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Abstract Bearings assume a pivotal role in the operation

of rotating machinery, particularly in large motor systems,

underscoring the imperative of early detection of bearing

faults for effective machine health monitoring. This

research introduces an innovative AI-driven approach for

the identification and assessment of bearing anomalies,

particularly in correlation with diverse shaft speeds.

Vibration data are acquired in the time domain using

piezoelectric accelerometers for bearings exhibiting vary-

ing degrees of health and fault conditions. The proposed

methodology employs spectrograms to represent vibration

signals, incorporating pre-processing techniques such as

continuous wave transformation to generate scalograms,

converting one-dimensional vibration signals into two-di-

mensional images. Feature extraction and health status

classification are executed utilizing AlexNet, a convolu-

tional neural network. Experimental evaluation conducted

on a bearing test rig demonstrates prediction accuracies of

95.23%, 100%, and 98.43% for fault-related anomalies,

respectively, supported by the Case Western Reserve

University bearing dataset and Vishwakarma Institute of

Technology vibration laboratory dataset. These findings

affirm the robustness of the proposed approach, highlight-

ing its efficacy in accurately detecting various

manifestations of rolling bearing faults through deep

learning applied to observational data.
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Introduction

Rotary machines remain the mainstay in various industries,

including construction machinery, rail transit equipment,

instrumentation, precision machine tools, and other perti-

nent domains. Small failures in roller bearings frequently

occur and may lead to catastrophic consequences [1]. Also,

fault location, fault type, and fault severity can all be

determined from a vibration signal, indicating when a

bearing’s inner ring (IR), ball element (BA), or outer ring

(OR) has failed [2]. So to detect abnormal bearing vibra-

tion, various methods can be employed, including vibration

sensors, accelerometers, and laser displacement sensors.

These sensors can measure the vibration of the bearing and

provide a signal that can be analyzed to determine the

cause of the vibration [3]. By optimizing computational

resources and minimizing memory requirements, the

technology for processing vibration signals using deep

learning can be adapted for small, portable, and energy-

efficient embedded platforms. This adaptation renders it

well-suited for deployment in challenging industrial oper-

ating environments [4]. While vibration levels may fall

within acceptable limits, ongoing monitoring remains

essential to prevent potential deterioration over time. In

light of recent strides in complex and intelligent industrial

systems, early detection of issues has become increasingly
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pivotal [5]. Certain industrial and manufacturing machin-

ery is required to function continuously in challenging

environments, leading to the risk of critical components

such as bearings, a prevalent element in popular industrial

equipment, experiencing failures [6]. Top of Form Rolling

bearings play a critical role in the total performance of

machinery. Failure to promptly address issues with rolling

bearings can lead to complete equipment breakdown,

causing substantial financial losses, environmental damage,

and posing risks to worker safety [7]. Hence, the synergy of

monitoring and supervision is vital to proactively manage

faults, ensuring uninterrupted and normal equipment

operation. Leveraging intelligent approaches, For instance,

predictive maintenance predicated on process conditions,

has proven effective in fault diagnostic research with

machine learning at its core [8]. This involves two key

stages: fault classification and signal feature extraction [9].

In order to ensure facility safety and prevent major

breakdowns, the imperative was to develop a method for

detecting and predicting failures proactively, enabling

necessary repairs without interrupting device operations.

Relying solely on human experience for error detection

often proves inadequate, especially in critical and complex

scenarios. Ongoing research, conducted through various

studies, seeks to establish cutting-edge mechanisms and

strategies for innovating new predictive maintenance tools,

facilitating the detection of errors before they manifest

[10]. One notable finding is the continuous monitoring of

the state of rotating machines by collecting diverse data,

with vibration signal data being particularly prominent.

Consequently, vibration analysis emerges as a vital tech-

nique for real-time system monitoring during operations.

Vibration analysis in practice enables accurate identifica-

tion of errors in bearing elements [11]. Fundamentally, the

application of deep learning and machine learning tech-

niques plays a pivotal role in identifying production and

operational issues. Various tools are employed to analyze

faults in bearings and other machine components, including

K-nearest neighbor (KNN), support vector machines

(SVM), artificial neural networks (ANN), and fuzzy tech-

niques [12]. In recent years, convolutional neural networks

(CNNs) designed for artificial intelligence have signifi-

cantly enhanced fault identification accuracy, leveraging

different feature types in the diagnostic process. Employing

CNN as a backend trainer and classifier, along with sta-

tistical information derived from raw vibration signals of

single faults, achieves high-precision bearing defect diag-

nosis [13]. The general process for identifying bearing

faults involves two key steps: feature extraction (data

processing) and fault recognition [14]. Despite the non-

linear and non-stationary nature of bearing vibration

signals, they often contain sufficient defect information.

Consequently, the extraction of signal characteristics

becomes a critical step. Time-frequency signal analysis

techniques, such as the short-time Fourier transform

(STFT) and continuous wavelet transform (CWT), are

commonly utilized for preliminary automatic feature

extraction. These techniques transform original 1-D time

domain data into 2-D time-frequency images [15]. Many

deep neural networks, including AlexNet [16], GoogleNet

[17], and VGG [18] use CNN for the smart fault detection

of rolling bearings.

In this paper, we employ a CNN-AlexNet network to

predict various fault types occurring in bearings, leveraging

data obtained in the time domain to achieve optimal

accuracy within a relatively short timeframe. Our proposed

model undergoes thorough evaluation using two estab-

lished benchmark bearing datasets: The real-time bearing

dataset, a run-to-failure raw bearing dataset amassed by the

instrumentation and control engineering laboratory at

Vishwakarma Institute of Technology (VIT) in Pune, India,

and the Case Western Reserve University (CWRU) bearing

dataset sourced from the Bearing Data Centre at Case

Western Reserve University, Canada. This investigation

introduces an innovative approach for fault diagnosis in

rolling element bearings, employing a fusion of sequential

CNN analysis, image classification, and force detection.

Sequence maps derived from the internal vibration signal

of rolling element bearings are meticulously calculated.

These sequential maps exhibit consistent patterns across

various operational conditions, displaying fluctuations

attributable to faults while maintaining a steadfast structure

amidst changing operational parameters. Consequently,

their resilience to alterations in operating conditions,

namely speed, and load, positions them as invariant

vibration patterns. Utilizing force maps computed at dis-

tinct operational states, a subset is employed for training

the CNN model. The trained CNN model is subsequently

employed for fault diagnosis across diverse operating

conditions, encompassing variations in speed and load. The

results demonstrate that our proposed method consistently

achieves an average accuracy rate that surpasses the state-

of-the-art articles, even in a shorter time interval, across

both training and test datasets. Additionally, we present the

detailed architecture and the step-by-step methodology

followed to attain high accuracy in our fault detection

model.

Theoretical Framework

Continuous Wavelet Transform(CWT)

This process is like to the Fourier transform, which

decomposes a signal into sinusoids with different fre-

quencies, but the wavelets used in the CWT are more
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localized in time, permitting for a more detailed analysis of

the signal’s time-varying frequency content. CWT tech-

niques are very helpful in signals with multiple resolutions

and time-frequency positions because they transform time

signals into a two-dimensional time-frequency domain

from one-dimensional time signals.

As seen in the following equation of CWT:

CWT a; sð Þ ¼ 1
ffiffiffi

a
p

Z þ1

�1
sðtÞu� t � s

a

� �

dt ðEq 1Þ

Wherever a represents the wavelet scale, s is the wavelet

time localization, 1
ffiffi

a
p maintains the wavelet energy constant

at varying scales, and u� represent the mother wavelet (uÞ
conjugate. Where the initial one-dimensional data signal is

represented by sðtÞ. When CWT is applied to signals,

scalograms, or 2D time-frequency spectra, are produced. In

scalograms, a continuous wavelet transform is represented

(CWT). In this research, the raw vibration signals captured

by sensors are sampled as a time series at intervals of 1024,

and CWT is performed for this time series [19, 20].

Convolutional Neural Network (CNN)

The most well-known and widely used deep learning

algorithm is CNN. CNN has a basic edge over its prede-

cessors in that it performs tasks automatically and without

human involvement, recognizing the relevant elements

[21]. It is made up of multi-layer versions that analyze

photos to find visual trends. A standard CNN design con-

sists of an image as input, a feature extraction block

consisting of fully related layers: first, the convolution and

activation layers, then clustering, and finally, a classifica-

tion layer. The CNN architecture comes in various forms,

including AlexNet, ResNet, GoogleNet, and LeNet [22].

AlexNet is a deep learning structure consisting of five

convolutional layers, two normalization layers, three max

pooling layers, and one softmax layer, with two fully

connected layers in its design. Each convolutional layer is

linked to a pooling layer. The casual inactivation neuron

operation is introduced to the first two fully connected

layers of the proposed model to prevent overfitting. The

final layer is a softmax classifier for image classification

[23].

When using multiple parameter initialization approa-

ches, the use of ReLU as the activation task in AlexNet

simplifies computation and model training. To control

model complexity, AlexNet uses a dropout strategy;

whereas, LeNet merely uses weight decay. Signal analysis

by machine learning involves three stages: signal assembly,

feature extraction/selection, and model training [24]. Three

types typically make up a CNN: a convolutional layer

(CL), a sub-sampling layer (SL), and a fully connected

layer (FCL). This section outlines the mathematical model

for each layer in a CNN’s design [25]. Convolutional layers

(CLs) are crucial to the success of a CNN’s architecture.

They consist of several convolutional filters or kernels. The

output feature map is produced by convolving the input

image, expressed as N-dimensional metrics. The convolu-

tional operation results are passed through the activation

function to obtain the output. Recently, Rectified Linear

Unit (ReLU) activation functions have increasingly been

adopted due to their quick training times and low compu-

tational requirements. ‘The following equation

mathematics describes the mapping value y and 1-D value

x:

y ¼ conv x;x;0 valid0ð Þ
¼ y 1ð Þ; . . .; y tð Þ; ::y n� mþ 1ð Þð Þ�Rnþm�1 ðEq 2Þ

y tð Þ ¼
X

m

i¼1

x t þ i� 1ð Þx ið Þt ¼ 1; 2; 3::; n� mþ 1ðm\nÞ

ðEq 3Þ

where conv indicates the valid method convolution oper-

ation, the integer m represents the weight values in the

filter. The length of the signal x is n, xðiÞ represents i the
weight of the filter, and yðtÞ is the t mapping value. The

input data dimensions are A and B, while X � RA�B defines

the convolutional layer’s input. Followed by a pooling

layer to calculate load and reduce spatial dimension and

overfitting risk [26]. Include average pooling, norm pool-

ing, max pooling, and logarithmic pooling, and the

mathematic model is:

Pcn ¼ max
SM�N

ðYcnÞ ðEq 4Þ

where Pcn pooling output layer able to take the maximum

value out of the Ycn convolutional output layer, the

dimensions of scale matrix S are M and N. The maximum

value will be taken out of the M � N matrix in Ycn during

the pooling process until SM�N sweeps the entire Ycn by a

defined stride. After passing alternately through pooling

layers and convolutional layers, the picture characteristics

are input into the fully connected layer. The deep feature

data with category distinction are included in the fully

connected layer, and a mapping link between the retrieved

features and sample types is built. The mathematical for-

mula for a fully connected layer:

yk ¼ f ðxkxk�1 þ bkÞ ðEq 5Þ

where The completely connected layer output is repre-

sented by yk. xk is the weight coefficient, xk�1 is the fully

connected layer input, bk is the network offset, k denotes

the layer k network. In general, CNN uses a variety of

convolution and pooling layer combinations. Many fully

connected layers will then be added one after the other,
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layer by layer, and they can change the matrix in the filter

to a row or column.

Proposed Method

The prevalent neural network architecture for image pro-

cessing is the 2D convolutional neural network, capable of

handling grayscale or RGB images as input. For an accu-

rate diagnosis of failures, the raw fault signals need

transformation through continuous wavelet transform

(CWT) into 2D time-frequency images enriched with fault

information. This paper proposes a CNN-based technique

for identifying failures in rolling bearings, and the

flowchart of the proposed method is depicted in Fig. 1.

1. Initially, vibration signals from bearings are collected

using two accelerometer sensors, one mounted hori-

zontally and the other vertically.

2. Subsequently, the gathered vibration signals are trans-

formed into RGB formats using CWT, and the images

are then divided into two parts (training and testing).

3. Each set of 1024 signal sampling points from the raw

vibration signals collected by sensors is treated as a

time series, and CWT is applied to this series.

4. The AlexNet network is loaded, and the model is fed

with samples. The linked layer is then utilized to

extract features from both test and training images.

5. To assess the accuracy of the diagnosis, test samples

are input into the trained model [27].

The structure of AlexNet is organized as follows: Ini-

tially, an image with dimensions of 227 9 227 9 3 is

input, where 227 and 227 represent the length and width,

and 3 channels correspond to an RGB image. The first

convolutional layer is applied with 96 filters and a filter

size of 11, resulting in a stride of 4, which reduces the

dimensions of the input to 55 9 55 9 96. Subsequently,

the second convolutional layer utilizes a filter size of 3 and

a stride of 2, reducing the dimensions from 55 9 55 9 96

to 27 9 27 9 256. The third and fourth convolutional

layers employ 384 filters each with a stride of 1, followed

by a pooling layer with 256 filters of the same size in the

fourth layer.

Finally, AlexNet incorporates three fully connected layers.

The first two layers each have 4096 nodes; while, the third

fully connected layer consists of 1000 units. In the model’s

concluding stage, a softmax layer and a classification output

layer are set up to provide probabilities for each label.

Fig. 1 Details flowchart to clarify the failures in bearings
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Experimental Setup

In this study, we evaluate the effectiveness of our proposed

approach by subjecting it to testing on two benchmark

bearing datasets: The Case Western Reserve University

(CWRU) trustworthy data and real bearing data obtained

from Vishwakarma Institute of Technology (VIT) Lab.

Data are collected to encompass various bearing fault

scenarios, as illustrated in Fig. 2. As shown in Fig. 2, the

presented method includes three major steps. The first step

is to obtain the gathered vibration signals, which are then

transformed into RGB formats by CWT and potentially

provide valuable information about machinery health

conditions. The second step is to import the obtained

images into a CNN-AlexNet network structure to obtain an

optimized deep-learning model for bearing fault diagnosis.

The final step is to employ the optimized CNN-AlexNet

network model to diagnose the bearing faults and detect the

fault severity.

Experimental Verification

Many articles and studies have employed CNN models like

VGGNet, AlexNet, GoogLeNet, Lenet-5, and ResNet for

bearing fault diagnosis. This paper introduces the AlexNet

model, with the primary goal of achieving superior per-

formance in image recognition and attaining the highest

accuracy compared to other methods. The experiment uti-

lizes the AlexNet method on two motor bearing datasets

with varying speeds and loads, obtained from Vish-

wakarma Institute of Technology (VIT) College.

Subsequently, a comparison is conducted with a dataset

from Case Western Reserve University (CWRU).

Bearing Data Centre (BDC)

The Dataset Pertaining to Bearings from Case Western

Reserve University

The laboratory setup at Case Western Reserve University

[28] is commonly employed in research focusing on

bearing vibration fault diagnostics. This setup primarily

includes a motor, testing bearings, an accelerometer, and a

loading motor, which provide experimental vibration data

for rolling bearings. The experiment involved introducing

four distinct single-point conditions of bearings (normal

bearings, inner race faults, ball faults, and outer race

faults), each with fault dimensions of 0.021, 0.014, 0.007,

and 0.028 inches for the 6205-2RS JEM SKF bearing

model. These tests were conducted at various motor speeds

(1772, 1797, 1755, and 1730 rpm). A sampling frequency

of 12 kHz was employed, and an accelerometer was

strategically placed near the drive end to capture the

vibration signals.

Results and Discussion

Figure 3 illustrates the continuous wavelet transform

(CWT) results for vibration signals under four conditions:

Healthy Bearing (HB), Ball Fault (BF). Inner race Fault

(IRF), and Outer race Fault (ORF), While raw vibration

signals in the time domain make it challenging to distin-

guish between fault types, CWT reveals differences in the

Fig. 2 General architecture of the CNN-AlexNet-based approach for bearing fault diagnosis [27]
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vibration images in the time-frequency domain, making

them suitable for further input into CNN for feature

extraction [29]. The vibration images are then input into

the CNN-AlexNet for training.

In Fig. 3, the transformation of the vibration signal into

an image shows noticeable differences, indicating the

model’s convergence. The training and verification data

exhibit stability, highlighting the efficiency of the model.

The training process was repeated multiple times under the

same conditions to ensure maximum accuracy, with a

learning rate set at 0.0001. The accuracy attained for the

CNN-AlexNet model is 90.91%, 82.14%, 90.91%, and

100% for (a) Healthy bearing, (b) Inner race fault, (c) Outer

race fault, and (d) Ball fault, respectively. These results

illustrate rapid and accurate diagnosis using the suggested

method, as depicted in Fig. 4. The exceptionally high

prediction accuracy underscores the effectiveness of the

approach. The classifier’s prediction accuracy and the

proportion of stage length overlapping with other stages for

all bearings are presented in Fig. 4a–d illustrates the rela-

tionship between the number of model training epochs,

representing the cycles through the full dataset, and the

corresponding values on the x-axis. The y-axis denotes

both the loss and accuracy. Upon close observation of the

accuracy graph, it is noteworthy that, initially, the valida-

tion accuracy surpasses the training accuracy for several

epochs. As the number of epochs increases, both the vali-

dation and training accuracy curves exhibit an upward

trend. The loss value drops below 0.001 after approxi-

mately 30 epochs, indicating the superiority of the model

architecture and the efficiency of the training process.

When compared to Healthy, Inner race, and Outer race

bearing defects, the trained classifier achieves significantly

higher accuracy in the Ball fault stages.

Real-Time Dataset of Bearing Faults

VIT College Dataset

This study considered three bearing health conditions:

normal, inner race fault, and outer race fault. Bearings

under each condition were operated at rotating speeds of

950, 1250, and 1950 rpm. The fault bearings are depicted

in Fig. 5. During the experimental procedures, various

bearings were used, each exhibiting a unique state or

condition (such as being healthy, having an inner race fault,

and an outer race fault). These bearings were placed at a

specific location, namely, the end part of the engine, to test

and observe their performance under these different con-

ditions. Two accelerometers are installed in the horizontal

and vertical directions of the bearing housings for vibration

data acquisition and two loads are applied on both motor

ends (1.25 kg and Gearbox). For the testing, ball bearings

of type 608-2RSH&SKF were utilized. Under each bearing

fault condition, three sets of data are collected at rotational

speeds of 950, 1250, and 1950 rpm, as outlined in Table 2.

The data collection for each set spans approximately

6 min, with a sampling period of roughly 6 min for each

set. The data are sampled at a rate of 12 kHz. The data are

acquired using the NI DAQ data collecting system and

subsequently saved as a mat file using MATLAB 2021b

software.

Fig. 3 Transformation of a vibration signal to images for different bearing conditions (a), (b), (c), and (d)
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Table 1 provides the specifications of the bearing used

for experimental purposes.

The experimental setup, designed to study the effects of

bearing faults in a motor as depicted in Fig. 6, includes the

National Instruments USBX-series data acquisition (DAQ)

system interfaced with the Computer GUI (Graphical User

Interface). A Graphical User Interface (GUI) is employed

to oversee the experiment, manage its operations, and

gather the resulting data. The data acquisition process

involves collecting information about the bearing condi-

tions by applying two loads, one load weighs 1.25 kg, and

the next load is the gearbox. These loads are attached to the

end of the motor. The experiment involves testing at

different rotational speeds of the motor: 950, 1250, and

1950 revolutions per minute (RPM), as specified in

Table 2. The data readings are acquired using Piezoelectric

accelerometer sensors for three types of load conditions:

Healthy bearing, Outer race fault, and Inner race fault.

Vibration signals are acquired from two accelerometer

sensors (X and Y-axis) that detect the signals.

Results and Discussion

The data acquired in this experiment included three types

of bearings: healthy, outer race fault, and inner race fault.

The sample time was 6 s. The data gathered by the

Fig. 4 Performance comparison of Loss and accuracies for the CWRU dataset under various bearing conditions at different motor speeds (1772,

1797, 1775, and 1730 rpm): (a) Healthy bearing, (b) Inner race fault, (c) Outer race fault, and (d) Ball fault
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accelerometer sensor, which was attached to the motor,

was then processed in a MATLAB 2021a environment, and

all the data files were stored in MATLAB (.mat) format.

Figure 7a–c displays scalogram images and vibration

signal images collected by the vibration sensor using our

method under different bearing conditions. When com-

pared to vibration images generated from the original

signal data, the majority of them exhibit simpler patterns

that are easier for humans to classify. The heightened CWT

spikes in these images represent occurrences of bearing

faults in terms of features. In contrast, the normal condition

is characterized by a lack of significantly elevated CWT

magnitudes, as indicated by the blue color. The CNN

model excels at feature extraction from these images

without compromising critical information necessary for

bearing state classification. It efficiently identifies the

Healthy bearing (HB), Outer race fault (ORF), and Inner

Fig. 4 continued

Fig. 5 Distinct bearing fault conditions are delineated as follows: (a)
Healthy bearing, (b) Inner race fault, and (c) Outer race fault
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race fault (IRF). The Deep Network Designer in MATLAB

was utilized for downloading pre-trained networks (Alex-

Net), replacing layers, assessing the architecture, loading

the data, and starting the training. This work used the

AlexNet method for the classification of the images that

were converted by CWT, The images were resized

according to the model used was set to (227 9 227 9 3)

then trained, tested and validation set the CNN-AlexNet

model for feature extraction and classification.

The four error metrics, namely accuracy, precision,

recall, and F1-score, are calculated to evaluate the per-

formance of the diverse classifiers. The formulas for these

metrics are depicted in Eqs 6-9.

accuracy ¼ TNþ TP

TNþ FNþ FPPþ TP
ðEq 6Þ

precision ¼ TP

TPþ FP
ðEq 7Þ

Table 1 Specification of bearings

Type Number of balls Angle of contact Diameter of pitch Diameter of ball Width Inside diameter Outside diameter

608-2RSH&SKF 8 0� 1.537 in 0.3126 in 7 mm 8 mm 22 mm

Fig. 6 Experimental Setup with

labeled components (1)

Computer GUI, (2) Gearbox, (3)

Motor with bearing faults, (4)

Accelerometer sensor (X, Y-
axis), (5) Speed sensor, (6)

Speed controller, and (7) DAQ

Table 2 Statistics of dataset (VIT Collage)

Fault type File name Loading condition Speed (RPM)

Healthy Bearing HB NL 950 No load = 0 kg 950 RPM

HB FL 950 Full load = 1.25 kg ? GB

Inner Race Fault IRF NL 1250 No load = 0 kg 1250 RPM

IRF FL 1250 Full load = 1.25 kg ? GB

Outer Race Fault ORF NL 1950 No load = 0 kg 1950 RPM

ORF FL 1950 Full load = 1.25 kg ? GB
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Fig. 7 Transformation of vibration signals collected at different speeds (950, 1250, and 1950 rpm) into images for the VIT dataset: (a) Healthy
Bearing with load and without load, (b) Inner Race Fault with load and without load, and (c) Outer Race Fault with load and without load
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recall ¼ TP

TPþ FN
ðEq 8Þ

f1� score ¼ 2
precision � recall
precisionþ recall

ðEq 9Þ

TP is the value of true positive classifications, TN the

value of true negative classifications, FP the value of false

positive classifications (a false alarm), FN the value of

false negative classifications (missed faults), These metrics

were selected because they directly reflect the impact of

monitoring PdM demand conditions. In the event that the

Predictive Maintenance (PdM) system activates an alarm

upon purportedly detecting a fault, it is more advantageous

to notify about all potential faults, even if it entails

encountering some false alarms amidst the faults. In

essence, the triggering of more alarms results in the

presentation of more errors to the user (higher recall),

albeit accompanied by an increase in false alarms (lower

accuracy). Conversely, if errors are exclusively flagged

when actual faults are detected, some faults may go

undetected and no false alarms would be raised. The

classifier will inevitably accentuate both aspects, ensuring

that an alarm is sounded only in instances of genuine faults,

with no omissions or false alarms. This amalgamation is

directly reflected in the F1 score. Additionally, accuracy is

favored due to its straightforward interpretability,

representing the ratio of correctly classified samples to

the total sample count. Table 3 presents the findings. As

can be observed, the outcomes are improving for each

metric.

The high accuracy of the classification results indicates

the effectiveness of the deep signal processing method in

analyzing vibration signals for bearing fault analysis. The

loss and accuracy of the three fault analysis models are

depicted in Fig. 8a–c. In Fig. 8a, there is a notable increase

in the accuracy of identifying a healthy bearing, reaching

95.24%, and the loss value drops below 0.001 after

approximately 40 epochs.

Figure 8b illustrates 100% accuracy in detecting inner

race defects in the bearing, with the loss value dropping

below 0.001 after approximately 10 epochs. Figure 8c

shows an increased accuracy of 98.43% in detecting outer

race defects in the bearing, and the loss value drops below

0.001 after approximately 40 epochs. Examining the

training accuracy curve and loss curve epochs, we observe

in the figures that the model begins to converge and the

training and verification data become somewhat stable,

indicating the efficiency of the model. Although accuracy

generally improves with the addition of epochs, there are

significant fluctuations. However, when using the Adam

optimizer, the initial training stage achieves higher accu-

racy and lower training loss values. The training loss curve

exhibits a smoother descent, and the associated accuracy

curve converges more rapidly. The optimal accuracy is

achieved when the epoch reaches 10. Based on these

evaluation findings, the suggested CNN-AlexNet fault

diagnosis technique proves to be more resilient to signal

noise in different speed bearing vibration signals.

The classification results displayed in Table 4 show that

the deep learning method CNN has performed well for

diagnosis bearing faults. The features of the bearing’s

vibration signals can be recovered using the fault diagnosis

model using CNN-AlexNet, and the various fault kinds can

be efficiently separated. The diagnostic model can self-

learn the hidden properties of the vibration signals of all

conditions that are collected from the bearing signals, as

shown by the 95.24% recognition accuracy of the normal

condition. Due to the similarities between the Inner race

failure and Outer race failure vibration signal characteris-

tics, misclassification may occur easily. As a result, the

equivalent recognition accuracy only reaches 100% and

98.43%, respectively. To further analyze the findings of

this work, we compared the proposed model to VGGNet

and GoogLeNet models under the same conditions using

the CWRU vibration dataset and VIT vibration dataset.

Table 4 shows the comparing results. The proposed model

AlexNet performed roughly better compared to the Goo-

gLeNet and VGGNet models. Table 5 demonstrates that

the proposed method attains the highest performance of

100%; while, the VGGNet and GoogLeNet models show

less accuracy performance.

Figure 9a and b displays the diagnostic accuracy that

uses several methods for diagnosis. As a result of its

superior ability to detect temporal shifts in vibration sig-

nals, CWT, when used in conjunction with the ALexNet

Model, emerged as a leading candidate for feature extrac-

tion. Furthermore, convolutional neural networks (CNNs)

excel in pattern recognition, automated feature extraction,

and the acquisition of robust features. Transforming

vibration signals into images constitutes a

Table 3 Performance results of CNN-AlexNet

Metric

Healthy bearing

(%)

Inner race defects

(%)

Outer race defects

(%)

Accuracy 95.24 100 98.43

Precision 94.73 94.02 93.32

Recall 92.52 95.61 94.82

F1 score 95.46 97.18 96.22
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Fig. 8 Performance comparison of accuracy for the VIT dataset under various bearing conditions at different motor speeds (950, 1250, and

1950 rpm): (a) Healthy bearing(HB), (b) Inner race fault(IRF), and (c) Outer race fault(ORF)
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suitable technique for analyzing features in two dimen-

sions. However, in this study, optimal outcomes were

attained with the Case Western Reserve University

(CWRU) and Vishwakarma Institute of Technology (VIT)

datasets utilizing the proposed CNN architecture based on

AlexNet featuring two fully connected (FC) layers.

Specifically, the CNN-AlexNet model emerged as the most

effective, significantly surpassing alternative

methodologies.

Conclusions

Intelligent techniques for identifying and categorizing

machine problems are the focus of significant scientific

inquiry in the field of Industry 4.0 and smart manufactur-

ing. So, Bearing defects have been identified and

categorized using a variety of signal processing and

machine learning-based methods. However, DL-based

methods are favored over them due to the many drawbacks

of conventional signal processing and ML-based approa-

ches. This study presents an intelligent technique for

bearing fault identification and classification in the real-

time dataset that by self-collected in VIT College and one

of the best general benchmark datasets, the CWRU dataset.

For various bearing situations, the suggested system

achieved testing accuracy between 95.24 and 100%. The

findings demonstrate that when scalogram images are

input, the suggested method achieves state-of-the-art

accuracy. The CNN-AlexNet method has been proven to

outperform other state-of-the-art methods in studies using

the CWRU Famous Public and VIT College datasets, and

the pre-processing of converting the signal to an image by

CWT can speed up the diagnosis of bearing problems. To

increase the forecast accuracy, we’d like to put our issue

diagnosis method through more rigorous testing on a wider

range of data, including real-world fault scenarios. The

discovery of motor errors using other signals rather than

vibration data, such as torque data, motor current signals,

or high temperature in the rotating machinery, is another

promising area for further research. This is because these

signals are frequently collected straight from the pro-

grammable logic controller, rather than having to install

additional sensors.
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