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Abstract Rolling bearing fault diagnosis based on con-

volutional neural network is greatly effective for bearing

maintenance, and it is of great significance for ensuring the

safe operation of rotating machinery. However, the tradi-

tional convolutional neural network models only focus on

the single-scale feature and ignore the multi-scale deep

information, which results in low performance for con-

ducting the complex fault diagnosis problem. Aiming at

this problem, we propose an improved fault diagnosis

method of rolling bearings based on multi-scale attention

convolutional neural network. In the first stage, a one-di-

mensional convolutional neural network model integrating

feature extraction and fault intelligence classification is

established. Subsequently, a multi-scale structure with

serial layer skipping connection is constructed to extract

multi-scale features in different reception fields, and the

‘‘Concat’’ operator is used to fuse the extracted features of

each layer with SE attention mechanism in order to obtain

more important feature information. And then, the fault

samples are input into the network model to realize the

end-to-end fault diagnosis of rolling bearings result from

the nonlinear fitting ability of deep learning. Extensive

experiments on two well-known rolling bearing datasets

validate that the proposed method not only achieves higher

fault diagnosis accuracy on the fault data sets under con-

stant load conditions, but also exhibits strong fault

identification and transfer diagnosis ability on the fault data

sets under variable load conditions.
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Introduction

Rolling bearings are critical components of rotating

machinery, the health status of them having a significant

impact on the performance, efficiency, and service life of

mechanical equipment [1, 2]. Typically, bearings operate

in harsh environments, being subjected to complex and

varied working conditions to make them prone to anoma-

lies. Once the faults occur, they may result in economic

losses or even safety accidents [3]. Therefore, deep

research on fault diagnosis of rolling bearings is of great

significance for ensuring the safe and normal operation of

mechanical equipment [4, 5].

In recent years, the research on rolling bearing fault

diagnosis using deep learning method has become a

mainstream in the field of fault diagnosis, and it is an

extremely potential intelligent fault diagnosis method for

rolling bearings [6–8]. Convolution neural network (CNN)

is an important deep learning model, which has a very

powerful feature extraction capability and can extract the

inherent characteristics and useful information embedded

in the original data. At present, CNN has achieved signif-

icant success in image recognition, natural language

processing and other application fields of deep learning [9].

In the meantime, it has also been effectively applied in the

field of machine fault diagnosis [10]. Wang et al. [11]

proposed an adaptive deep convolutional neural network

approach for fault diagnosis of rolling bearings, which

automatically learns the essential features of faults from the
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input data layer by layer, eliminating the need for artificial

feature extraction. Liu et al. [12] proposed an unsupervised

domain adaptation method called deep feature alignment

adaptive network (DFAAN), to address the issue of low

fault diagnosis capability when there are distribution dif-

ferences between the source and target data, which can

enhance the adaptability of fault diagnosis models. Zhang

et al. [13] designed the first-layer deep network model with

wide convolution kernel, which can effectively resist noise

and learn the intrinsic characteristics of faults, as well as

automatically remove features that are not helpful to the

diagnosis results. Han et al. [14] proposed a CNN com-

bined support vector machines (CNN-SVM) model for

bearing fault diagnosis to address the problem that it is

difficult to meet the training requirements of complex

models in the field of fault diagnosis under small sample

data. Although these works mentioned above achieve the

accurate diagnosis results for rolling bearing faults, usually

these diagnosis models used the single-scale convolution

kernels to extract fault features. In this situation, when

rolling bearings operate under different load conditions, the

corresponding relation between fault patterns and fault

characteristics may be very complex. Under this circum-

stance, the single-scale convolutional neural network fails

to capture the complete details of fault features, which

makes part of the fault information lost and furthermore

results in the reduction of the fault diagnosis accuracy.

The fault diagnosis method based on multi-scale feature

fusion technology can extract and fuse fault features from

different perspectives [15], which can achieve good results

in fault information extraction. Due to the fact that multi-

scale feature fusion technology can effectively eliminate

the deficiencies of traditional single-scale analysis methods

in comprehensively extracting bearing fault feature infor-

mation in complex environments, it is able to provide a

more complete and accurate diagnosis of faults. Wang Wei

[16] used a multi-scale convolutional neural network as

feature extractors to learn fault features and obtain the

high-precision fault diagnosis results in experimental val-

idation. Jiang et al. [17] proposed a multi-scale CNN

structure that integrates features from different scales

through multiple convolutional and pooling layers, which

is able to better capture bearing fault features at different

scales, so as to improve the accuracy and reliability of fault

diagnosis. Seungmin et al. [18] proposed a multi-scale

convolutional neural network (MSCNN) model, which

learns more powerful feature information than traditional

CNNs through multi-scale convolutional operations and

reduces the number of parameters and training time. On the

other hand, in order to enhance the fault recognition per-

formance of the fault diagnosis models, different types of

attention mechanisms are introduced into the multi-scale

CNN models, and corresponding multi-scale CNN models

are proposed [19–21]. The convolution kernels in these

multi-scale CNN models are all parallel connected to

conduct the data. Because there is no particular hierarchical

relationship among the features in the models, they may

fail to capture the fault characteristics at different levels.

Useful information of multiple frequency components and

different time scales in the fault signal can be obtained

through serially connecting the fault features in different

layers via the serial skipping layer connection mode con-

structed by employing the convolution kernels. The multi-

scale features of fault signals can be extracted more

effectively, which is very beneficial to improve the diag-

nosis accuracy of rolling bearing faults.

From the above literature, it can be found that different

convolutional network models show their own advantages

and address the corresponding problems in the fault diag-

nosis application. It is really a feasible way for enhancing

the effectiveness of bearing fault diagnosis results that

useful parts of different models are integrated to construct a

new fault diagnosis model which can reasonably utilize

advantages and avoid weaknesses of the different models.

And therefore, here multi-scale attention mechanism

and feature fusion module are introduced into a one-di-

mensional convolutional neural network, and we propose

an intelligent identification method for rolling bearing fault

diagnosis based on multi-scale attention convolutional

neural network (MSACNN), which aims to address the

issue that the single-scale convolutional kernels in convo-

lutional networks struggle to wholly extract fault features

in the process of bearing fault diagnosis. The main con-

tributions of this paper are included as follows:

1. A multi-scale network with convolution kernel serial

skipping layer connection is established to extract

multi-scale rolling bearing fault characteristics to meet

the adaptability of rolling bearing fault diagnosis

model.

2. Introducing SE attention mechanism into the network

can enhance the model’s attention to key features and

improve the fault identification accuracy of the fault

diagnosis model.

3. Experimental verification and comparative analysis

were implemented on two rolling bearing fault

datasets, and the results show that the proposed

method really outperforms other compared methods

in fault diagnosis accuracy.

The rest of this article is organized as follows. Sec-

tion ‘‘Basic Theories’’ explains the theoretical

fundamentals related to the proposed method. Sec-

tion ‘‘Model construction and fault diagnosis process’’

provides a detailed description about the fault diagnosis

framework and the implementation process of the proposed

method. The effectiveness of the proposed method is
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demonstrated in Section ‘‘Experimental validations’’

through an experimental study with two rolling bearing

fault cases. Finally, we draw conclusions in

Section ‘‘Conclusion’’.

Basic Theories

Convolutional Neural Network

Convolutional neural network (CNN) is a kind of multi-

layer feedforward neural network, which extracts features

of input data layer-by-layer by using convolutional layer

and pooling layer alternately, and subsequently outputs the

extracted features through the fully connected layer [22]. It

should be noted that the one-dimensional convolutional

neural network implements the convolution operation

through the one-dimensional convolution kernel.

Convolution operation is a core part of CNN. In the

convolutional layer, the input signal is convolved with the

kernel, and then bias is added before being passed through

an activation function to obtain the corresponding feature

map. The convolution operation can be expressed as

follows:

yl ¼ f
Xcl�1

i¼1
wl

i;c � xl�1
i þ bl

i

� �
ðEq 1Þ

where xi
l-1 denotes the output of the i-th channel of the

layer l-1, cl-1 is the c-th channel of the layer l-1, yl is the

output of the l-th layer, wl
i;c is the weight matrix of the

convolution kernel of the l-th layer, bi
l is the bias term, * is

the symbol of the convolution operation, and f(�) is the

activation function. Usually the activation function is rec-

tified linear unit (ReLU), and its mathematical expression

is defined as follows:

f ðxÞ ¼ maxð0; logð1þ exÞÞ ðEq 2Þ

In a neural network, a pooling layer is often connected

after the convolutional layer. The main purpose of it is to

reduce the parameters of the neural network and decrease

the feature dimensions as well as prevent overfitting. The

max pooling operation outputs the maximum value within

the pooling layer in the perceptual domain of the input

feature map. Its calculation formula is represented as

follows:

plþ1
i ¼ max

ðj�1ÞKþ1\t\jK
fql

iðtÞg ðEq 3Þ

where qi
l(t) is the output value of the t-th neuron of the i-th

channel in l-th layer, K is the size of the pooling kernel, j is

the step size, and pi
l?1 is the output value of the i-th

channel in layer l ? 1

The fully connected layer first flattens the output fea-

tures of the last convolutional layer or pooling layer into a

one-dimensional vector, and then the vector is used to

extract important feature information. After that, the out-

puts are connected to the Softmax classifier to complete the

final classification task. The calculation formula for the

fully connected layer can be represented as follows:

yl ¼ f ðwlÞT xl�1 þ bl
� �

ðEq 4Þ

where xl-1 is the output value of layer l-1, wl is the weight,

yl is the output of l-th layer, bl is the bias term, and f(�) is
the activation function.

Attention mechanism

Attention mechanism is essentially a distribution mecha-

nism, with the core idea of highlighting certain important

features of the object. Currently, it has been successfully

applied to image processing, natural language processing

and data prediction [23–25]. The Squeeze-and-excitation

(SE) module, proposed by the Hu and his team in 2017

[26], is a novel network structure possessing attention

mechanism, with the strong image classification ability.

The core idea of SE is to recalibrate the global information

of the feature maps into inter-channel correlations. The SE

module mainly consists of two parts: the Squeeze operation

and the Excitation operation. The structure of the SE

module is shown in Fig. 1. Here, we have modified the SE

attention mechanism to suit one-dimensional sequence

data. It is noted that although the SE attention mechanism

is widely used for two-dimensional image data, its core

operation, recalibrating channel-wise feature responses, is

inherently independent of data dimensionality.

In Fig. 1 X represents the original input data with H’, W’

and C’ denoting its height, width and the number of

channels, respectively. The complete data conducting

process of SE module can be described as follows. Firstly,

the X undergoes the Ftr operation to perform convolution,

resulting in the feature map U, where H, W and C represent

its height, width and the number of channels, respectively.

Secondly, the U is compressed using the Fsq operation into

a 1 9 1 9 C feature response value Z. Then, the Z is

subjected to the Fex operation to perform excitation,

yielding a weight vector S with dimensions 1 9 1 9 C.

Finally, the Fscale operation performs a multiplication

operation to obtain X.

The Squeeze operation adopts global average pooling to

compress each H 9 W 9 C-dimensional feature into a

1 9 1 9 C feature response value Z with a global recep-

tive field along the feature channel direction, and its

calculation process can be expressed as follows:
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zc ¼ FsqðucÞ ¼
1

H � W

XH

i¼1

XW

j¼1
ucði; jÞ ðEq 5Þ

where zc is the output after compression operation, Fsq is

the extrusion operation, H is the height of the feature map,

W is the width of the feature map, and uc(i, j) represents the

output value of row i-th and column j-th in the c channel.

The Excitation operation utilizes two fully connected

layers to constitute the gating mechanism. The first fully

connected layer compressions C channels into C/r channels

to reduce the computational cost; while, the second fully

connected layer restores the number of channels to C. The

operation formula can be expressed as follows:

sc ¼ Fexðzc;WÞ ¼ rðW2dðW1zcÞÞ ðEq 6Þ

where Fex is the excitation operation, sc is the weight

obtained by Fex, r is the sigmoid function, d is the ReLU

activation function, W1 [ RC/r9C is the weight matrix of

column C in row C/r, W2 [ RC9C/r is the weight matrix of

column C/r in row C, and r is the scaling factor.

The function of Scale operation involves the channel-

wise weights computed by the SE module respectively

multiplying with the corresponding two-dimensional

matrix of the original feature map, and then the final out-

puts can be obtained. Its calculation process is expressed as

follows:

xc ¼ Fscale uc; scð Þ ¼ scuc ðEq 7Þ

where Fscale is the product operation and x is the output

result.

Model Construction and Fault Diagnosis Process

Architecture of Multi-Scale Feature Fusion Model

The convolutional neural network extracts feature through

successive convolutional operations, the receptive field is

one of its momentous concepts [27]. If the receptive field is

too small, the network can only capture local features. And

meanwhile, if the receptive field is too large, although it

may obtain a deeper understanding of global information, it

also contains irrelevant information. In order to avert

information redundancy and boost the effective receptive

field, the signal with the different scales are sampled,

which is conducive to capture the multi-scale features of

the signal. There are two common types of multi-scale

feature fusion, a parallel multi-branch network and a serial

skip connection structure. Both of them carry on the feature

extraction by using different receptive fields, and then

feature fusion task will be continued.

Due to the characteristics that serial skip connection

networks can scale the output feature maps of different

convolutional layers to a uniform size so as to contain both

global contextual information and local detailed informa-

tion, the multi-scale structure of serial skip connection is

selected in this study and shown in Fig. 2.

As depicted in Fig. 2, we utilize three multi-scale

modules connected through two shortcuts to adapt varying

Fig. 1 Structure of the SE module

Fig. 2 Multi-scale structure of skip connection
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convolution kernel sizes and pooling layer numbers. This

design considers the diversity of rolling bearing fault sig-

nals and the impact of variable load conditions. The multi-

scale structure in neural networks improves adaptability

and diagnostic accuracy in variable operating environments

by utilizing different kernel sizes. This approach can cap-

ture a comprehensive range of fault features from

noticeable patterns and subtle anomalies, because it

employs serial skip-layer connections and feature con-

catenation to preserve and integrate both low-level and

high-level information, resulting in a richer and more

detailed feature set for fault detection. This new structure

can extract and analyze features across multiple different

scales, leading to accurate fault diagnosis results, particu-

larly under the condition that fault characteristics

frequently vary. Consequently, the multi-scale approach is

able to outperform traditional single-scale neural networks,

providing robust and precise diagnostics results for main-

taining optimal operating efficiency in diverse and

changing industrial settings.

Model Construction

To address the issues that deep convolutional network

models are mainly only employed in pre-extracting feature

process and one-dimensional convolutional neural net-

works with single-scale convolutional kernel are prone to

lose part of information in the pooling layer, a multi-scale

attention mechanism convolutional neural network model

based on one-dimensional serial layer skipping connections

is proposed. The structure of the proposed network is

shown in Fig. 3.

As can be seen from Fig. 3, the model takes one-di-

mensional vibration signal as input, in the first layer, to

improve the feature extraction and generalization capabil-

ities of itself, with large convolution kernel utilized to

increase the receptive field size of the convolution layer.

To address the issue of partial information loss during

feature extraction, a serial skip connection structure is

employed to fully extract feature information from differ-

ent scales. The Concatenation method is applied to fuse the

features from each layer for enhancing the effective prop-

agation of feature information through merging different

channels. And meantime, the SE module is integrated into

the network to make the network adaptively train and learn

to possess the optimal performance. In the fully connected

layer, the weight matrix is adopted to rearrange the

extracted important features, and finally, the fault feature

data are classified through the Softmax classifier.

Model Training

Once the MSACNN model is constructed, it is necessary to

train the model to realize intelligent fault diagnosis. Since

the output of the Softmax classifier is a probability value

between 0 and 1, and the sum of all values is equal to 1, the

calculation process of the Softmax classifier can be repre-

sented as follows:

Y ¼

p y ¼ 1 x; hjð Þ
p y ¼ 2 x; hjð Þ

..

.

p y ¼ N x; hjð Þ

2
6664

3
7775 ¼ 1

PN
i¼1 expðhixÞ

expðh1xÞ
expðh2xÞ

..

.

expðhixÞ

2
6664

3
7775

ðEq 8Þ

where h is the model parameter; x is the input value of

Softmax; y indicates the actual category label of the fault

category; Y is the prediction probability vector of N cate-

gories output by Softmax; p is the calculation process of

the probability of each class.

The obtained category probabilities are input into the

cross-entropy loss function or error generation, with the

loss function used to measure the consistency between the

probability distribution of the output estimate of the model

and the target value. The smaller loss function indicates a

better fit of the model to the training samples and the

calculation process is as follows:

L ¼ �
XN

i¼1

yi log yi ðEq 9Þ

where y
i is the true classification result of fault, yi is the

classification result output by the model, and L is the error

loss value.

When the calculation of the loss function is finished, the

parameters can be adaptively optimized through the error

back propagation. To reduce training time and accelerate

the training speed of the model, the Adam optimization

algorithm is used to train the model. With the progress of

the iterative training process, the weights of the network

are updated repeatedly. Once the error loss decreases and

tends to be stable, the network model simultaneously

inclined to converge.

Fault Diagnosis Process

On the basis of the above theories and models, the intel-

ligent fault diagnosis method of rolling bearing based on

MSACNN is constructed, mainly consisting of three

stages: data set preparation, model training and model

testing. Figure 4 shows the specific flowchart of the

method.

The specific implementation steps are described as

follows:
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Fig. 3 Structure of the MSACNN model

Fig. 4 Flowchart of the proposed fault diagnosis method
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(1) Collect the original vibration signals of rolling

bearings with different faults during the practical

operating process.

(2) Pre-processing the collected sample data, including

normalization, rearrangement and category labeling.

(3) Divide the sample data into training set, validation

set and test set.

(4) Build the network model, initialize the model

parameters, pre-train the model, and then save the

model obtained after pre-training.

(5) The training set is input into the pre-trained model,

and subsequently, the forward propagation and loss

function calculation are performed.

(6) Use the validation set to check the change of the

fault diagnosis accuracy of the trained model,

backpropagate the loss function value, perform

iterative calculation as well as update the model

parameters.

(7) Determine whether the value of the loss function

tends to be stable. If yes, go to Step 8; otherwise,

return to Step 5.

(8) Input the test set into the trained model with the

optimized parameters for fault intelligent diagnosis,

and then output the fault classification results.

Experimental Validations

To verify the validity of the proposed model, two well-

known rolling bearing data sets are adopted in this section

for fault diagnosis experiments, concurrently, with the

diagnosis results analyzed and discussed.

Case Study 1: CWRU Bearing Data Set

The experimental data set comes from the Case Western

Reserve University (CWRU) in the United States, with it

widely utilized for performance testing of fault diagnosis

methods [28]. The experimental setup is shown in Fig. 5.

The test object is the drive end bearing of the experi-

mental setup shown in Fig. 5, with a model number of

SKF6205 and a sampling frequency of 12 kHz. The faults

are artificially created by adopting electric discharge

machining. The experiment is conducted under four dif-

ferent operating conditions with loads: 0, 1, 2, and 3HP,

with each bearing running condition including normal

(Normal), inner ring fault (IF), rolling body fault (BF) and

outer ring fault (OF), and each fault containing 0.007 inch,

0.014 inch and 0.021 inch, three fault diameters, so 10

operating states can be formed. The constitution of the

dataset is shown in Table 1.

Table 1 Constitution of the experiment datasets

Fault type Load (HP) Fault diameters (inch) Label

Normal 0/1/2/3 … Normal

BF 0/1/2/3 0.007 BF0.007

0/1/2/3 0.014 BF0.014

0/1/2/3 0.021 BF0.021

OF 0/1/2/3 0.007 OF0.007

0/1/2/3 0.014 OF0.014

0/1/2/3 0.021 OF0.021

IF 0/1/2/3 0.007 IF0.007

0/1/2/3 0.014 IF0.014

0/1/2/3 0.021 IF0.021

Fig. 5 Data acquisition system

of bearing center of CWRU [28]
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Training a convolutional neural network model requires

a large amount of data, enough training samples can

enhance the generalization ability of the model. Since the

sample size in the CWRU dataset is relatively small, the

overlapping sampling method is adopted for data aug-

mentation [29]. The process of overlapping sampling is

illustrated in Fig. 6.

Through overlapping sampling, the expanded data set

consists of 2100 training samples, 600 test samples and 300

verification samples, each of which contains 1024 data

points and is normalized.

The validation experiments are conducted in a deep

learning environment using the PyTorch framework. To

avoid the randomness bias is caused by the results of a

single experiment, each group of experiments is performed

10 times and the average value is taken.

The one-dimensional convolutional neural network

model is established according to the design criteria in

Section ‘‘Model construction’’, with the main hyperpa-

rameters initialized, such as the number of convolution

kernels, size and step size, and optimized by pre-training.

The experimental process follows the principle of single

variable, the final model parameters are shown in Table 2.

In the process of model training, the size of Batch size

affects the performance of the model. A too small Batch

size may make it difficult for the model to converge; while,

a too large Batch size may reduce the generalization ability

of the model. Therefore, to select an appropriate Batch

size, experiments are conducted with Batch sizes set to 16,

32, 64 and 128, respectively. The results are shown in

Fig. 7.

As can be seen from Fig. 7, when the Epoch is less than

9, the accuracy of the model with a Batch size of 16 is

higher than the other three cases. However, when the

Epoch is greater than 9, the model with a Batch size of 64

is superior to the other three cases. Moreover, the diag-

nostic accuracy of the model is highest when the Batch size

is 64. Taking into account the influence of Batch size on

model training speed and accuracy, the Batch size should

be set to 64.

In addition, during the training of the diagnostic model,

cross-entropy is utilized as the loss function and Adam is

adopted as the optimizer [21]. In summary, the basic

parameters of the MSACNN model are shown in Table 3.

In order to verify the fault diagnosis ability of the

MSACNN model under constant load condition, the

Fig. 6 Schematic diagram of

the overlapping sampling

method

Table 2 Structure parameters of the network model

Layer type Size 9 Sep Output size Padding

Input 1024 … … …
Convolution Stage Conv1 32 9 8 64 9 128 Yes

Pool1 2 9 2 64 9 64 No

BN … … …
Multi-scale Block-1 Conv2-1 7 9 1 64 9 64 Yes

Pool2-1 2 9 2 64 9 32 No

Conv2-2 7 9 1 256 9 32 Yes

Pool2-2 2 9 2 256 9 16 No

Multi-scale Block-2 Conv3-1 5 9 1 64 9 16 Yes

Pool3-1 2 9 2 64 9 8 No

Conv3-2 5 9 1 256 9 8 Yes

Pool3-2 2 9 2 256 9 4 No

Multi-scale Block-3 Conv4-1 3 9 1 64 9 4 Yes

Pool4-1 2 9 2 64 9 2 No

Conv4-2 3 9 1 256 9 2 Yes

Pool4-2 2 9 2 256 9 1 Yes

Pooling block Pool2-3 2 9 2 256 9 8 No

Pool3-3 2 9 2 256 9 2 No

Interpolate Layer … 256 9 8 No …
Fusion layer … 768 9 8 … …
SE-Block … … … …
Pooling Layer 8 9 1 768 9 1 No …
Dropout Layer … 64 9 768 … …
FC Layer … 64 9 10 … …
Softmax Layer … 64 9 10 … …
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training set samples with loads of 0, 1, 2 and 3HP are

employed to train the model, and the test set samples under

the same load are used for fault diagnosis test. The training

process of the MSACNN model under different load con-

ditions is shown in Fig. 8.

It can be found from Fig. 8 that when Epoch is around

25, the fault recognition accuracy of the MSACNN model

under the four different loads in the constant load condition

converges and can reach 100%.

To demonstrate that the MSACNN model possesses

good diagnostic performance, the other four models are

selected for comparison experiments. Among them, the

Inception model is a traditional convolutional neural net-

work model with parallel convolutional kernels, the

Inception-SE is the Inception model with the addition of

SE attention module, and two deep learning models pro-

posed in other two literatures: WDCNN [13] and MSCNN

[16]. The final experimental results are shown in Fig. 9.

Figure 9a, b, c and d respectively represents the training

process and diagnosis results of five different models under

four operating conditions with loads of 0 HP, 1 HP, 2 HP

and 3 HP. It can be seen from Fig. 9 that under the four

working conditions, the Inception-SE model can prefer-

entially converge Inception model and the fault diagnosis

accuracy is also higher than that of Inception model, which

indicates that the Inception-SE model has a stronger fault

diagnosis capability than Inception model. Therefore, it is

demonstrated that introducing the SE attention module can

improve the fault diagnosis performance of the model.

Moreover, under all four working conditions, the proposed

MSACNN model is the first to converge, and its fault

recognition accuracy is higher than the other four models.

That is because the MSACNN model enhances the ability

of fault feature extraction by introducing serial skip-layers

connection structure and attention mechanism, thereby

improving the fault diagnosis performance.

The experimental results mentioned above demonstrate

that the proposed MSACNN model takes on high fault

recognition rate under constant working conditions, with a

recognition accuracy of 100%, which confirms that the

MSACNN model exhibits excellent fault data classification

capabilities under four constant working conditions and is

an effective model for identifying faults in rolling bearings

under such conditions.

For the sake of visually demonstrating the fault classi-

fication performance of the MSACNN model, the

classification results are displayed using a confusion matrix

and shown in Fig. 10.

The confusion matrix shows the classification of the

MSACNN model for each class of fault samples, where the

horizontal axis represents the predicted sample labels and

the vertical axis represents the true sample labels; numbers

on the main diagonal indicate the ratio of predicted sample

labels consistent with the true sample labels. As can be

seen from Fig. 10, the samples used for the model test are

completely correct, indicating the excellent fault classifi-

cation performance of the model.

In practical applications, rolling bearings operate under

different load conditions, which can lead to change in their

fault vibration frequencies, the fault features also vary

accordingly. Consequently, it is essential to verify the fault

diagnosis capability of the MSACNN model under varying

load conditions.

The model is trained utilizing the training set data under

1HP, 2HP and 3HP loads respectively, and then the test set

data under the other two load conditions are simultaneously

diagnosed to verify the fault diagnosis capability of the

Fig. 7 Experimental results with different Batch size Fig. 8 Training process of the MSACNN model under different load

conditions

Table 3 Parameter settings of MSACNN model

Learning rate Epoch Batch size Dropout Optimizer

0.002 100 64 0.5 Adam
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MSACNN model under variable load conditions. Addi-

tionally, compared with the experimental diagnosis results

of the basic CNN model, the artificial feature selection and

SVM (AFS ? SVM) model [30] and the WDCNN model

[13] on the CWRU data set, the results are presented in

Fig. 11.

From Fig. 11, it can be observed that the traditional

AFS ? SVM method has a lower accuracy compared to

the other three deep learning-based intelligent diagnosis

methods, mainly because the weak adaptability of manual

fault feature extraction and the insufficient nonlinear

expression ability of SVM lead to its low fault recognition

rate under different loads. Although the basic CNN model

possesses strong nonlinear expression capability, its fault

recognition rate is not high, and it has poor generalization

performance. The WDCNN model utilizes a large convo-

lutional kernel of size 116 9 1 to capture short-term

features and extract more comprehensive fault feature

information, leading to a fault recognition rate of up to

90%. The MSACNN model, with multi-scale module and

Fig. 9 Accuracy variation of training process of different models at four loads

Fig. 10 Confusion matrix diagram of diagnosis result of test set
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SE module, captures crucial fault feature information and

enables more accurate decision-making, with the fault

transfer diagnostic accuracy reaching as high as 98.99%.

However, in 1HP-2HP, the accuracy of WDCNN is higher

than that of the MSACNN, which implies WDCNN model,

featuring wider and deeper convolutional layers, is able to

better adapt to the specific characteristics associated with

the 1HP-2HP power settings. In other situations, the clas-

sification accuracies of MSACNN are significantly higher.

This outcome aligns with the expectation, as increasing

divergences between the target and source domains

heighten the identification difficulty, leading to low clas-

sification accuracies. In summary, the MSACNN model

possesses a good generalization performance under vari-

able load conditions, maintaining the average recognition

rate of over 90%.

In order to further verify the fault diagnosis capability of

the MSACNN model under variable load conditions, the

experimental results of the four aforementioned models are

plotted as a box plot for fault diagnosis under changing

conditions and shown in Fig. 12.

In Fig. 12, the upper quartile represents the data point

that is at the 75% percentage when the data are sorted in

ascending order, and the lower quartile represents the data

point at the 25% percentage, with the distance between the

upper quartile and the lower quartile in the box plot of fault

diagnosis reflecting the degree of data fluctuation to some

extent. It can be seen from Fig. 12 that the distance

between the upper quartile and the lower quartile in the box

plot of fault diagnosis accuracy for the MSACNN model is

relatively small, which illustrates that the proposed method

exhibits good stability. All these results in Figs. 8, 9, 10,

11, 12 demonstrate that the constructed model has higher

accuracy in bearing fault diagnosis even though the bearing

operates under varying rotating speed and load conditions.

Case Study 2: PU Bearing Data Set

To further verify the effectiveness of the proposed model,

the rolling bearing data set of the University of Paderborn

(PU) in Germany is also employed to implement the fault

classification and identification [31].

This dataset was constructed by utilizing accelerometers

to collect vibration signals from the bearing seat, with a

sampling frequency of 64 kHz. By changing the speed of

the drive system to regulate the radial force on the bearing

and the load torque to the drive system, the fault data under

four different working conditions are easily obtained. In

this case study, the data under condition 0 (i.e., rotating

speed of 1500 r/min, load torque of 0.7 N�m, and radial

force of 1000 N) was selected.

Fig. 11 Variable load experiment results of different models

Fig. 12 Box plot of fault diagnosis results of different models
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The bearing faults in this dataset are artificially induced

by using three different methods: electric discharge

machining (EDM), electric etching (ee), and drilling (dr).

The dataset includes two types of faults and one normal

type. The outer ring (OR) fault forms include electric

etching single damage level 1, electric etching single

damage level 2, drilling single damage level 1, drilling

single damage level 2, and electric discharge machining

single damage level 1. And the inner ring (IR) fault forms

include electric etching single damage level 1, electric

etching single damage level 2, and electric discharge

machining single damage level 1. So, there are nine dif-

ferent operating states including normal. The whole dataset

consists of 3780 training samples, 1080 test samples and

540 validation samples, and the length of each sample is

1024. The constitution of the dataset is shown in Table 4.

The model structure and super-parameters used in this

experiment are the same as those described in case study 1.

Similarly, to avoid randomness caused by the experiment

only implemented one time, each experiment is imple-

mented 10 times, and the average accuracy is taken as the

experimental result. The experimental results of the pro-

posed method are compared with those of the WDCNN and

MSCNN methods, and the corresponding experimental

results are shown in Fig. 13.

From Fig. 13, it can be clearly seen that the proposed

method outperforms the other two models in terms of fault

diagnosis results, achieving an accuracy of 99.54% and

98.11% for training set and test set, respectively. That is

because the MSACNN method utilizes a multi-scale

structure with serial skip connections and attention mech-

anism which are greatly profitable to extract more

comprehensive fault features from the raw data. And

consequently, the proposed method is capable of improving

the accuracy of fault diagnosis for rolling bearings espe-

cially under different operating conditions.

To intuitively illustrate the data classification results

obtained by the MSACNN method in this experiment, the

fault diagnosis results are displayed via the confusion

matrix and shown in Fig. 14.

It can be seen from Fig. 14 that the MSACNN method

performs better than the other two methods in terms of

classifying each type of faults. In the confusion matrix of

the MSACNN method, the highest misclassification rate is

that a few OR01(EDM) samples are incorrectly classified

as Normal samples, with a false classification rate of 3%.

Compared with the other two methods, the MSACNN

method has the fewest misclassification results of each

operating state. In other words, the misjudgment rate in the

confusion matrix of the MSACNN method is obviously

smaller than that of the MSCNN method and WDCNN

method, which also demonstrates that the MSACNN

method is indeed superior to the other two methods in

feature extraction and fault classification of rolling

bearings.

Conclusion

To address the issue of insufficient feature extraction

caused by single-scale convolution kernel of traditional

CNN in rolling bearing fault diagnosis, from the perspec-

tive of feature information fusion, multi-scale feature

extraction modules with different receptive fields and SE

modules that can obtain important feature information are

integrated into a one-dimensional convolutional neural

network, thereby directly extracting important feature

information of bearing faults from the raw vibration data.

This method utilizes the nonlinear fitting ability of deep

learning to automatically implement fault feature extrac-

tion and fault data classification, and then obtain ultimate

fault classification results, the whole process of which can

achieve intelligent ‘‘end-to-end’’ fault diagnosis. The

experimental results show that the proposed method can

extract sensitive features of faults by using a strategy of

increasing network width and depth through the use of

multi-scale convolutional layers. The proposed method not

Fig. 13 Fault diagnosis results of different models

Table 4 Constitution of PU dataset in this case study

Fault

type Damage type

Damage

level Label

Normal … … Normal

OR Electric etching 1 OR01(ee)

Electric etching 2 OR02(ee)

Drilling 1 OR01(dr)

Drilling 2 OR02(dr)

Electric discharge machining 1 OR01(EDM)

IR Electric etching 1 IR01(ee)

Electric etching 2 IR02(ee)

Electric discharge machining 1 IR01(EDM)
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only has high fault recognition accuracy under fixed

operating conditions, but also achieves an average fault

migration diagnosis accuracy of 93.66% under variable

operating conditions, which indicates that the method has

strong generalization capability. It can be reasonably

deduced that the strategy of multi-scale feature information

fusion described in this study actually possesses extraor-

dinary potential in vibration signal processing and can

provide a new solution for rolling bearing fault diagnosis

under complex operating conditions.

In the actual working conditions, rolling bearings often

face a more complex and changeable operating environ-

ment, so in the future work, the influences of varying

rotating speed conditions, noise interference and other

factors on the fault diagnosis performance of rolling

bearings will be considered, and the application of multi-

scale neural network in engineering practices also will be

investigated deeply.
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