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1. Introduction

The current paper continues an earlier started project[1–3]

for the development of a Fe-X-P database. The aim is to
design a simple and compatible thermodynamic database,
which provides important and practical input data for
thermodynamic-kinetic models simulating the solidification
of phosphorous steels.[4]

The binary thermodynamic data retained from the litera-
ture are these of Andersson[5] (mainly) for the Fe-Mo system,
and from Shim et al.[6] andMiettinen and Vassilev[1]—for the
Fe-P system. We would like to emphasize that the latter
optimization has been implemented by Shim et al.[7] to the
very important system Fe-P-C as well. Thus, the current
database would be compatible with the a.m. assessment.

The Fe-P system was optimized by Ohtani et al.[8] as
well, using the first principle calculation of the enthalpy of
formation of the Fe-P intermetallics (the Fe-P optimization
of Shim et al.[6] (already published at that time) was not
mentioned neither discussed by those authors[8]). However,
Changjun et al.[9] reported that the thermodynamic param-
eters of Ohtani et al.[8] ‘‘may underestimate the Gibbs

energy of the Fe3P phase while may over-estimate that of
the Fe2P phase’’. For this reason, these authors[9] have
retained the Fe-P parameters of Gustafsson[10] used in the
optimization of the Fe-Mo-P system. Anyhow, that descrip-
tion could not be directly adapted for the needs of the
current database.

Thus, the goal of this work is to achieve new thermodynamic
optimizations of the ternary Fe-Mo-P system and its binary sub-
system Mo-P. The thermodynamic description of the Fe-Mo
systemhad tobe partiallymodified aswell, in order to get a better
fit for some solid-liquid equilibria in this as well as in other
ternary systems (Fe-Cr-Mo, Fe-Mo-Ni and Fe-Mo-Si).

2. Phases, Modeling and Data

Detailed descriptions of the substitutional solutions and
sublattice models and their parameters are available from
Lukas et al.[11] Thus, a summary of the phases and the
models used in this work is presented in Table 1.

The solution phases (i.e. bcc_A2, fcc_A1, Liquid) are
modeled with the substitutional solution model (Table 1).
Most of the binary compounds: Fe2Mo, FeP, Mo3P and
MoP, are treated as stoichiometric phases, while for Fe3P
and Fe2P two-sublattice models accounting for the dissolu-
tion of Mo were applied.

Some intermetallic compounds (Mu (l), R and Sigma
(r)) are described with three-sublattice models. One should
be aware that the maximum dissolution of 10 wt.%Mo in
FeP and 5 wt.% Fe in MoP, reported by Guerin and
Sergent,[12] at 800 �C, was not considered. This simplifies
the calculations but the main reason is the lack of
corresponding data at other temperatures and also the lack
of any phase equilibrium experimental information for the
regions situated along or nearby the FeP-MoP section line.

The studies on the Fe-Mo-P system, up to 1988, have
been reviewed by Raghavan.[13] The experimental informa-
tion selected in the current work for the optimization of the
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Mo-P and the Fe-Mo-P systems is compiled in Table 2.
In addition, topological data about the Fe-Mo phase
equilibria,[20–28] the integral molar mixing enthalpy values
of the Fe-Mo liquid solutions from Iguchi et al.[29] and the
Fe-activity in liquid Fe-Mo alloys from Ichise et al.[27] are
used for the partial re-optimization of the Fe-Mo system
done is this work.

3. Results

The liquid Fe-Mo phase description by Andersson[5] was
modified in this work in order to improve the agreement
between the calculated and the experimental (bcc + L)-
region of the system. The system Mo-P was reoptimized
using the available literature experimental data (Table 2).

The adjustable parameters of the Fe-Mo-P system,
obtained in the current study, are presented in Table 3.
The parameters marked with a reference code were adopted
from earlier assessments. Those marked with O or E were
optimized or estimated in this work as follows: O—the
parameter was optimized using literature experimental data

(Table 2); E—the parameter was estimated taking into
account the relative stabilities of the corresponding phases
and keeping realistic values of their integral and partial
thermodynamic quantities.

The Gibbs energy expressions for the phases Fe3P, Fe2P
and FeP, given by Shim et al.,[6] have already been
simplified[1,2] by changing the reference states of Fe and
P. In this work we keep the modified versions. There are no
significant differences between the results of the calculations
done in both ways.

In order to verify the current optimizations, the calculated
results have been compared with the original experimental
data by making use of the ThermoCalc software.[32] Thus,
Fig. 1 through 3 show the Fe-Mo and the Mo-P phase
diagrams, whose parameters were modified in the current
study, and the Fe-P phase diagram calculated by Ref 1,6.
The agreements with the experimental data are good.

The new liquid phase description of the Fe-Mo system
(Fig. 1) yields solid-liquid equilibria, which only slightly
deviate from those of Andersson.[5] Nevertheless, in Fig. 4
one can see that (bcc + L)-region shows improved agree-
ment with the experimental data of Gibson et al.[21] That
new description also fits better for describing the phase
equilibria in the ternary Fe-Cr-Mo, Fe-Mo-Ni and Fe-Mo-Si
systems, allowing the usage of some lower-value ternary
liquid-state parameters in these descriptions (to be pub-
lished). For the integral molar mixing enthalpy and the
liquid phase Fe-activity, the current results are quite similar
to those of Andersson,[5] agreeing reasonably well with the
experimental data of Ichise et al.[27] and Iguchi et al.[29]

Figures 5 through 14 and Table 4 contain the results of
the calculations for the Fe-Mo-P system, together with the
selected experimental data (Table 2). The agreement is
rational and in most cases, it is slightly better than that
obtained by Gustafsson.[7]

The liquidus projection of the system (Fig. 5) shows
different representation of the reactions concerning codes U1

and E1 (Table 4). No suggestions based on experimental data
have been given for the invariant points at high Mo contents.
The current calculations and those of Gustafsson,[7] however,
yield quite similar primary surfaces for the system.

In the vertical sections (Fig. 6 through 11) and the
isothermal sections (Fig. 12, 13), reasonable agreement
between the current calculations and the experimental
data of Vogel and Horstmann,[14] Kaneko et al.[15] and

Table 1 Phases and their modeling in the present
Fe-Mo-P description

Phase Modeling

Liquid (L) (Fe,Mo,P), substitutional, RKM

bcc_A2 (bcc) (Fe,Mo,P), substitutional, RKM

fcc_A1 (fcc) (Fe,Mo,P), substitutional, RKM

Mu (l) (Fe)7(Mo)2(Fe,Mo)4, sublattice, RKM

R (Fe)27(Mo)14(Fe,Mo)12, sublattice, RKM

Sigma (r) (Fe)8(Mo)4(Fe,Mo)18, sublattice, RKM

Fe3P (dissolving Mo) (Fe,Mo)3(P), sublattice, RKM

Fe2P (dissolving Mo) (Fe,Mo)2(P), sublattice, RKM

Fe2Mo (k) (Fe)2(Mo), stoichiometric

FeP (Fe)(P), stoichiometric

Mo3P (Mo)3(P), stoichiometric

MoP (Mo)(P), stoichiometric

white_P (whi) (P)

RKM: Redlich–Kister–Muggianu expression (excess Gibbs energy model)

Table 2 Experimental data applied in the optimization for the Mo-P and Fe-Mo-P systems

System Experimental data Reference

Fe-Mo-P Liquidus projection Vogel and Horstmann[14]

6 Vertical sections, at Fe-MoP, at 5, 10 and 15 wt.% P,

and at 5 and 10 wt.% Mo

Vogel and Horstmann[14]

Isothermal section, at 800 �C Kaneko et al.,[15] Raghavan[13]

Activity coefficient(a) cP
Mo in liquid, at 1400 and 1600 �C Yamada and Kato,[16] Ban-Ya et al.,[17] Ueno et al.[18] (theoretical)

Mo-P Topological data about the phase equilibria Brewer and Lamoreaux[19] (suggested)

(a) The symbol cP
Mo describes the effect of the Mo-content on the P activity coefficient, and is defined as cP

Mo = cP
(Fe-Mo-P)/cP

(Mo-P) (where the P content is fixed)
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Raghavan[13] is observed. Additional calculations, using the
data of Gustafsson,[10] have been done for the six vertical
sections. They show slightly different phase equilibria and
slightly worse agreement with these measurements (for the

sake of clarity only the liquidus lines of Gustafsson[10] are
plotted in Fig. 6 through 11).

In Fig. 13, the phase equilibria suggested by Ragha-
van[13] at 800 �C (broken lines) agree well with the current

Table 3 Thermodynamic description of the Fe-Mo-P system

Reference

Liquid (1 sublattice, sites: 1, constituents: Fe,Mo,P)

LFe,Mo
L = (�6900� 0.23T) + (�9000 + 3.85T)(xFe� xMo) O*

LFe,P
L = (�216,603 + 47.028T) + (�12,490� 6.749T)(xFe� xP) + (+43,546)(xFe� xP)

2 [6]

LMo,P
L = (�206,000) O*

LFe,Mo,P
L = (+100,000)xFe + (+100,000)xMo + (�100,000)xP O*

bcc (1 sublattice, sites: 1, constituents: Fe,Mo,P)

LFe,Mo
bcc = (+36,818� 9.141T) + (�362� 5.724T)(xFe� xMo) [5]

LFe,P
bcc = (�182,800 + 25.6T) [1]

LMo,P
bcc = (�197,000) O*

LFe,Mo,P
bcc = (+200,000) O*

Tcbcc = 1043xFe + xFexMo(335 + 526(xFe� xMo))� 1100xFexP [1,5]

bbcc = 2.22xFe [5]

fcc (1 sublattice, sites: 1, constituents: Fe,Mo,P)

LFe,Mo
fcc = (+28,347� 17.691T) [5]

LFe,P
fcc = (�151,700 + 17T) [1]

LMo,P
fcc = LMo,P

bcc E*

LFe,Mo,P
fcc = (+200,000) O*

Tcfcc = �201xFe [30]

bfcc = �2.1xFe [30]

Mu (l) (3 sublattices, sites: 7:2:4, constituents: Fe:Mo:Fe,Mo)

�GFe:Mo:Fe
l = 7�GFe

fcc + 2�GMo
bcc + 4�GFe

bcc + (+39,475� 6.032T) [5]

�GFe:Mo:Mo
l = 7�GFe

fcc + 6�GMo
bcc + (�46,663� 5.891T) [5]

R (3 sublattices, sites: 27:14:12, constituents: Fe:Mo:Fe,Mo)

�GFe:Mo:Fe
R = 27 + 14�GMo

bcc + 12�GFe
bcc + (�77,487� 50.486T) [5]

�GFe:Mo:Mo
R = 27�GFe

fcc + 26�GMo
bcc + (+313,474� 289.472T) [5]

Sigma (r) (3 sublattices, sites: 8:4:18, constituents: Fe:Mo:Fe,Mo)

�GFe:Mo:Fe
r = 8�GFe

fcc + 4�GMo
bcc + 18�GFe

bcc + (�1813� 27.272T) [5]

�GFe:Mo:Mo
r = 8�GFe

fcc + 22�GMo
bcc + (+83,326� 69.618T) [5]

LFe:Mo:Fe,Mo
r = (+222,909) [5]

Fe3P (2 sublattices, sites: 3:1, constituents: Fe,Mo:P)
�GFe3P

Fe:P = 3�GFe
bcc + �GP

whi + (�184,130� 14.2902T + 8.2245TlnT� 0.007518T2) [1,6](a)
�GFe3P

Mo:P = 3�GMo
bcc + �GP

whi + (�167,000 + 35T) O*

Fe2P (2 sublattices, sites: 2:1, constituents: Fe,Mo:P)
�GFe2P

Fe:P = 2�GFe
bcc + �GP

whi + (�170,652 + 3.0174T + 4.5406TlnT� 0.004306T2) [1,6](a)
�GFe2P

Mo:P = 2�GMo
bcc + �GP

whi + (�204,700 + 45T) O*

LFe2P
Fe;Mo:P = (�200,000 + 140T) O*

Fe2Mo (k) (2 sublattices, sites: 2:1, constituents: Fe:Mo)

�GFe:Mo
k = 2�GFe

fcc + �GMo
bcc + (�10,798� 0.132T) [31]

FeP (2 sublattices, sites: 1:1, constituents: Fe:P)

�GFe:P
FeP = �GFe

bcc + �GP
whi + (�136,020�11.6006T + 6.3362TlnT� 0.005343T2) [1,6](a)

Mo3P (2 sublattices, sites: 3:1, constituents: Mo:P)
�GMo3P

Mo:P = 3�GMo
bcc + �GP

whi + (�223,500 + 33.5T) O*

MoP (2 sublattices, sites: 1:1, constituents: Mo:P)

�GMo:P
MoP = �GMo

bcc + �GP
whi + (�219,200 + 45T) O*

The thermodynamic data of pure components are taken from Dinsdale [30] unless not shown in the table. Parameter values, except for Tc and b, are in J/mol

O*: Parameter optimized in this work

E*: Parameter estimated in this work

(a) Simplified function. The reference states of Fe and P (HSER) used of Shim et al.[6] have been changed[1] to bcc-Fe and white-P, respectively
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calculations but disagree with those of Gustafsson.[10] The
800 �C isotherm has recently been studied also by Olinyuk
et al.,[33] who found two ternary compounds, [Fe(1�x)-
Mo(x)]2P (x = 0.18–0.70) and [Fe(1�x)Mo(x)]3P (x = 0.85–
0.90). According to the latter study the former compound
overlaps the current (Fe,Mo)2P phase, but does not extend to
the nearly binary Fe2P phase. Obviously, the solid state
equilibria of the system should be revised as soon as more
experimental measurements become available.

Figure 14 illustrates the satisfactory agreement between
the calculated (this work) and the experimental (Yamada
and Kato[16]) phosphorous activity coefficient (cP

Mo) in the
liquid phase, at 1600 �C. The symbol cP

Mo is used in order to
describe the Mo-content effect on the P-activity coefficient
and is defined as: cP

Mo = cP
(Fe-Mo-P)/cP

(Fe-P). In the latter

Fig. 1 The Fe-Mo phase diagram calculated with the parame-
ters of Andersson,[5] partially modified in this work, together
with experimental data points.[20–28] The solid lines refer to the
current calculations and the dotted lines refer to those of
Gustafsson[10]

Fig. 2 The Fe-P phase diagram calculated with the parameters
of Miettinen and Vassilev.[1] The diagram is identical to that
of Shim et al.[6] excluding minor deviations in the bcc- and
fcc-regions

Fig. 3 The Mo-P phase diagram calculated with the parameters
obtained in this work, together with the suggested experimental
data points of Brewer and Lamoreaux.[19] The solid lines refer to
the current calculations and the dotted lines refer to those of
Gustafsson[10]

Fig. 4 The Fe-rich side of the Fe-Mo phase diagram calculated
with the parameters retained or obtained in this work (solid
curves), together with the experimental data points of Gibson
et al.[21] and Ichise et al.[27] The dotted curves show the calcula-
tions of Gustafsson[10]
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expression the P content (mole fractions) is fixed to
xP = 0.001, referring to a very low P-content, applied but
not quantified, by Yamada and Kato.[16]

Ueno et al.[18] derived a theoretical equation using the
pseudo-potential formalism coupled with the free energy of a
hard sphere system. The P-activity values calculated with this
equation agree excellent with the current calculations. All
these results point toward negative deviations from the ideal
solution behavior. The respective P-activity calculated with
the parameters of Gustafsson,[10] (Fig. 14, dotted line) show
opposite (i.e., positive) deviations from the Rault’s law).

Fig. 5 Liquidus projection of the Fe-Mo-P system calculated
with the parameters obtained in this work, together with
the experimental data for the invariants from Vogel and
Horstmann[14] and the respective values calculated by
Gustafsson[10] (see Table 4). The calculated liquidus isotherms
between 1100 and 1900 �C (dotted lines) are shown

Fig. 6 Calculated vertical section of the Fe-Mo-P system along
the section Fe-MoP, together with the experimental data of Vogel
and Horstmann.[14] The symbol ‘‘2.Arrest’’ is for a thermal ar-
rest. The liquidus, calculated with the parameters of Gustafs-
son[10] is shown as well (dotted curve)

Fig. 7 Calculated vertical section of the Fe-Mo-P system at
5 wt.% P, together with the experimental data of Vogel and
Horstmann.[14] The symbol ‘‘2.Arrest’’ is for a thermal arrest.
The liquidus, calculated with the parameters of Gustafsson[10] is
shown as well (dotted curve)

Fig. 8 Calculated vertical section of the Fe-Mo-P system at
10 wt.% P, together with the experimental points of Vogel and
Horstmann.[14] The symbol ‘‘2.Arrest’’ is for a thermal arrest.
The liquidus, calculated with the parameters of Gustafsson[10] is
shown as well (dotted curve)
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Calculations has also been carried for the parameter
eP
Mo = ln(cP

Mo)/xP, at 1400 �C, in ternary alloys containing
about 20 at.% P. In this case, both assessments (this work

and Gustafsson[10]), yield a value close to eP
Mo = �2,

whereas the measurements of Ban-ya[17] give that
eP
Mo = �7.26. Such a low value, however, indicates too
high stability for the liquid phase so that the calculated
(phosphide + liquid phase) equilibria of the present work
could not be preserved.

Fig. 9 Calculated vertical section of the Fe-Mo-P system at
15 wt.% P, together with the experimental data of Vogel and
Horstmann.[14] The symbol ‘‘2.Arrest’’ is for a thermal arrest.
The liquidus, calculated with the parameters of Gustafsson[10] is
shown as well (dotted curve)

Fig. 10 Calculated vertical section of the Fe-Mo-P system at
5 wt.% Mo, together with the experimental points of Vogel and
Horstmann.[14] The symbol ‘‘2.Arrest’’ is for a thermal arrest.
The liquidus, calculated with the parameters of Gustafsson[10] is
shown as well (dotted curve)

Fig. 11 Calculated vertical section of the Fe-Mo-P system at
10 wt.% Mo, together with the experimental data of Vogel and
Horstmann.[14] The symbol ‘‘2.Arrest’’ is for a thermal arrest.
The liquidus, calculated with the parameters of Gustafsson[10] is
shown as well (dotted curve)

Fig. 12 Isotherm of the Fe-Mo-P system (Fe-rich side) at
1200 �C calculated with the parameters obtained in this work
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4. Summary

A thermodynamic reoptimization of the binary sub-
system Mo-P has been done. In addition, a slight modifi-
cation was made for the liquid phase description of the

adopted Fe-Mo assessment. Thereafter, a description of the
ternary Fe-Mo-P system was obtained.

Thirteen phases (liquid, bcc, fcc, Mu, R, Sigma, Fe3P
(dissolving Mo), Fe2P (dissolving Mo), Fe2Mo, FeP, Mo3P,
MoP and (P)) are considered in the current work. Good or
reasonable correlation between the calculated and the
experimental thermodynamic and phase equilibrium data
has been observed. Clear improvement is obtained for the
liquid state thermodynamics in regard to the previous
optimization of this system. The results of the current
optimization have been added to the thermodynamic
database on Fe-X-P systems.
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