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Abstract Non-destructive inspection and analysis tech-

niques are crucial for quality assessment and defect

analysis in various industries. They enable for screening

and monitoring of parts and products without alteration or

impact, facilitating the exploration of material interactions

and defect formation. With increasing complexity in

microelectronic technologies, high reliability, robustness

and thus, successful failure analysis is essential. Machine

learning (ML) approaches have been developed and eval-

uated for the analysis of acoustic echo signals and time-

resolved thermal responses for assessing their ability for

defect detection. In the present paper different ML archi-

tectures were evaluated, including 1D and 2D

convolutional neural networks (CNNs) after transforming

time domain data into the spectral- and wavelet domains.

Results showed that 2D CNNs processing data in wavelet

domain representation performed best, however at the

expense of additional computational effort. Furthermore,

ML-based analysis was explored for lock-in thermography

to detect and locate defects in the axial dimension based on

thermal emissions. While promising, further research is

needed to fully realize its potential.
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Introduction

Nondestructively operating inspection- and analysis tech-

niques represent an essential instance in the quality

assessment and failure analysis chain. Due to the nonde-

structive character inspected parts and components remain

unaltered allowing for screening and monitoring of features

and conditions. Therefore, monitoring capabilities are

highly valuable when investigating the formation and

propagation of anomalies which may transform into a

defect, thus supporting the exploration of the interaction of

the involved materials and their structures under common

and exceptional conditions. With the continuously

increasing level of assistance and automation across the

industrial, automotive and consumer sector high reliability

expectations meet increasingly complex power- and

microelectronic components and systems. For ensuring the

stated performance and the required safety of electronic

products, defect affinity, -evolvement, and -propagation

need to be investigated and understood. Besides repetitive

analyses for research and exploration purposes, broad

range inspection abilities with accurate recognition per-

formance are key to quality assessment and monitoring,
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inevitable for high reliability and premium products.

Against this background, the high complexity of electronic

components, the potential requirement of a high-through-

put inspection, the aim for nondestructivity, and the

necessity of high-accuracy detections meet, resulting in an

extended amount of data that need to be analyzed at an

elevated performance level.

Due to its nondestructive mode of operation, micro-

scopic acoustic imaging is a widely used technique for

defect inspection in quality assessment, technology devel-

opment and failure analysis. Depending on the specimen’s

individual material properties it allows for lateral resolu-

tions on the order of hundreds of microns down to the

single digit micron-range. Its contrast mechanism is based

on the interaction of an insonated acoustic pulsed wave

with the sample’s internal materials and their acoustic

properties, respectively. Caused by continuously decreas-

ing feature sizes along with an increasing material variety

in such devices the incident signal gets reflected and

scattered resulting in echo signals commonly containing

trains of individual but distorted pulses. Interpretation of

such signals, which are received by the acoustic transducer

becomes increasingly difficult, requiring profound exper-

tise of the machine operator. Previous studies have

positively evaluated the potential of machine learning for

an operator independent analysis of acoustic echo signals

for the purpose of increasing inspection reliability and the

level of automation for defect detection and localization in

quality assessment and failure analysis [1–5]. Some of

these studies have employed 1D convolutional neural net-

work architectures for analyzing the shape of the acoustic

signals in time domain [1, 2]. The present work is a con-

tinuation of those studies that extends the analysis from the

pure time domain to the spectral and wavelet domains and

the model architectures from 1D to 2D. Even though the

information contained in the time signals is equal, repre-

sentation in spectral—and wavelet domain may provide

additional degrees of freedom which have the potential to

contribute towards an increased performance and robust-

ness of the analyses. In [2] it was reported that signal

distortion caused by even slight defocusing of the acoustic

transducer, highly decreased the classification accuracy and

thus compromised the defect detection ability when ana-

lyzing flip chip devices. The present study also addressed

these shortcomings and investigated the performance of 1D

and 2D CNN network architectures when signals recorded

at varying defocus were included into the training data.

Furthermore, the concepts developed for acoustic micro-

scopy-based analyses were extended and applied to the

transient thermal responses to electrical excitation recorded

in lock-in thermography for quantitatively and qualitatively

estimating the depth of buried thermally active electrical

defects.

Materials and Methods

Analysis of Acoustic Microscopy Data

Scanning acoustic microscopy was conducted on three

individual sample sets and echo signals have been acquired

in time domain for further processing and evaluation of

ML-based analyses for operator independent and auto-

mated signal classification for defect detection.

Description of Samples and Equipment

Acoustic data from two sets of nonmolded flip chip sam-

ples and a power device (thin-die setup) have been

acquired. Samples in ‘‘Set-I’’ contained flip chips with an

edge length of the Si-die of 6 9 7 mm and a thickness of

350 lm. Flip chip bumps of this sample type were 50 lm
in lateral diameter with a pitch of 135 lm. The samples of

‘‘Set-II’’ were flip chip devices with an edge length of the

Si-die of 7 9 7 mm and a thickness of 85 lm. The flip

chip bumps of these samples were 80 and 120 lm,

respectively at varying pitch. Both sample sets were pur-

posely taken out from the manufacturing process prior to

applying underfill material between the Si-die and the

PCB-substrate. Severe stressing for induction of acceler-

ated aging and subsequent defect formation due to thermo-

mechanical forces was conducted on the samples of ‘‘Set-

I’’ and ‘‘Set-II’’. To induce defects in the flip chip contacts

samples of ‘‘Set-II’’ were placed alternately in boiling

water and liquid nitrogen to generate sufficient thermo-

mechanical stress to initiate bump-fractures. Samples of

‘‘Set-I’’ were extracted from reliability testing, where they

underwent multiple flip chip attach reflow cycles in which

samples are exposed to temperature gradients between

room temperature and 240 �C. Devices in the sample ‘‘Set-

III’’ were power devices which contained a thin Si-die

glued onto a metal backplate. The die-attach contained

delaminated areas which resulted in a decreased electrical

and thermal conductivity. Due to the thin Si-thicknesses, a

2.4 mm 200 MHz acoustic transducer was employed for

data acquisition for the sample Sets ‘‘I’’ and ‘‘III’’, while a

3.2 mm focal length 200 MHz transducer was used for

inspection and signal acquisition of sample ‘‘Set-II’’.

Acoustic excitation was performed using a commercial

pulser/receiver unit DPR 500, JSR Ultrasonics Pittforth

NY, USA. Received signals were digitized at a rate of 1GS/

s and a resolution of 8bit using a M3i.21xx-x8-ADC,

Spectrum Instrumentation GmbH, Grosshansdorf, Ger-

many. Scanning was performed using a commercial 3-axis

scanner to which the transducer was mounted.
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Signal Pre-processing and ML-Based Analysis

In the spectral domain frequency related amplitudes and

their distribution in the frequency band of the analyzed

signal are represented. The spectrum of a time series of

measurements can be computed through the Fourier

transformation and is complex valued. Even though the

information contained in the spectrum is the same as in the

representation in time domain, an interpretation of the

spectral characteristics may allow for a more distinct

interpretation since it represents the signal in terms of

periodicities and thus may allow for a more accurate class

assignment. In the left column Fig. 1 contains the acoustic

time domain signals received from three distinct objects of

a flip chip device of a sample of ‘‘Set-I’’. These objects are

Top: a fractured bump, vertical center: an intact bump and

in the Bottom row: a signal from a location with an

underfill delamination. The center column of Fig. 1 con-

tains the spectral representation of the signals shown in the

Left column. To have the spectra contain temporal infor-

mation, the real part and the imaginary part of the complex

valued spectra have been summed. This signal processing

will be referred to as ‘‘real ? imag’’ in the remainder of

this paper. A more intuitive way for signal representation

in the spectral domain would be in terms of power distri-

bution as a function of frequency. The power would be

computed from the absolute values of the complex valued

spectrum, which would erase all temporal information.

This, however, was considered non-beneficial for the cur-

rent purpose of class assignment of the acoustic signals, so

the ‘‘real ? imag’’ computation, as described above was

chosen instead.

Two different types of 1D architectures have been

trained for classification of the acoustic signals into four

classes. These classes where: ‘‘defective Bumps’’, intact

Bumps’’, ‘‘delamination of underfill’’ and ‘‘background/

undefined’’. It has been previously observed that the

number of misclassifications can substantially be reduced

when providing a separate class for signals that do not

belong to one of the other classes and thus it was decided in

the present work to consider these observations. For the 1D

architectures the input layer was of dimension one. In the

first type of architecture an image input layer of dimension

[1, #of_samplepoints_in_signal, 1] was employed. How-

ever, this input layer did not allow for complex valued

input signals. Therefore, the ‘‘real ? imag’’ processing of

Fig. 1 Preparation of training data for investigating the influence of

the data representation domain onto the achievable accuracy and

performance of 1D- and 2D model architectures. LEFT COLUMN:

Acoustic echo signals obtained by SAM from: TOP: a defective flip

chip bump, VERTICAL CENTER: an intact flip chip bump and

BOTTOM: an underfill delamination. Graphs in the

HORIZONTALLY CENTRAL COLUMN show the linear spectra

(Real ? Imaginary part of the FFT) of the signals in the LEFT

COLUMN. 2D-maps in RIGHT COLUMN show the wavelet

coefficients obtained from the signals in the LEFT COLUMN

through continuous wavelet transformation
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the spectrum was conducted to maintain temporal infor-

mation, of complex valued data, as elaborated above. The

second type of 1D architecture contained a sequential input

layer, which allowed for the use of complex valued data.

Here the complex spectra obtained from Fourier transfor-

mation were employed as training data. Both 1D-networks

contained three convolutional blocks followed by a global-

max-pooling layer and two fully connected layers with a

classification layer as the output. In the following, analyses

based on the 1D architecture with the image input layer are

referred to as ‘‘FFT (real ? imag)’’, while the analyses

with the 1D network containing the sequential input layer

are referred to as ‘‘FFT (complex)’’.

A more explicit, however redundant signal representa-

tion can be obtained in the time-frequency domain. Here

signal spectra are plotted versus the time axis and thus the

temporal distribution of the spectral content is exhib-

ited explicitly. In the present study signals underwent a

continuous wavelet transformation (CWT) using the Morse

wavelet prior to ML-processing. For each signal this

transformation provides a two-dimensional map of the

wavelet coefficients versus time and frequency, as shown

in the right column in Fig. 1. In the CWT-maps the vari-

ation of the spectral shape for a signal is contained as a

function of time. The shape of an acoustic signal directly

corresponds to the interaction of the acoustic wave with the

sample. Therefore, with the CWT minor deviations in the

shape of a time signal are presented time-resolved in the

more explicit representation of the spectral domain, which

results in a two-dimensional representation in the time-

frequency domain. The maps in Fig. 1 illustrate the distinct

differences between the shapes of the wavelet coefficients

of the signals recorded from the three different objects.

For processing such two-dimensional matrices, a

machine learning architecture requires a two-dimensional

input layer. The model employed here was a modified

version of the GoogleNet model [6]. This is a pretrained

model designed for recognition of structures and shapes in

two-dimensional image maps and is expected to be pre-

destined for characterization and classification of the

wavelet matrices obtained from the acoustic signals

through CWT. The dropout layer ‘‘pool5-drop_797_s1’’ of

the GoogleNET model was replaced by a dropout layer

with weighting of 0.6. Also, the classification layer ‘‘loss3-

classifier’’ and the output layers were modified according

to the number of classes of the individual training data sets.

Figure 2 shows a summary of the processing and anal-

ysis flow of the acoustics-related part of this study. SAM

data acquired from the three sample sets were transformed

to the spectral- and wavelet domain, respectively and then

separately used for training the three in Fig. 2 shown ML-

learning approaches/models. For benchmarking and per-

formance comparison the 1D (real ? imag) network was

also trained and analyzed using unprocessed signals in time

domain. Performance assessment of the individual ML-

based analysis approaches and ML-models was realized

through the classification results obtained from applying

labeled test data to the trained models.

Lock-In Thermography Data Acquisition

and ML-Analysis

Lock-in thermography is a highly sensitive technique for

the detection and localization of weak thermal sources

which correspond to electrically conductive, but resistive

defects. Its sensitivity reaches down to several lW of

dissipated power. While, due to the application of highly

magnifying infrared optics a high lateral resolution down to

the range below 10 lm can be achieved, a precise local-

ization in the axial dimension can still be difficult to obtain.

In novel microelectronic systems three-dimensional inter-

connect structures and multi-chip assemblies highly

challenge precise defect localization for further physical

failure analysis. The present study investigates the appli-

cability of a machine learning based analyses of thermal

signals for the estimation of the beneath-surface depth of a

buried thermally active defect. Pursued here were two

approaches of machine learning based analysis. The first

aims at performing classification-based analyses to assign

the thermal source to an axial region (e.g., die-interfaces) at

increasing depths. The second approach employed a

regression-based analysis to quantitatively derive the depth

Fig. 2 Concept of the machine learning based acoustic analysis. For

three different case studies acoustic data were acquired and stored.

Unprocessed rf-signals, where then either transformed into the

frequency and time-frequency domain, respectively. Following this

transformed data were used for training of different machine learning

models in 1D and 2D
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of the thermal source underneath the sample surface. As

shown in Fig. 3 the same models have been employed for

analyzing the time-resolved thermal responses as were

used for the acoustic analyses. For deriving quantitative

depth estimates the terminal layer in all three models was

replaced by a regression layer.

Sample Description and Used Equipment

The setup employed for the experimental work was an in

house modified lock-in thermography system of the type

ELITE, ThermoFisher Scientific, Fremont, CA, USA. The

modifications enabled the acquisition of the transient

thermal signals for post processing and machine learning

based analyses. Investigated were samples of bulk

monocrystalline Si of increasing thickness to obtain ther-

mal transients of the increasing propagation lengths to

generate pathlength related variations in the thermal signal

for mimicking stacked-die assemblies. It should be noted

that this sample was chosen to fundamentally investigate

the general applicability of machine learning related signal

analysis for defect-depth localization however, with limi-

tations. The samples backsides were coated by Pt and

thermal sources have been created through needle probing

and the application of an electrical current of differing

strength and frequencies.

Data Pre-processing

Due to its transparency in the infrared range artifacts in the

experimental data have been observed resulting from the

interference of the conducted and radiated thermal

components. For compensation of these artifacts acquired

transient thermal signals have been decomposed into its

source signals by conducting independent component

analysis (ICA) as previously described by Kögel [7] and

then recombined without the radiation related component

aiming at the suppression of the radiated part in the

resulting signal. All machine learning based analysis

approaches have been performed on the raw and the ICA—

preprocessed versions of the thermal signals resulting in a

total of 12 trainings and test-analyses as shown in Fig. 3.

Following this the above-described pre-processing steps

using fast-Fourier- and continuous wavelet transformation,

respectively have then been performed on the signals.

Employed Software and Toolboxes

All analyses, processing and computations were conducted

in MATLAB, The Mathworks Inc., Natick, MA, USA.

Custom software has been developed in house to enable

convenient and intuitive data management of the acoustic

and thermographic data, signal extraction and preprocess-

ing. Besides the signal- and image processing toolboxes the

license included MATLAB’s deep learning toolbox which

formed the foundation for the development and evaluation of

the machine learning based analysis approaches shown here.

Results and Discussion

The purpose of the work underlying the present paper is the

development of machine learning based solutions and the

evaluation of their potential for the analysis of transient

Fig. 3 Concept of the machine learning based analysis of TRTR-signals acquired by LIT for depth localization of thermal sources
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measurement data with respect to their application for

interpretation and classification in the context of nonde-

structive defect identification and localization in complex

microelectronic packages. Furthermore, the study aims at

investigating the analysis performances of different model

architectures for the analysis of signals obtained from

differing samples and inspection methods. The methods

addressed here are acoustic microscopy and lock-in ther-

mography. The following section presents and discusses

the results obtained with the materials and methods

described above.

Acoustic Microscopy Analysis

The investigations related to acoustic analysis included the

inspection of three different sample sets (29 different types

of flip chips, 19 thin-die power device), three different

model architectures (29 1-D, 19 2-D), three (four) dif-

ferent methods of pre-processing (none, 29 FFT, 19

CWT) plus the investigation of the robustness behavior

upon defocus related signal distortion and the effect of

inclusion of corresponding signals in the training sequence.

Performance Comparison of Model Architectures

and Pre-processing

As shown above, sequences of measurement data can be

represented in different domains without changing the

information content. Figure 4 contains the Test-accuracies

of all model architectures employed here for classification

of acoustic signal data. Values obtained from the data of

the individual sample sets are grouped. Test-accuracies

obtained from the previously trained models using the

unprocessed signal in time domain data are represented by

the blue bars in all three groups. Orange indicated are the

Test-accuracies obtained when signals were preprocessed

using the fast Fourier transform (FFT) and adding the real

and imaginary parts. The yellow stained bar represents the

Test-accuracies when the model was fed the complex-

valued spectra obtained from the FFT. In the latter three

cases the models had the same complexity they only dif-

fered in the type of the input layer. For the complex valued

spectra, the model’s input layer was a sequential input

layer, while for the two others the model contained an

image input layer. In both cases the input layer received the

data in one dimensional vectors. The fourth bar in each

group, colored purple, shows the test-accuracy that was

obtained with the data of each sample type from the

modified GoogleNet architecture. Here, a continuous

wavelet transform was applied to each signal prior to

training and analysis, which resulted in a two-dimensional

representation of the wavelet correlation coefficients over

time- and frequency. The GoogleNet model, developed and

pretrained for shape-recognition in 2-D images contained a

2D input layer which allowed handling the maps of wavelet

coefficients. Figure 4 shows the lowest values of the test-

accuracy when the signals that were to be processed were

in the time domain. In all three samples the models that

learned and classified the signals in frequency domain

showed an almost equal performance regardless of the

input layer type (image versus sequential), but a slightly

better performance than processing the signals in time

domain. Also, in all cases using the GoogleNet model and

performing the training and analysis in 2D highest Test-

accuracies were observed. It should be noticed that for the

samples of ‘‘Set-II’’ (‘‘FC type II’’) all four models per-

formed similarly well with Test-accuracy values above

99%. Observed, but not shown here was, that the compu-

tational effort was substantially higher for the 2D analysis,

which can be explained by the higher complexity of the

GoogleNet model. Therefore, in situations, where compu-

tational performance is an issue, it would be recommended

to perform classification after fast Fourier transformation

of the signals employing a model with a 1D input

dimension.

Figures 5 and 6 exemplarily show the results of the

signal classification using the trained 2D-GoogleNet model

for a flip chip sample of ‘‘Set-I’’ and a power device of

‘‘Set-III’’. In both images the map of classifications with

the highest probability of the class assignment is

Fig. 4 Comparison of classification performances of 1D- and 2D

CNN architectures for the two different types of flip chip samples and

the power device analyzed here. Left: Test Accuracies obtained with

sample ‘‘Set -I’’. Center: Test Accuracies obtained with sample ‘‘Set-

II’’. Right: Test Accuracies obtained with sample ‘‘Set-III’’. For all

sample sets models trained with preprocessed data (spectral and

wavelet domain) showed Test Accuracies higher than 90%. Values

above bars are in [%]. Analyses of unprocessed data showed lowest

performance values
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superimposed onto the acoustic microscopy image com-

puted from the signal energy. In Fig. 5 red-stained pixels

indicate, where the model assigned the signal to the class

‘‘Defective Bump’’. Green indication corresponds to an

assignment to the class ‘‘Intact Bump’’. As shown in the

methods section, the models were trained on four classes.

This approach followed a previous observation [2] that the

introduction of dedicated classes for separate structures

largely decrease the number of misclassifications. To keep

the map intuitive, the classes ‘‘No Bump’’ and ‘‘Back-

ground’’ are blanked in Fig. 5. Figure 6 contains the

classification result for the detection of delamination

defects in a power device of sample ‘‘Set-III’’. The graph

on the left exhibits the acoustic image, the center graph

shows the classification map with green pixels indicating

an intact interface and red corresponding to a delaminated

interface region. The graph on the right in Fig. 6 contains

the certainty map of the classifications in the center graph.

High certainty values are observed in more homogeneous

regions and fluctuation occur in areas that are rather non-

homogeneous. This is likely explained by signals at edges

between delaminated and adhering regions containing

varying signal shapes. Such signals on the other hand are

not represented in the training data with the same occur-

rence as signals from the central regions of the individual

classes and thus not used in the training to same extend. A

common procedure to handle such issue is to blank results

that correspond to classifications that have a certainty value

below a defined reliability threshold.

Defect Detection Performance Upon Defocus Related

Signal Distortion

A reduced classification certainty and an increased number

of misclassifications has previously been observed when

the transducer-sample distance varied between individual

data acquisitions [2]. Since, in a production or testing

environment multiple operators conduct the data analysis,

an increased likelihood of the unintended occurrence of

such deviation is expected. For this reason, it has been

investigated, whether the classification robustness upon

defocusing-caused signal distortion can be increased when

defocused data are included during the training procedure.

Figure 7 contains the results of these investigations for data

recorded from a flip chip sample of ‘‘Set-II’’. Data acqui-

sition has been conducted at six different transducer-

sample spacings and data were labeled and included in the

training of all three models. The defocusing varied between

? 290 and � 390 lm, where negative values correspond

to the transducer moving closer to the sample surface.

Since, the 1D models showed nearly identical Test-accu-

racies, only the results of the 1D real? imag—model and

thee 2D-modifed GoogleNet model are provided to keep

the figure intuitive. The graphs in the left column in Fig. 7

show the acoustic micrographs of the same region of a

sample of ‘‘Set-II’’, however, recorded with different

defocus. Also, the illustration is limited to the outermost

defocus positions to illustrate the classification behavior at

the most extreme signal distortion. It can be seen in the left

column that the appearance and sharpness of the bumps

and the under-die structures in the acoustic micrographs

vary upon the defocus. The second column from the left in

Fig. 7 contains the classification results obtained by the 1D

model employing the real plus imaginary part of the

Fourier transformed of the signal superimposed onto the

acoustic micrograph. The third column from the left con-

tains the results of the 2D-modfied GoogleNet model in the

same representation. In these graphs green indicates intact

bumps, red corresponds to defective bumps and magenta

shows underfill delaminations (trapped air underneath the

die). Similar to the representation in Fig. 5 the additional

classes are blanked to keep the images clear and intuitive.

The colorful graphs in the fourth column from the left

contain the certainty values obtained for each pixel using

the 2D-GoogleNet model. Red indicates a high certainty,

while yellow–green–blue correspond to decreasing values

in that order. Certainty values below 85% are blanked since

they are not used for indication here. It is noticeable that

the defect bumps are correctly classified regardless of the

defocus the signals have been recorded with. Also, the

Fig. 5 ML-based automated detection of bump fractures employing

the 2D-CNN approach using the modified GoogleNet model.

Example was taken from sample ‘‘Set-I’’. Classification was

performed in four classes: ‘‘Defective Bump’’, ‘‘Intact Bump’’, ‘‘no

Bump’’ and ‘‘undefined’’. Red indication corresponds to defective

bumps and green to intact bumps, while the other two classes were

blanked (Color figure online)
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Fig. 6 Results of the ML-based

acoustic analysis for the

detection and classification of

delamination defects in a power

device from sample Set-III.

LEFT: Acoustic image of the

device. CENTER: Classification

map with green indicating

adhesion and red-delamination.

RIGHT: Certainty map of the

classifications in the CENTER

graph (Color figure online)

Fig. 7 Defect detection employing distorted signals. The 1D ML

based analysis (with FFT signal preprocessing) was investigated.

Signals have been acquired with increasing defocus starting at

500 lm above the focus until 600 lm beyond the focus. LEFT: Map

of the signal energy; second COLUMN FROM LEFT: Classification

map obtained using the 1D (real ? imag) processing superimposed

on energy image—green: intact bump, red: defective bump,

magenta: delamination, background classification has been blanked.

Third COLUMN FROM LEFT: Classification map obtained using the

2D modified GoogleNet Model and the CWT-processing

superimposed on energy image—green: intact bump, red: defective

bump, magenta: delamination, background classification has been

blanked. Second COLUMN FROM RIGHT: classification certainty

maps of the 1D model results—all bumps have been classified with

certainty values near 100%. Right: Signals of a defective bump

illustrating signal distortion upon defocusing. TOP-RIGHT: 290 lm
above interface in focus, RIGHT-VERTICAL CENTER: Interface in

focus; BOTTOM-RIGHT: 390 lm closer than interface in focus

(Color figure online)
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delaminated spot is clearly detected by both models over

all defocus positions. However, the 2D model seem to

perform less accurate upon the defocus, as ‘‘intact-Bump’’

assignments are made outside the bump structures. It is also

noticeable that the rim of the defective bumps (bottom-left

in the images) is classified as intact, while these bumps are

clearly defective. It seems that the 2D modified GoogleNet

model shows an affinity towards misclassification into the

class ‘‘intact Bump’’. The rightmost column in Fig. 7

illustrates the pulse distortion that occurs upon defocusing

the acoustic lens. The signals were recorded from a

defective bump and major alterations in the signal shape

can be recognized upon the defocus, which challenges the

robustness of the classification. The results shown in Fig. 7

clearly show an increase in the classification robustness of

defocus related distortions when the training data contain

signals that exhibit such variation in the signals shape .

Lock-In Thermography

Lock-in thermography is a highly sensitive technique for

the detection and localization of even minor electrical

dysfunction when accompanied by thermal emissions. As

three-dimensional architectures, become increasingly rele-

vant in microelectronics the defect localization needs to

also extend to the third dimension. Previous approaches

employed the temporal delay between electrical excitation

and the reception of the thermal emissions in terms of

phase to pinpoint the defect as the thermal source in depth

[8, 9]. While, this approach is generally valid, the practical

application requires complex calibration and shown

knowledge about the samples structure in order to obtain a

precise depth estimate. The present research investigated

the general applicability of machine learning based

approaches to pinpoint defect related sources of thermal

emission in the depth dimension inside a specific sample.

Evaluated for this purpose were the three ML models (29

1D, 19 2D) as shown above. Equally to the acoustic data

analysis time-resolved thermal responses were prepro-

cessed by fast Fourier transformation and applied to the 1D

model architecture and continuous wavelet transformed

into the time-frequency domain for the 2D modified Goo-

gleNet model, respectively. In extension to the previously

described ML-based analyses the models have additionally

been varied by implementation of a regression output layer

(versus classification output layer) for directly deriving

quantitative depth estimates. Figure 8 contains the results

of the evaluation of both, the classification- and the

regression-based analyses of all three models. The graph at

the Top shows the Test-accuracies, for the classification.

Here, the signals had to be assigned to one of six depth-

classes. It can be noted that the 1D based analyses exhib-

ited a considerably lower accuracy compared to the 2D

based model. Since, Si is largely transparent in the infrared

band is expected that thermal radiation emitted at the

thermal source propagated directly through the sample

interfering with the conducted component that irradiates at

the sample surface. To investigate, whether this interfer-

ence causes the low accuracy values, the raw TRTR signals

have been decomposed using independent component

analysis (ICA) [7] to remove the signal components that

Fig. 8 Results of the Model Tests on labeled data, which the model

has not encountered during training. Data have been left raw and

preprocessed to remove IR-radiation related signal components. TOP:

Results of assigning signals into one of six depth classes. BOTTOM:

Results of the regression analysis for quantitatively estimating the

depth
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are related to the direct radiation. The results of the clas-

sification of the ICA-processed signals are on the right in

the Top graph in Fig. 8. In the classification case the results

obtained with the 1D models appear rather inconsistent,

however classification using the 2D model with an accu-

racy close to 90% seems promising. The bottom graph in

Fig. 8 shows the root-mean-squared-error (RSME) of the

regression analysis in [lm]. Here a low value of the RSME

corresponds to a higher accuracy. While for the 1D models

an accuracy of 16–17 lm can be achieved the 2D model

allows for a classification accuracy of 5–6 lm. For failure

localization in a stacked device the results of all models

should be acceptable, since the accuracies lie within the

thickness of a common Si-die. In Fig. 9 results of the

application of a test data set to the regression models are

shown in detail. The upper two graphs contain the pre-

dictions made by the 1D models, while the bottom diagram

shows the predictions of the 2D model. The dashed red

lines indicate equality between label and prediction and

would thus correspond to 0 lm RMSE or 100% accuracy.

From these graphs the trend of the false predictions can be

seen. In a nonlinear manner the 1D models underestimate

the actual depths. The 2D modified GoogleNet model

however exhibits an almost linear relation between label

and prediction although with a certain variance. These

graphs suggest that a prediction using the 2D model may be

sufficiently reliable for a quantitative depth estimation of

the thermal source in the mono-Si bulk sample. However,

further research is necessary to transfer these findings into

a practical application.

Summary and Conclusions

The paper describes the development, application and

evaluation of machine learning based signal analysis in 1D

and 2D for nondestructive defect detection, identification

and localization in failure analysis of microelectronic

components. The methods addressed are acoustic micro-

scopy and lock-in thermography. The potential of the

approach is demonstrated by four case studies including

automated bump inspection in flip chip devices and

delamination recognition in a power device containing a

thin Si-die by high resolution acoustic analysis. Further-

more, the quantitative localization of the depth of a

thermally active defect using lock-in thermography

through both, classification and regression was investi-

gated. While for the acoustics-related analysis the potential

is quite evident, a reliable application of machine learning

for the application in lock-in thermography although

promising, still requires further research.
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with the 2D modified GoogleNet model. The dashed line indicates

equality between input and output and would correspond to 100%

accuracy
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