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Abstract Ball bearings are the most critical components

of rotating machinery in oil and gas companies. Typical

research has focused on bearing failure detection based on

bearing failure frequencies derived from the velocity

spectrum. However, most bearing failures are caused by

improper or insufficient lubrication. The current research

utilizes a case study demonstrating when ball bearings

must be replaced or relubricated due to poor lubrication

conditions. Poor lubrication is the cause of natural fre-

quency excitation in bearings, where rapid bearing damage

is typically induced by poor lubrication film. According to

experimental data in this study, the bearing failed due to

natural frequency excitation. In addition, when analyzing a

signal with the velocity spectrum, high frequencies are

displayed. Bearing failure is detected without bearing

failure frequencies using the natural frequencies of the

bearing in the velocity spectrum signal. Moreover, an

experimental investigation of the bearing failure of a liquid

ring compressor was conducted utilizing a VIBXPERT II

vibration analyzer and the Omni trend software. The

velocity spectrum is derived based on a fast Fourier

transform from a time signal. After lubricating natural

frequencies must be disappeared from the velocity spec-

trum otherwise, the bearing is failed and must be changed.
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Introduction

Ball bearings are continuous systems with an infinite fre-

quency spectrum. The excitation of natural frequencies

depends on exciting forces, where size, clearance, and

bearing revolutions per minute are crucial for the amplitude

of natural frequencies. This study is a case study that was

gained at Lorestan petrochemical company. A liquid ring

compressor is analyzed using a vibration analyzer based on

signal processing. Signals shows when we must change

bearings without bearing failure frequencies symptoms.

Bearing failure analysis in engines is essential for predic-

tion; thus, identification and classification of antifriction

bearing failure in eddy current dynamometers have been

investigated [1]. The inner and outer rings of bearings in

variable frequency drive (VFD) motors are damaged by

stray currents and fluting. Furthermore, fluting is caused by

stray electrical motor currents that lack an adequate

earthing system. Vibration analysis and signal processing

methods were used to determine the bearing failure fre-

quency using envelope and spectrum signals. Early bearing

failure due to current damage has been studied, specifically

bearing failure at the first time of running [2]. Induction

motors are conventional, widely used industrial compo-

nents. Unpredictable shutdowns due to failure raise

maintenance costs. Bearings for induction motors have a

substantial effect on production; therefore, early detection

of bearing failure reduces costs and permits immediate

shutdown. Predictions are made using machine learning as

a reliable method to detect and predict bearing failure. This

prediction is possible at varying speeds. To this end, the

effectiveness of machine learning-based diagnostic meth-

ods has been evidenced using experimental data [3].

Bearing failure leads to machine failure, where early
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detection prevents failure and breakdown of bearings.

Vibration analysis and signal processing are generally used

to predict bearing failure. However, one study predicted

bearing failure using acoustic emission [4]. Bearings are

extensively utilized in mechanical and electrical machines.

Fractures in mechanical components have detrimental

effects on production and increase costs. Another study

utilized a simulated annealing algorithm to optimize neural

network convolution-based fault diagnosis [5]. The pri-

mary cause of bearing failure is wear. Wear occurs

gradually and over time. Due to the time-consuming nature

of wear, it is typically neglected. The deterioration of a

worn bearing surface will increase noise and vibration. The

causes and progression of surface wear on motor bearings

have been analyzed. The findings indicate that the inner

races of motor bearings experience uniform wear [6].

Periodic dynamic loads on ball bearings cause bearing

fatigue and failure; thus, uncertainty and experimental

analysis for the failure of rolling elements bearing has

been performed and studied for silicon nitride bearings [7].

Wind energy is the most effective form of energy genera-

tion in the world. The components of a wind turbine are

susceptible to complicated failure. The maintenance and

dependability of wind turbines are of paramount impor-

tance to industry. The bearing is the main component of

wind turbine transmission that must be analyzed online or

periodically. Wind energy is both recyclable and renew-

able. Bearings are a delicate component of wind turbines,

where numerous bearing failures are attributable to inade-

quate lubrication. The efficiency and stability of wind

turbines are dependent on bearing behavior. With proper

maintenance, the dependability and durability of these

components have increased. Various bearings and struc-

tures of wind turbines have been compared to demonstrate

bearing life under variable lubrication conditions [8]. The

failure diagnosis of antifriction bearings has been per-

formed using proximity sensors placed at the bearing

location for signal analysis. Bearings monitoring and

vibrations signal measurement serves primarily to provide

a maintenance strategy to prevent catastrophic machine

failure. An experimental data-based model (EDBM) has

been highlighted in this respect. The authors of [9] devel-

oped an experimental model for diagnosing and predicting

the failure signal of bearing parts. Different bearing

parameters, such as dimensions, loads, and clearances, are

effective for estimating bearing life [10]. The use of rotary

machines has increased in oil and gas companies, where

Bearings are a fundamental component of rotary machines.

Bearing failure is crucial for reducing maintenance costs

and production in the industry. To this end, vibration

spectrum analysis and different fault detection have been

conducted. For example, fast Fourier transform (FFT) is

one of the standard methods for detecting bearing failure.

In addition, vibration has been analyzed using Inverse fast

Fourier transformation (IFFT) as a failure detection tech-

nique under various failure detection methods [11]. The

dynamic behavior of rolling bearings is contingent upon

the rolling elements and contact surfaces. Contact effects

are essential for model-based fault diagnosis, lifetime

estimation, and noise reduction in the machine applications

of several companies. A five-degree-of-freedom angular

contact ball bearing is formulated and modeled to

demonstrate the effect of elastohydrodynamic (EHD)

lubrication on bearing contact parts [12]. Ball bearings are

essential machinery components for oil and gas companies.

These components are widely employed and conventional.

Early prediction and detection are two techniques that aid

in reducing and minimizing maintenance costs. Fast

Fourier transform (FFT) and Inverse fast Fourier transfor-

mation (IFFT) have been utilized to demonstrate clear

bearing failure frequencies [11]. Over 40% of induction

motor failures are caused by bearing failures. Bearing

failure has been monitored for decades. Measurements of

vibrations and electromagnetic signals are used for early

failure detection. In one study, algorithms for evaluating

deep learning were designed for automatic fault diagnosis,

where induction motor current and external stray flux was

detected through a novel method [13]. Intelligent fault

diagnosis aids in the early detection of machinery failure

and is an effective method for diagnosing bearing and

machinery failure. Intelligent methods and extensive

vibration signal experiments have been compared to

demonstrate the effectiveness of intelligent bearing failure

prediction [14]. A hybrid method employing both machine

learning and adaptive cascade observer has been developed

where the normal signal approximation is obtained for

failure detection. Vibration and acoustic emission (AE)

datasets were utilized to validate the efficacy of the adap-

tive cascade observer with the support vector machine

(SVM) fault identifier. According to the results, the aver-

age vibration and AE fault diagnosis using the adaptive

cascade observer with the SVM fault identifier is 97.8 and

97.65%, respectively [15]. In addition, vibration current

fusion bearing failure was detected rapidly using statistical

features and neural networks (NNs) [16]. A skf6322 code

was analyzed for a rotational blower bearing. Further-

more, power spectral density (PSD) generated for failure

analysis has been investigated. PSD was used to present

excited frequencies such as the shaft rotation speed, blade

frequencies, and bearing cage and ball frequencies. For the

comparison, the blower vibration trend was analyzed per

ISO 10816, which can aid in predictive maintenance and

prevent catastrophic failure [17]. Wind turbines are

essential for converting wind energy into electricity. In this

machine (Table 1), bearings and gearboxes are utilized

extensively. Tribology issues in bearings significantly
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impact the presentation of tribology-based failure modes.

To this end, condition monitoring, fault diagnosis, and

failure mode analysis utilizing an experimental scale and

signal processing have been investigated. The procedure

concludes with a review of the bearing condition moni-

toring and fault diagnosis method [18]. Since rotary

machines comprise most of the industry, fault detection is

crucial in these machines. Bearings, gearboxes, and rotors

are among the most fundamental components of these

rotary machines. Bearing failure are detected using an

online monitoring vibrations sensor and portable vibration

analyzer. Consequently, different types of machine learn-

ing algorithms have been presented to detect bearing parts

failure analysis: (a) bearing health conditions (HC), (b)

inner race fault (IF), and (d) ball bearing fault (BF). SVM

is demonstrated by many comparison methods to be the

algorithm with the highest accuracy [19]. In the present

study, failure of an angular contact ball bearing is detected

without any fundamental train frequency (FTF), ball pass

frequency inner race (BPFI), ball pass frequency outer race

(BPFO), or 2ball Spain frequency (2BSF) symptoms in the

velocity spectrum. The bearing failure is detected by col-

lecting vibration data with VIBEXPERTII and analyzing

vibration signals with OMNITREND. The ball bearing

failure was detected without any previously calculated

bearing failure frequencies. Research has been conducted

on the liquid ring compressor for bearing and root cause

failure analysis. According to the technical report, Nippon

Seikō Kabushiki-gaisha-Japanese Company (NSK) devel-

oped, the natural frequency formula depends on bearing

dimensions. This study verifies the correlation between

experimental bearing natural frequencies and the NSK

report frequency.

Ball Bearing Failure Frequencies Calculation

Each bearing’s dimensions determine its failure frequency,

and mathematical formulas are used to calculate the failure

frequencies of the revolution. Equation 1 shows the ball

pass frequency inner race (BPFI) identified in the spectrum

when the bearing inner race fails. Equation 2 identifies the

ball pass frequency outer race (BPFO) in the spectrum.

Equation 3 displays the fundamental train frequency (FTF)

identified in the spectrum when the bearing cage fails.

Equation 4 identifies the ball Spain frequency (BSF) in the

spectrum when the bearing balls fail. shows the bearing

failure frequencies. All data and bearing failure frequencies

are computed for a compressor speed of 996 rpm.

BPFI ¼ N

2
� F 1þ B

P
� cos h

� �
ðEq 1Þ

BPFO ¼ N

2
� F 1� B

P
� cos h

� �
ðEq 2Þ

FTF ¼ F

2
� 1� B

P
� cos h

� �
ðEq 3Þ

BSF ¼ P

2B
� F 1� B

P
� cos h

� �2
 !

ðEq 4Þ

where B is the ball diameter, P is the pitch diameter, Theta

is the contact angle, N is the number of balls, and F is

rotating unit frequency (speed). In this case the outer ring is

stationary and inner ring is rotary.

Nippon Seikō Kabushiki-Gaisha-Japanese Company

(NSK) Bearings Technical Report

Bearing failure can occur for numerous reasons. The

leading cause of natural frequency excitation and bearing

failure is poor lubrication. Per Eq 5 (NSK report), the first

mode of natural frequency for 7232 BCBM must be excited

at 868 Hz. Researchers from NSK determined the pre-

dominant natural frequencies of roller bearings to

demonstrate the phenomenon of beating in bearings. This

study shows experimental research and NSK bearing fail-

ure data regarding which frequencies excite and fail

bearings. Inner and outer ring diameters play a crucial role

Table 1 Bearing failure frequencies in a liquid ring compressor at 996 rpm

Input Output

Bearing type 7232 BCBM Shaft speed frequency 16.600 Hz

Pitch diameter 225 mm Inner race defect frequency (BPFI) 150.744 Hz

Rolling element diameter 39.688 mm Outer race defect frequency (BPFO) 114.856 Hz

Number of rolling elements (per row) 16 Cage defect frequency (FTF) 7.178 Hz

Contact angle 40 (degrees) Ball spin frequency (BSF) 46.195 Hz

Rotational speed 996 rpm Rolling element defect frequency 92.391 Hz

Rotating ring Inner race
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in the excitation of natural frequencies. Eq 5 shows natural

frequencies per the NSK technical report [20].

Fðnf Þ ¼ 9:41� 105 � kðD� dÞ
ðD� kðD� dÞ2Þ

� n� ðn2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p

ðEq 5Þ

D Bearing outer ring diameter (mm), d Bearing bore (mm),

K Constant (0.15 for bearing with seal groove, 0.12 for

bearing open type), n Bearing mode shape ? 1

F nfð Þ ¼ 9:41� 105 � 0:15 290� 160ð Þ
290� 0:15ð290� 160ð ÞÞ2

� 2� ð22 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
22 � 1

p ¼ 868 Hz

Data Analysis Results

Omni trend software is used for data analysis. In this

research data analysis and signal processing are based on

filtering of the velocity spectrum. As you know, the

velocity spectrum is gained from a fast Fourier transform

based on a time signal. The velocity spectrum is processed

using filtering, so the frequency range is 1600 Hz, the

number of lines is 102400, the high pass filter is 0.5 Hz, the

average is 3 (Linear), the window is hanning, and the

overlap is 50%. As a result of data collection and analysis,

the velocity spectrum does not exhibit bearing failure fre-

quencies. Excitation with a high frequency and amplitude

indicates that bearings operate under inadequate lubrication

conditions. When bearings operate under poor lubrication

conditions, they must be relubricated to produce lubrication

films. After relubrication, high frequencies with high

amplitude must be transformed into high frequencies with

extremely low amplitude (Table 2). If high frequencies

with high amplitude are again excited, the bearing must be

replaced due to inner or outer race failure. Figure 1 depicts

the compressor drive end (DE) spectrum waterfall. In

Fig. 1, the first five signals with high amplitude represent

failed bearings, while the second five signals with low

amplitude represent normal bearings.

Figure 2 depicts the velocity spectrum of a failed

bearing with high excitation frequencies and high ampli-

tude, respectively. Figure 3 shows the velocity spectrum of

a bearing following a change induced by a low-frequency

excitation with a small amplitude in both normal and zoom

sizes.

Figure 4 depicts a 7232 BCBM bearing examined for

this study. displays bearing frequency excitation under

poor and normal conditions before and following bearing

removal. No bearing failure frequencies were present in the

velocity spectrum. Conversely, natural frequencies with

high frequencies and high amplitude only were observed

for the failed bearing.

This study’s experimental findings indicate that bearing

natural frequency is exciting. The natural frequencies of

7232 BCBM bearings range between 845 and 852 Hz.

Figures 5 and 6 depict, respectively, a liquid ring com-

pressor and a failed bearing. If the bearing velocity

spectrum contains numerous high-amplitude frequencies at

high frequencies, the lubrication conditions for ball bear-

ings will be inadequate. Poor lubrication can quickly

damage the inner race. When high frequencies are detected,

it is necessary to relubricate the bearing. After the bearing

has been relubricated, high frequencies must disappear. If

high frequencies persist, the course must be altered. High

frequencies appeared after data collection between 800 and

1200 Hz. High frequencies remained even after relubri-

cating the ball bearing. Consequently, the bearing was

replaced due to a permanent symptom of natural frequen-

cies. As depicted in Fig. 6, inner race failure was evident

after the bearing was replaced.

Table 2 Bearing failure natural frequencies for a liquid ring

compressor at 996 rpm

Natural frequency excitation in

failed bearing

Low-frequency excitation in

normal bearing

# f (Hz) Value #

f

(Hz) Value

1 845.75 0.68 High

frequencies

and high

amplitude

1 16.63 0.25 Rotational

speed

frequency

2 845.56 0.62 2 43.38 0.21 Low

frequencies

with low

amplitude

3 120.81 0.54 3 36.25 0.15

4 846.13 0.36 4 37.13 0.15

5 16.63 0.26 Rotational

speed

frequency

5 38.75 0.15

6 178.06 0.22 High

frequencies

and high

amplitude

6 36.50 0.15

7 852.69 0.19 7 37.63 0.14

8 849.06 0.18 8 38.94 0.14

9 838.63 0.18 9 35.69 0.14

10 852.81 0.18 10 35.94 0.14
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Fig. 1 Waterfall spectrum NDE

Fig. 2 NDE bearing velocity spectrum before a change in amplitude at high frequencies

Fig. 3 NDE bearing velocity spectrum after a change with extremely low amplitude at high frequencies

J Fail. Anal. and Preven. (2023) 23:1431–1437 1435

123



Conclusion

The results of this study confirm the NSK reports’ findings.

This study indicates that the bearing’s natural frequency

signal in the velocity spectrum may indicate bearing fail-

ure. Using the NSK calculation formulas and results

presented in this report, the bearing natural frequencies

were calculated to be 868 Hz and 845.72 Hz, respectively.

The optimal velocity spectrum response is a signal at 1 rpm

with no high-frequency excitation. Natural frequencies

with amplitudes greater than the speed frequency of the

machine are harmful to bearing health. The results indicate

a failed bearing without any calculated bearing failure

frequency in the velocity spectrum. The bearing was

lubricated by identifying the bearing’s natural frequencies

at high frequencies. High frequencies did not disappear

after lubrication; consequently, the bearing was removed.

The primary objective of this study was to validate the

NSK report and experimental vibration results to demon-

strate how natural frequency excitation causes bearing

failure.
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