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Abstract In light of fuel consumption reduction and

environmental regulations, the automotive industry favors

lightweight components. Aluminum is chosen for its

superior corrosion resistance and high strength-to-weight

ratio in complex vehicle parts which are manufactured

using high pressure die-casting (HPDC) process. However,

this process suffers from significant mechanical property

variations and unreliable stress cycles due to defects like

porosity, shrinkage, misrun, and hot tears, leading to fati-

gue failures. Despite the detrimental impact of casting

defects, the underlying reasons for the high variability in

the HPDC process remain unclear. Numerical tools provide

insights into parameters that are challenging to measure

experimentally. This research presents a thorough analysis

of the design, development, fabrication, and testing of an

aluminum die-cast swing arm utilizing Magma 5 software.

The study focuses on the solidification characteristics of

the swing arm, examining factors such as pore length,

solidification duration, hot spot distribution, and shrinkage

porosity severity. To support design improvements aimed

at addressing identified failures, the commercial simulation

software Magma 5 was employed. These enhancements

resulted in a substantial reduction in solidification time and

effectively shifted hot spots away from previously identi-

fied cracked areas. Additionally, there were significant

decreases in both the percentage and intensity of porosity,

confirmed by X-ray and CT scan analyses. Durability tests

conducted with a dynamometer indicated a remarkable

50% increase in fatigue life compared to the original

design. The research highlights the significance of early

simulation-based design modifications in reducing fatigue

failures in HPDC aluminum components. It was noted that

excessive porosity levels exceeding 8% are a major factor

contributing to this issue. Recommendations include

avoiding thicker designs and complex part configurations

to reduce porosity, as well as assessing defect locations in

relation to surface proximity and stress regions.
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Introduction

Aluminum castings are increasingly preferred in the auto-

motive industry due to their lightweight characteristics and

low density, meeting the growing demand for internal

combustion engine (ICE) and electric vehicles (EVs) with

extended ranges. This shift toward aluminum for structural

components, such as frames and wheels, is driven by the

need to reduce vehicle weight. Benefits of aluminum

castings include the ability to create complex shapes cost-

effectively, excellent machining performance and thermal

conductivity, and a high strength-to-weight ratio [1].

However, challenges such as inevitable casting defects and

uncertainties in mechanical properties may limit their

application in high-performance structural components

[2–6, 8, 16] and needs to be studied in depth.
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The researchers have focused on reducing porosity in

castings to enhance their structural integrity and perfor-

mance. Fatigue loading often causes cracks to initiate and

grow at porosity defects in cast components. Significant

differences between predicted and actual fatigue life have

been noted, largely due to the complexities of real casting

processes that yield various flaw types [3]. To establish a

reliable correlation between theoretical and actual fatigue

life, fatigue analyses on actual components must be con-

ducted and compared to theoretical results. Experimental

research has provided valuable insights into the relation-

ship between pore characteristics and fatigue life. Casting

simulations indicate that reducing porosity, optimizing its

distribution, and minimizing pore sizes can greatly improve

fatigue resistance. Additionally, studies have employed

commercial simulation software to forecast the distribution

of shrinkage defects in castings, highlighting the critical

impact of mold preheating temperature on casting quality

[4].

Despite significant progress, the precise influence of

porosity on component performance remains unclear.

While strategies to reduce porosity have been established,

empirical assessments of their impact are still lacking [5].

Advancements in computational simulations have

improved understanding of solidification phenomena in

casting processes, allowing for the analysis of complex

physical processes and difficult-to-measure quantities [6].

Nevertheless, accurately predicting casting performance

continues to face challenges, particularly with defects like

cracks and porosity. Research highlights a critical pouring

temperature threshold, beyond which increased tempera-

tures may raise porosity levels, while higher pouring rates

can mitigate it [7]. Characterizing fatigue properties in

large structures necessitates accounting for variables like

stress concentration, scale, and process parameters. Stress

concentration at geometric imperfections is the primary

contributor to fatigue damage. Additionally, fatigue char-

acteristics are affected by structural size, internal flaws, and

the manufacturing process employed [8]. Effective opti-

mization techniques, including adjustments to pouring

temperatures and gating configurations, have proven suc-

cessful in reducing porosity, emphasizing the need for a

synergy between simulation and physical testing in casting

processes [9].

Comparative studies of vacuum die casting versus tra-

ditional high-pressure die casting (HPDC) reveal

significant reductions in porosity, confirmed through X-ray

and SEM assessments [10]. The use of simulation software

has become essential for optimizing casting processes,

enhancing quality, and mitigating defects [11], while also

highlighting the critical need to validate simulations with

physical prototypes [12, 13]. Moreover, research into

squeeze casting indicates its potential for producing high-

quality castings, although challenges such as residual

stresses in thin-walled geometries and persistent porosity

issues remain, particularly influenced by cooling rates and

casting designs [14, 15].

The mechanical performance of cast components is

greatly affected by porosity. Low-porosity plates tend to

crack at surface flaws known as externally solidified

crystals (ESCs) due to poor bonding. Conversely, in highly

porous plates, cracks propagate through pore enlargement

and the failure of smaller interconnected pores, highlight-

ing porosity’s critical role in mechanical properties and

elongation [17].

Crucial parameters for casting quality include critical

defect sizes and secondary dendrite spacing. Studies have

established relationships between maximum fracture stress

and porosity, with stress intensity factors influenced by

pore characteristics. Eutectic silicon bands and Fe-rich

phases significantly affect crack resistance and propaga-

tion, while increased silicone and copper levels can shorten

component fatigue life [18–20]. Research indicates that

high porosity negatively impacts mechanical properties,

but small, uniformly distributed pores are less detrimental

compared to larger, scattered ones. Critical thresholds for

porosity and pore size are vital in determining mechanical

properties [21]. Investigations into microstructure evolu-

tion and fracture mechanisms under quasi-static uniaxial

loading show microcracks can initiate at the silicon–alu-

minum matrix interfaces, leading to structural fracture [22].

A systematic framework for analyzing structure fatigue

reliability has been introduced to comprehensively evaluate

the fatigue life of cast components. Casting defects, such as

porosity and uneven microstructure, significantly challenge

the durability and performance of cast components, making

it essential to understand their impact on fatigue life. The

transfer coupling data method, utilizing software to predict

fatigue behavior, has proven effective for these issues [23].

Initially, ProCAST was employed for cast flow analysis to

predict shrinkage cavities and microdefects, which were

then mapped onto an Abacus model for controlled analysis

of wheel fatigue behavior. Ultimately, defect data was

transferred to the FESafe model for fatigue life analysis

under specific conditions, greatly reducing error rates

through enhanced simulation techniques [24].

The influence of critical defect size on danger coeffi-

cients indicates that smaller defects predict greater

structural strength [25]. The Taguchi DoE method is

effective for optimizing casting parameters [26]. Research

shows tensile strength decreases with increased porosity,

while fatigue strength remains stable across porosity vari-

ations. Pore size and location are significant in fatigue

strength assessment, with less stressed pores having mini-

mal effects [27]. Mechanical property studies indicate that

die-casting processes outperform other manufacturing

J Fail. Anal. and Preven.

123



methods for aluminum alloys [28]. Model-based predictive

control solutions have been developed to improve low-

pressure die-casting performance for aluminum wheels

[29]. The correlation between heat treatment and casting

defect evolution has been extensively researched. Cold

flakes from crystallization in gating systems lead to blis-

tering, reducing ductility [30]. Optimal squeezing pressure

enhances aluminum alloy tensile strength, yield strength,

hardness, and elongation significantly, while reducing

shrinkage porosity [31].

Porosity is the primary cause of casting part rejection.

Simulation can predict and mitigate porosity through

effective casting software use [32]. Simulation technology

can enhance cooling and insulation processes, preventing

premature feeding path cutoffs and reducing hot spot sizes.

Porosity contours from simulations were compared with

actual X-ray inspections to establish correlations [33].

Employing a vacuum in the die cavity enhances yield

strength by 8.4% relative to non-vacuum scenarios. The

mechanical properties of A380 aluminum alloy improve

with rising injection pressure, with a 15% increase in yield

strength noted when pressure escalates from 100 to

200 bar. The use of vacuum casting correlates with reduced

porosity levels [34]. The smoothed particle hydrodynamics

(SPH) method demonstrates proficiency in predicting die

cavity filling quality. It offers the die-casting sector

enhanced predictive capabilities for the HPDC process,

resulting in thinner, lighter parts, improved cycle times,

reduced scrap, and expedited die development [35].

Specific temperature gradients established within the die

contribute to superior casting quality and reduced cycle

times, ultimately extending die service life [36]. The pro-

cess parameters were optimized to achieve minimal

porosity in high-pressure die aluminum casting. An 85%

accurate porosity predictive model was created for finished

casting parts [37]. Elevated melt temperatures (785 and

850 �C) positively influenced primary Si crystal size and

distribution, although excessively high temperatures may

be impractical [38].

Casting defects adversely affect aluminum die-cast

components’ functionality and reliability. Establishing a

consistent correlation between simulation results and actual

tests is still problematic. Current research lacks quantita-

tive assessments of porosity and its impact on fatigue

strength. Although the negative impact of casting defects

on fatigue life is recognized, viable solutions are scarce.

This study highlights the necessity for thorough investi-

gations aimed at reducing casting porosity and enhancing

fatigue life. It suggests conducting experiments or simu-

lations to optimize the relationship between porosity and

fatigue life. A comprehensive analysis will include vari-

ables such as design, simulations, X-rays, CT scans,

adjustments, and fatigue testing. Root-cause analysis

techniques are essential for resolving issues related to

porosity and shrinkage in casting failures. An in-depth

examination of a high-pressure die-casting aluminum

swing arm offers insights into porosity beyond mechanical

responses. The findings recommend methods to improve

design and development to mitigate porosity and enhance

fatigue life. Evaluating solidification behavior during

design through cast flow analysis aids in boosting com-

ponent reliability. This research emphasizes the intricate

nature of failure analysis and the critical need for extensive

testing, simulation, and evaluation to ensure the reliability

of essential vehicle components.

Materials and Methods

The swing arm in an internal combustion engine of the

scooter is essential for wheel integrity, force transfer,

structural load endurance, and muffler mounting. Its critical

role in vehicle dynamics and rider safety warrants analysis

due to its exposure to road shocks and reported fatigue

failures.

Experimental Investigation

The experimental study involved road endurance testing of

the scooter at 24 �C and 50% humidity, with one test cycle

lasting approximately 1 min. Each cycle included accel-

erating to 100 km/h, maintaining speed for thirty seconds,

and then de-throttling. A hairline crack was detected in the

swing arm assembly after 66.6 h (4000 cycles) of testing,

equivalent to 12,000 km of usage, despite the design hav-

ing a safety factor exceeding 1.5 in simulations. This

prompted a comprehensive re-evaluation of engineering

aspects, although no significant design flaws were initially

found.

The failed component underwent inspection to ensure

drawing compliance, with satisfactory results from

dimensional checks using a coordinate measuring machine

(CMM). Material and morphology analysis done using X-

ray spectroscopy and scanning electron microscope,

respectively, confirmed the use of AlSi11Cu3 (ADC 12)

alloy, and no abnormalities were discovered during the

investigation of assembly and impact marks. The chemical

composition of the failed part was also analyzed and is

listed in Table 1.

An extensive 8D analysis was conducted to identify the

root cause of the failure, leading to corrective actions.

Structural stiffness and strength were confirmed to be

within acceptable limits, as previously validated by finite

element analysis (FEA) and actual testing, ruling them out

as failure causes. Additionally, all potential failure modes

were addressed through a risk mitigation strategy during
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the design and development phases. The failure of the

HPDC aluminum swing arm during road endurance dura-

bility testing in a fleet vehicle at 66.6 h is depicted in

Fig. 1.

During the 8D analysis, a focus was placed on the

manufacturing process of the component, revealing that the

high-pressure die-casting (HPDC) method for the swing

arm part is prone to porosity. An examination of the failed

HPDC aluminum swing arm indicated a significant

porosity cluster near the crack initiation point as depicted

in Fig. 2, supporting the hypothesis that casting defects

were responsible for the failure.

A decision was made to utilize Magma 5 simulation

software to evaluate solidification behavior and identify

potential porosity regions in a virtual model. Concurrently,

X-ray and CT scans were performed on actual components

from the same production batch to detect porosity.

Numerical Analysis

Solidification Behavior Simulation to Simulate the Poros-

ity The 3D model of the defective HPDC aluminum

swing arm was analyzed within Magma 5 to simulate

porosity based on the failed part, focusing on parameters to

Table 1 Chemical composition of failed swing arm

Material
Elements (%)

ADC 12 AS per JIS H 5302 Cu Si Mg Fe Sn Zn Pb Cr Ti Ni Mn

Specification 1.5–3.5 9.6–12 0.3 Max 1.3 Max 0.2 Max 1.0 Max 0.1 Max … 0.3 Max 0.5 Max 0.5 Max

Measured (X-ray spectroscopy) 1.94 10.46 0.09 0.96 0.02 1.42 0.119 0.02 0.04 0.11 0.18

Fig. 1 Failed swing arm
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enhance design and minimize porosity at the proto design

stage. Results indicated that thicker regions solidified last,

with a maximum time of 23 s, correlating with an

increased likelihood of shrinkage and porosity, as illus-

trated in Figs. 3, 4 and 5.

The porosity intensities in the boss regions were mea-

sured at 41, 48, 67, and 81%, as presented in Fig. 5, with

particular attention to the boss root porosity. Solidification

analysis indicates a significant likelihood of porosity in the

boss root areas, which contributed to the swing arm’s

failure during 66.6 h of durability testing. The failed

component exhibited concentrated porosity near the crack,

supporting previous findings that such porosity compro-

mises material strength, resulting in structural weaknesses

Fig. 2 Failed part cut-section images to check the porosity regions

Fig. 3 Solidification time required at various regions
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and cracks, aligning with the solidification simulation

results. The solidification simulation results aligned with

the porosity zones identified in the actual part. Further-

more, it was decided to take actual part porosity

measurements from the same batch of manufacture.

Porosity Measurement of Failed Batch through X-ray and

CT Scan A swing arm from the defective HPDC pro-

duction batch was chosen for X-ray and CT scan analysis.

X-ray technology measured the maximum porosity length

at 4.72 mm as illustrated in Fig. 6. Subsequently, CT scan

technology was utilized for porosity volumetric measure-

ment. The CT scan results are presented in Fig. 7. The

maximum pore size identified was 116.40 mm. These

findings correspond with the defective part, originating

from the same production batch. The porosity region was

near the cracked area of the failed swing arm. A porosity

length of 4.72 mm was sufficient to trigger the crack during

high cycle fatigue. This phenomenon was similarly noted

in a road endurance durability test lasting approximately

66.6 h. Consequently, a decision was taken to reduce the

Fig. 4 Hot spot shown at various regions

Fig. 5 Porosity intensity (%) shown at various regions
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porosity level in the HPDC aluminum swing arm to

improve the component’s high cycle fatigue life.

Failure Resolution and Solidification Comparison The

swing arm model was modified using Catia V5 software.

Figure 8 shows a design modification involving material

removal from the thicker region. This change aims to

reduce solidification time and lower porosity in the swing

arm. A comprehensive strength analysis precedes the

evaluation of the modified design’s solidification behavior.

The material removal from the boss region does not affect

the overall structural strength. The revised 3D model

(Fig. 8) was imported into Magma 5 for solidification

behavior analysis. Auto meshing was employed in the

simulation as in the prior iteration. The method incorpo-

rates numerical simulation and relevant bibliographic

concepts. This facilitates the interpretation of post-pro-

cessing simulation data for validation through experimental

testing [39, 40]. The modified design was assessed against

the failed design based on specific parameters including

solidification time, hot spot, and shrinkage porosity inten-

sity as shown in Figs. 9, 10 and 11.Fig. 6 X-Ray image of porosity length measurement

Fig. 7 CT scan of porosity

volumetric measurement
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Based on Chvorinov’s rule mentioned below [41],

efforts were made to optimize the shape of the swing arm’s

local section. As a result, the volume of the local geometry

decreased somewhat but the surface area remained nearly

unchanged.

ts ¼ k �M2

where,

ts: The total solidification time (s);

k: solidification coefficient (s/m2) which depends on the

characteristics of the metal being cast (its density, heat

capacity, and heat of fusion), the mold material (its density,

thermal conductivity, and heat capacity), the mold thick-

ness, and the amount of superheat.

M: solidification module is the ratio of the volume [V]

and the surface of the (local) geometry of the casting [A]

and unit is m.

As depicted in Fig. 9, solidification time was notably

reduced in the modified design. The results also highlight

regions with a high likelihood of casting defects. Similarly,

Fig. 10 illustrates that all hotspot areas were effectively

moved away from the cracked region of the failed part.

In the modified design’s software simulation, as shown

in Fig. 9, solidification time decreased from 16, 25, and 6 to

5, 11, and 4 s, respectively, and Fig. 10 indicates that all

hotspots were relocated from the cracked region of the

failed part. Overall, solidification time was minimized by at

least 33%.

Longer solidification times typically lead to increased

shrinkage porosity in the casting process, necessitating a

Fig. 8 Modified swing arm 3D model
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reduction in solidification time for critical areas to mitigate

porosity intensity. Previous research indicates that elevated

porosity levels adversely affect the fatigue life and

mechanical properties of aluminum casting structures

[17, 18].

As demonstrated in Fig. 11, porosity intensity in the

modified design decreased from 81 to 61%, with porosity

also shifting away from the cracked region of the failed

part.

Modified Proto Part Development and Porosity Compar-

ison The modified swing arm design demonstrated

improved solidification behavior. Rigorous strength eval-

uations were conducted on the modified design using finite

element analysis (FEA) simulations. The simulations

included various load cases, specifically vertical loads of

3 g and lateral loads of 1 g. The observed stresses

remained within acceptable limits, as shown in Fig. 12. The

maximum stresses for the failed and modified designs were

Fig. 9 Solidification time of Failed Design Vs. Modified Design

Fig. 10 Hot spot of Failed Design Vs. Modified Design
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104 and 95 MPa, respectively. Despite the removal of

material to mitigate porosity in the modified design, the

stress levels in the failed region did not change. The stress

levels were confirmed to be acceptable, as illustrated in

Fig. 13. The maximum stress recorded for the failed and

modified designs was 104 and 95 MPa, respectively. In the

failed region, stress levels remained constant despite

modifications aimed at reducing porosity through material

removal. Consequently, the decision was made to proceed

with the production of prototype swing arm parts utilizing

HPDC in ADC12 material.

The modified swing arm components were observed for

X-ray and CT analysis. The X-ray results indicated a

decrease in pore maximum length from 4.7 to 2 mm, as

illustrated in Fig. 13.

Additionally, the percentage of porosity decreased from

12.38% to 8.08%. The modified design demonstrated

enhancements in both solidification simulation and actual

porosity assessment. A comprehensive summary of

porosity measurements is presented in Table 2.

In Table 2, % porosity represents the ratio of total pore

volume in a specified area to the volume of that area within

the casting structure and is estimated as below:

(i) For failed design:

Fig. 11 Porosity intensity (%) of Failed Design Vs. Modified Design

Fig. 12 Swing arm FEA analysis � 3 g vertical loading
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Total pore volume in the local region of failed swing

arm (calculated from CT scan): 6997.2 mm3.

Volume of the local region of failed swing arm (calcu-

lated from 3D data): 56520 mm3.

% Porosity ¼Total pore volume=3D volume of the local

region mounting bossð Þ
¼ 6997:2=56520ð Þ � 100

¼12:38%

(ii) For modified design:

Total pore volume in the local region of modified swing

arm (calculated from CT scan): 3425.1 mm3.

Volume of the local region of modified swing arm

(calculated from 3D data): 42390 mm3.

% Porosity ¼Total pore volume=3D volume of the local

region mounting bossð Þ
¼ 3425:1=42390ð Þ � 100

¼8:08%

Modified part’s CT scan, depicted in Fig. 14, showed

significant improvement when compared to the failed

production batch. Notable reduction in maximum pore

volume from 116 to 60 mm3 was observed. Porosity below

10 mm3 is negligible, as larger pores adversely affect

fatigue life, based on previous research findings [1, 2, 17].

Previous studies quantitatively assessed the porosities

and mechanical properties of ADC12 die castings. The

relationship between porosity and mechanical properties

was analyzed, highlighting that smaller, evenly distributed

pores enhance mechanical performance; porosity fractions

should not exceed 3.2% for ADC12 die castings [21]. Thus,

the acceptance criteria for porosity vary based on appli-

cation and local criticality. In this instance, the maximum

porosity acceptance criterion is set at 8.08%, with pore

length limited to under 2 mm.

Testing Results The swing arm failed at 66.66 h during

vehicle durability testing. Dyno testing was chosen to

expedite the development process. Modified swing arm

design testing was scheduled on a Dyno machine (Make:

Dynostar, Model: 50 ECB) to simulate rigorous track

cycles.

A comprehensive inspection using a CMM ensured the

swing arm’s dimensional accuracy before installation.

Material test certificates were reviewed to verify compli-

ance with specifications. The vehicle then underwent

accelerated durability testing on the Dy. The test was

performed under standard conditions of 24 �C and 50%

humidity. Each test cycle lasted approximately 1 min. The

cycle involved accelerating to 100 km/h for thirty seconds,

followed by throttle release. The swing arm design was

tested for 100 h (6000 cycles) on the Dyno, proving its

durability and reliability. No fatigue failures were observed

during the testing. Strain measurements remained within

acceptable limits. Post-testing, the swing arm underwent a

dye penetration test for cracks. No cracks were reported in

the modified swing arm as indicated in Fig. 15.

Fig. 13 X-Ray image of

porosity length measurement

Table 2 Porosity measurement summary

Iteration Porosity (%) Average volume of pore (mm3) Max volume of pore (mm3) Max length of pore (mm)

Failed design 12.38 21.2 116.4 4.72

Modified design 8.08 8.27 60.05 2
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Table 3 provides a summary of fatigue life findings. The

modified design improves fatigue life by 50% over the

failed design. During this initial vehicle development

phase, two vehicles were evaluated for both the initial and

modified designs. Both vehicles with the existing design

experienced failure within a similar timeframe (66–70 h).

In contrast, the modified design vehicles lasted 100–110 h.

The minimum values are detailed in Table 3.

Conclusions

The research study offers a comprehensive assessment of

the design and development of an aluminum die-cast swing

arm. The study correlates percentage porosity with com-

ponent life. The focus was primarily on evaluating the

solidification behavior, including pore length, solidification

time, hot spot distribution, and shrinkage porosity intensity.

Results indicate a notable enhancement in the fatigue life

of the HPDC aluminum structure. Findings reveal that

surface-remote defects have a reduced effect on fatigue

strength. Conversely, pores in stressed regions significantly

increase risk, while deeper defects minimally affect fatigue

strength. An in-depth study was conducted on the HPDC

aluminum swing arm. The removal of the material in the

thicker regions lowers solidification time without affecting

the strength. The reduction in solidification time results in

reduction in shrinkage porosity in the casting process and

thus mitigate porosity intensity. The revised design

demonstrates a 50% improvement in fatigue life and a 33%

Fig. 14 CT scan of Failed Design Vs. Modified Design for porosity volumetric measurement

Fig. 15 Modified design swing arm—No crack confirmed through

dye penetration

Table 3 Dyno testing summary

Iteration

Porosity

(%)

Component fatigue

life (h)

Increment in fatigue

life (%)

Failed

design

12.38 66.66 …

Modified

design

8.08 100 50
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decrease in porosity. The failed design exhibited approxi-

mately 8% porosity, resulting in a fleet vehicle testing

duration of 66–70 h, equivalent to 12,000 km of real-world

usage. The modified design had approximately 12%

porosity, achieving 100–110 h of dyno testing, corre-

sponding to 18,000 km of actual road usage.

In conclusion, components with 8% porosity demon-

strate a fatigue life equivalent to 12,000 km, while those

with 12% porosity equate to 18,000 km of usage. Thus,

porosity is inversely related to the fatigue life of the casting

structure.
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