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Abstract Stochastic resonance (SR) is an effective

approach for weak signal detection. Utilizing a single

system for cascading has restrictions for conventional SR.

To examine the impact of applying various types of SR on

the inter-system generation in the same cascade process,

the mixed system cascade stochastic resonance (MSCSR)

approach is presented in this study. The improved effect is

measured in terms of amplitude and signal-to-noise ratio

(SNR), on this basis, proposed stochastic weighted particle

swarm optimization algorithm to optimize SR system

parameters. The results indicate that the collaboration

between different systems leads to changes in the potential

well of the cascade process. With the proposed approach,

MSCSR, the output amplitude is 3.39 times more than that

of the bi-stable cascade system, and the SNR is 3.83 dB

higher than that of the tri-stable cascade system. The effect

of the method described in this study on weak fault char-

acteristics is noticeably stronger than that of the single SR

cascade system method. Meanwhile, the method proposed

in this paper has important engineering value for micro-

fault diagnosis of rolling bearings.

Keywords Micro-fault � Cascaded stochastic resonance �
Enhancement features � PSO

Introduction

Weak fault detection is a popular issue in fault diagnosis

research. Data show that many accidents are caused by not

eliminating weak faults early enough [1]; therefore, it is

important to conduct fault detection for bearings since they

are key components in rotating machinery.

Denoising is often performed during signal processing

to achieve feature extraction, for instance, wavelet trans-

form (WT), empirical mode decomposition (EMD), and

singular value decomposition (SVD) [2–4], and the pro-

posed improved algorithms [5, 6]. These methods are

useful for detecting explicit faults, but for weak signals

drowned by noise, methods such as signal decomposition

can weaken the useful information in the signal and make

weak features more difficult to identify. In recent years,

researchers have found that noise can be used to enhance

weak signals and effectively extract and identify weak

features [7]. Stochastic resonance (SR) is a typical non-

linear processing method that uses noise with distinctive

characteristics to enhance weak signals. Instead of the

traditional suppression of signal noise, this method relies

on the interactions between noise, periodic drive forces,

and nonlinear systems to enhance weak signal features. The

signal-to-noise ratio (SNR) reaches its maximum value

when optimal SR parameter matching is achieved.

Researchers have extensively investigated using SR to

detect weak signals [8]. Initially, the SR phenomenon was

generated by introducing the height of the regulatory

potential of the system; later, the SR effect was generated

by changing the nonlinear system parameters to bring the

state of the system to the resonance point, thereby

extracting the weak fault characteristics. Different types of

SR systems, such as fractional order [9, 10], bi-stable,
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asymmetric, multi-stable, periodic potential, and under-

damped [11–15] systems, have different characteristics

when dealing with weak signals.

Because the SR is bounded by both the linear response

theory and adiabatic approximation research theories, when

the SR method is applied to engineering signals, it must

achieve a parametric transformation to satisfy the small

parameter condition by scale variation [16, 17]. Research

on using SR to detect weak signals has led to several

branches: For example, the study of nonlinear systems has

resulted in propulsive coupled multi-stable stochastic res-

onance systems [18], SR tri-stable systems with high-order

delayed feedback [19], piecewise tri-stable stochastic res-

onance (PTSR) systems [20], and composite tri-

stable stochastic resonance (CTSR) systems [21]. The

introduction of noise studies has led to Lévy noise and

Gaussian noise studies [22, 23]. Intelligent algorithms to

optimize SR system parameters include the quantum par-

ticle swarm algorithm (QPSO), the whale optimization

algorithm (IWOA), the beetle antenna search (BAS),

weighted particle swarm optimization (PSO), and the ant

colony algorithm [24–26].

With time, more researchers found that weak periodic

signals could be successfully detected using algorithmic

fusion. Wang et al. [27] proposed a method that combined

the SR method with computational sequential analysis,

which enhances noise utilization and order amplitude.

Gong et al. [28] implemented loose connection identifica-

tion with subharmonic resonance and adaptive stochastic

resonance (ASR). Zhang et al. [29] proposed using EWT

with improved adaptive bistatic SR as a weak feature

enhancement method and was able to achieve robustness in

terms of noise. Mba et al. [30] introduced the integration of

SR and hidden Markov modeling (HMM) for a vibration

signal using multiple performance metrics as the basis for

feature extraction.

However, it is challenging to use the composite algo-

rithms that are challenging mentioned above in real-time

applications, and the lack of uniform evaluation metrics

causes difficulty in achieving an algorithmic arrangement.

In recent years, scholars have implemented weak signal

detection methods that use different combinations of the

same SR systems, including array-based [31] and coupled

[32] systems, and Cui et al. [33] proposed post-processing

with EMD using cascaded adaptive second-order three-

state stochastic resonance (CASTSR) to achieve quality

improvement of the EMD decomposition and efficient

extraction of weak features. Li et al. [34] proposed coupled

bi-stable systems for the adaptive SR method (ACBSR).

Gong T et al. [35] proposed cascaded piecewise linear

systems, which accurately extracted weak fault features

using different combinations of the same system.

Because of the limitations of the methods described

above, this paper proposes a mixed system cascade

stochastic resonance (MSCSR) method that can effectively

improve the performance of the diagnosis algorithm per-

formance when detecting weak signals and the sensitivity

to weak fault signals. In this study, a bi-stable system in the

first increase accounted for the cascaded saturation ratio

and at the same time considers the enhancement charac-

teristics of using a tri-stable system for weak signals that

were simultaneously considered. The two systems were

combined, and their performances were evaluated using the

SNR and the signal amplitude, respectively. The results

show that introducing a cascaded SR system improved

performance. According to the validated results, the pro-

posed method can effectively detect and accurately identify

weak features in bearings and emphasize the frequency of

the identified fault features in the frequency domain.

The rest of the paper is organized into four additional

sections. Section ‘‘Basic SR Model’’ introduces SR back-

ground theories and optimization algorithm.

Section ‘‘Optimization Algorithm’’ introduces the MSCSR

method, which uses an intelligent algorithm for the

parameter search. Section ‘‘Experimental Application’’

presents an evaluation of the MSCSR performance using

simulated signals and experimental data. Section ‘‘Con-

clusion’’ concludes the paper.

Basic SR Model

In an SR described physical phenomenon, when a system

has a small periodic force and a broadband random force

acting together, the system response switches between

different steady states. According to the SR principle, the

existence of an optimal noise intensity, nonlinear system

parameters, and periodic currents work together to enhance

the weak periodic force, i.e., the phenomenon of using

weak periodic signals and the presence of random distur-

bances in the nonlinear system to enhance the periodic

output, as shown in Fig. 1.

The SR model can be described using Eq 1 [8]:

dxðtÞ
dt

¼ �U0ðxÞ þ SðtÞ þ NðtÞ

\NðtÞ[ ¼ 0;\NðtÞ;Nð0Þ[ ¼ 2DdðtÞ

8
<

:
ðEq 1Þ

where U(x) represents the potential function of the non-

linear system, S(t) represents the weak periodic signal, and

N(t) denotes the noise signal. In this study, U(x) for the

cascade investigation, two systems were employed, as

shown in Eq (2) [10, 13]:
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U1ðxÞ ¼ � 1

2
ax2 þ 1

4
bx4

U2ðxÞ ¼
1

2
ax2 � 1

4
bx4 þ 1

6
cx6

ðEq 2Þ

where U1(x) represents a bi-stable systems, and U2(x)

represents tri-stable systems. The parameters a and b in

U1(x) denote the bi-stable system parameters, and the

parameters a, b, and c in U2(x) denote the tri-stable sys-

tem’s parameters.

Different SR systems share the same implementation

mechanism, and this study employs a tri-stable system to

demonstrate the idea (using tri-stable systems as a base

model to study SR phenomenon). The potential function

solution’s location is altered by changing the parameters,

and this ignites the SR phenomenon by altering the depth

of the potential well and the solution’s relative position to

the solution, which alters how easily the particle jumps

between potential wells. The Rangzwan equation is solved,

as shown in Eq 3.

x1 ¼ x5 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2c

s

x2 ¼ x4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2c

s

; x3 ¼ 0

ðEq 3Þ

where x2 and x4 are the tri-stable two unstable steady

solutions, while x1, x3, and x5 are the tri-stable steady

solutions, the structural parameter of the potential function

of the system is a, b, and c.

The output of the tri-stable system is a Brownian par-

ticle jumping motion formed between two different

potential wells (a nonlinear system potential function). The

width of the potential wells can be described by two tri-

stable system solutions. The system particles are con-

strained within the two potential wells and influenced by

the corresponding initial values, while the height of the

potential function is influenced by the system parameters,

indicating that an optimal SR phenomenon can be achieved

by adjusting the system parameters, as shown in Fig. 2.

The output of the potential function is also influenced by

the analytical parameters b and c. In the case of Brownian

particles, the potential well can leap more easily as the

parameters are increased because the midpoint of the

potential well change range is small. On the other hand, it

can be determined that changing the parameters a, b, and c
can modify the distance between the potential barrier and

the potential well. As the parameter b grows, the jump

probability drops.

Optimization Algorithm

Finding the ideal system settings is essential for enhancing

the SR method’s efficiency. However, the correlation

between the parameters is poor, it is difficult to obtain the

optimal solution to achieve the best SNR output. The rel-

evant parameters are coupled to each joined together,

which makes the parameter adjustment difficult; therefore,

an intelligent algorithm for parameter seeking was used

during this study to improve the efficiency of weak signal

detection. In this study, a stochastic weighted PSO algo-

rithm, this algorithm was derived from the stochastic

optimization technique for populations, and its algorithmic

model can be considered as the foraging behavior of a bird

Fig. 1 Schematic diagram of SR enhancement

Fig. 2 Relationship between U(x) and system parameter a (solution

of the potential function and potential wells)
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population, by converting the search space into the flight

space of the birds. The optimal solution can be found

through the collaboration and information sharing by the

individuals in the population, according to the following

steps:

(1) System parameters, including the learning factor, the

number of iterations, the average value of the

accompanying weights, and the spatial dimension,

initialized. The parameters are also initialized.

(2) The number of iterations required to update the

position, and velocity of the particle is input.

(3) The particle fitness function values are evaluated.

The output SNR ratio is selected as the fitness

function of the evaluation index.

(4) If the condition is satisfied, the iterations are

complete, and the global optimum is output; if not,

the particle state continues to be updated. The

optimal solution can be obtained by this algorithm,

as expressed by Eqs 4 and 5 [16]:

va;bðt þ 1Þ ¼ wva;bðtÞ þ c1r1ðLa;b � xa;bðtÞÞ þ c2r2ðLc;b
� xa;bðtÞÞ

ðEq 4Þ
xa;bðt þ 1Þ ¼ xa;bðtÞ þ va;bðt þ 1Þ; b ¼ 1; 2; � � � ; d ðEq 5Þ

where the inertia weight coefficients are denoted by w, the

positive learning coefficients are denoted by c1 and c2, r1
and r2 represent uniformly distributed random numbers in

the interval [0 1], and Li = [Li,1, Li,2,…, Li,d] is the best

position found in the neighborhood. Additionally, the

velocity interval [Vmin, Vmax] and the position interval

[Xmin, Xmax] can also be used to restrict motion.

w ¼ lþ rNð0; 1Þ
l ¼ lmin þ ðlmax � lminÞrandð0; 1Þ

(

ðEq 6Þ

The resulting weighted particle swarm algorithm can

boost the w-value, accelerate the algorithm, and converge

to the desired outcome more quickly. Equation 6

demonstrates approach regulates the w-value and is better

suited for use in stochastic resonance parameter search by

using the random number 0–1 range for weight summation.

Proposed SR—MSCSR Method

MSCSR Principle

To study the impact of the system’s cascade mechanism on

the output, a mixed SR cascade methodology is presented

in this part. The switching of the system during the cascade

process significantly alters the potential function involved

in the solution, modifying the output parameters, subject to

the optimal system parameters. The bi-stable and tri-

stable subsystems were utilized as the subject matter, and

simulation results show that adding the bi-stable system to

the tri-stable system has an effect similar to that of the tri-

stable cascaded system in terms of growth, the method is

known as MSCSR, as shown in Fig. 3.

The MSCSR expression for the n-level cascade is shown

in Eq 7:

dx1

dt
¼ �ax1 þ bx3

1 � cx5
1 þ ax1 þ bx3

1 þ SðtÞ þ NðtÞ
dx2

dt
¼ �ax2 þ bx3

2 � cx5
2 þ x1ðtÞ þ ax2 þ bx3

2

� � � � � �
dxn
dt

¼ �anxn þ bnx
3
n � cnx

5
n þ xn�1ðtÞ þ axn þ bx3

n

8
>>>>>>>><

>>>>>>>>:

ðEq 7Þ

where a and b represent the parameters of the bi-stable SR

system, a, b, and c represent the system parameters of the

tri-stable SR system, the simulated sinusoidal signal is

represented by S(t), the noise signal is represented by N(t),

and this system was a tri-stable cascaded SR system when

a = b = 0; on the other hand, this system was a bi-

stable cascaded SR system when a = b = c = 0 happens at

all levels. When the cascaded form changes, only a single

a = b = c = 0 occurs, at which point the system develops

into MSCSR. There are two potential wells for tri-

stable system and one for bi-stable system, which can both

reflect the process of particle migration in the nonlinear

system, by figuring out the two system combined potential

well depths, and adjusting the system parameters can

produce the best SR, as shown in Eq 8 [36]:

DV ¼ � a2

4b

DV1 ¼ 1

24c2
i

½ðb2
i � 4aiciÞ

3
2 þ biðb2

i � 4aiciÞ�

DV2 ¼ 1

12c2
i

ðb2
i � 4aiciÞ

3
2

ðEq 8Þ

DV for the bi-stable potential well, DV1 and DV2 for the tri-

stable potential well. The mixed system enables the cas-

caded SR to adjust both the system parameters and the

potential function. The potential well is altered by chang-

ing the system parameters, which impacts the particle

jumps. It was discovered that the mixed system entry alters

the system properties, changing the potential well depth for

the cascade process. The output SNR depends on the

potential well because different cascade forms will produce

various signals, which will vary the output SNR of each

step. The output SNR can be described as the ratio of the

output signal power Ps to the average power of the

1206 J Fail. Anal. and Preven. (2023) 23:1203–1215

123



background noise spectrum at GN (w0). The output SNR is

shown in Eq 9 [37]:

SNR ¼ p
2

Axm
D

� �2

rk

,

1 � 1

2

Axm
D

� �2
4r2

k

4r2
k þ w2

0

" #

ðEq 9Þ

where w0 is the driving frequency, rk is the particle jump

probability (Kramers rate), and xm is the particle steady-

state position. By neglecting the higher-order terms in the

denominator of Eq 9, and under the constraints of adiabatic

approximation and linear response theory, in which only

small parameter signals are applicable, the SNR can be

approximated by Eq 10:

SNR ¼
ffiffiffiffiffiffiffiffiffi
2DV

p A

D

� �2

e�
DV
D ðEq 10Þ

The SNR value is mostly influenced by the potential

well value and the noise, as shown in Eq 10; however,

random noise in the operating environment is difficult to

control, the analysis found that the output SNR can be

controlled by improving the potential well value. In

contrast with the traditional single cascade form, the

method proposed in this section can form a single

processing to generate different potential well values, and

the output SNR of the nonlinear system is also better than

the traditional cascade method. In the following, utilizing

simulated signals, the impact of the mixed system on the

signal output amplitude and SNR will be investigated.

Model Analysis

Simulation proves that the bi-stable cascaded system

increases the amplitude to 95% of the cascaded saturation

after the first two SRs. To describe the effects of different

cascaded tri-stable and bi-stable system scenarios on the

output signal amplitude, the bi-stable system was cascaded

with the tri-stable system, using a sinusoidal signal with a

frequency of 0.01 Hz and a noise intensity of 0.5, as shown

in Fig. 4, to illustrate the effect of various cascaded cases

of tri-stable and bi-stable on the output signal amplitude. It

was observed that cascaded saturation occurs when the

Fig. 3 MSCSR schematic

diagram

Fig. 4 B represents the bi-stable system, and T represents the tri-

stable system. T-B-B-B represents a system in which the tri-

stable system is used first, then the bi-stable system is used for

cascading, the rest of the matching methods are as described

previously

Fig.5 Effect of introducing bi-stable system at different positions on

the amplitude output. (i-bi-stable represents the introduction of the ith

cascade into the bi-stable system)
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number of cascades reaches a certain value, at which point

the signal output amplitude no longer changes significantly

as the number of cascades increases. The effect of various

mixed cascades on the output response was observed.

However, the use of a B-T-T-T mixed cascaded system

produces no significant signal amplitude enhancement, it is

easier to highlight weak signals by preferentially using a

tri-stable system in the cascaded system. When using the

MSCSR method for a second introduction to the bi-

stable system, it was found that this method approximates

the output amplitude of the best tri-stable system, indicat-

ing that this method has a clear advantage for increasing

the amplitude. When the MSCSR approach was described

for the bi-stable system’s second introduction, it was

discovered that the method comes close to reproducing the

output amplitude of the ideal tri-stable system. The pro-

posed MSCSR method introduction of the bi-stable system

will cause a temporary drop in signal amplitude, but the

reintroduction of the tri-stable system will rekindle the

sensitivity to weak signals, and the introduction of the bi-

stable system to reduce the signal amplitude in the lower

level of the tri-stable system will get a significant increase,

which is obvious from the second cascaded amplitude gain,

as shown in Fig. 4.

The effects of the various cascaded methods on the final

signal output amplitude were analyzed, and the analysis

results show that the proposed MSCSR method and the tri-

stable SR system have the highest, final output amplitude

Fig. 6 MSCSR fault identification process flowchart

Fig. 7 Simulation signal: (a) signal waveform and (b) frequency-domain diagram
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and that the output amplitude of the interleaved cascaded

system also exhibits periodic changes.

The MSCSR system can recover the signal’s amplitude

no matter where the bi-stable system is inserted. The result

of switching between systems might still increase the sig-

nal amplitude even when new systems are introduced that

reduce it. It is demonstrable that the MSCSR’s amplitude

augmentation effect is much superior than that of the bi-

stable system. The amplitude of MSCSR method will

eventually stabilize in a specific range as the number of

cascades rose, as shown in Fig. 5. The stochastic weight

PSO method is combined with the MSCSR method in this

study to search for the ideal system parameters for feature

extraction and feature amplification of weak signals, and

the real data defect diagnostic process is depicted as shown

in Fig. 6.

Simulation Verification and Experimental Application

Simulation Verification

To test the effectiveness of the proposed method and to

ensure the usability of the SR method, a small parametric

signal was established. This simulated signal was sinu-

soidal with added white noise. The simulated signal could

be described by the equation X(t) = Asin (2pft) ? N(t),

where f represents the weak signal frequency of 0.01 Hz,

and N(t) is the white noise, which satisfies the normal

distribution. The fourth-order Runge–Kutta method used to

solve for the SR. The results of the PSO search were used

to determine the potential function parameters. Calculating

the optimal optimum parameters resulted in bi-stable sys-

tem: parameters of a = 1.231 and b = 0.822, tri-

stable system parameters of a = 0.0275, b = 0.0365, and

c = 0.0017, and a computational step of h = 0.25. The

simulation results demonstrate that a weak periodic signal

with a frequency of 0.01 Hz can be detected from the noisy

signal, as shown in Fig. 7a. There is no information

accessible for the time-domain portion, and the periodic

signal component is totally masked by the noise. The

periodic signal with the original signal fault frequency of

0.01 Hz is identified in the frequency-domain plot, as

shown in Fig. 7b, and the signal amplitude at frequency

0.01 Hz is 462.57. However, there are still cluttered fre-

quencies in the high-frequency region, making it difficult to

apply the proposed method to engineering signals. Further

research is required.

The simulation results show that when the cascaded

system reaches a certain number of cascades, the amplitude

increase reaches its upper limit, and the enhanced satura-

tion phenomenon occurs. Before SR processing, the

amplitude of the frequency-domain spectrum was 462.57,

as shown in Fig. 7b. The saturation value of bi-stable sys-

tem is 1821.47, as shown in Fig. 8f1, and the saturation

value of MSCSR is 10462; as shown in Fig. 8f2, the

increase in MSCSR is 5.74 times that of bi-stable system,

the MSCSR method has a clearer time-domain signal than

the bi-stable system, as shown in Fig. 8a1 and a2, and the

simulation signal shows that the MSCSR amplitude

enhancement was significantly better than that of bi-

stable system. Additionally, at a fault frequency of

0.01 Hz, the bi-stable system had difficulty in forming a

clear determination area, while the MSCSR method high-

lighted the fault frequency more for low frequencies and

had more prominent advantages when applied to engi-

neering signals.

The SNR was used to measure the enhancement capa-

bility of the proposed method for weak signals, and since

the SNR changes due to the introduction of random noise,

the output error is reduced by averaging the SNR multiple

times as shown in Fig. 9. The initial SNR of the simulated

signal �6.75 dB, the weak signal with a frequency of

0.01 Hz was completely disturbed by the noise. This fig-

ure exhibits the change in the under multiple cascades,

bFig. 8 Comparison of the bi-stable cascaded system with the

amplitude enhancement of the proposed MSCSR method. (a)

primary cascaded time-domain signal waveform, (b) primary

cascaded frequency-domain spectrum, (c) secondary cascaded

frequency-domain spectrum, (d) tertiary cascaded frequency-domain

spectrum, (e) quaternary cascaded frequency-domain spectrum, (f)
quinary cascaded frequency-domain spectrum. i represents different

methods, 1 represents the bi-stable system, and 2 represents the

MSCSR method

Fig. 9 Tri-stable systems and the MSCSR: the relationship between

the number of cascades and SNR
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reducing the noise interference in the experiment, and the

data from multiple experiments were then averaged. The

introduction of the bi-stable system decreased the SNR, but

the tri-stable system enhanced the SNR ratio again, the

results show that introducing the bi-stable system MSCSR

method produced significant modulation in the output

SNR, and the SNR gain changed significantly in the lower

level of the tri-stable system and was saturated with the

number of cascades. In summary, the MSCSR method has

a better weak signal recognition capability.

Experimental Application

To verify the practicality of the proposed method, a com-

prehensive experimental platform was established for

mechanical faults, consisting of fault signal generation and

signal acquisition devices, as shown in Fig. 10.

(1) The motor drives the bearing under test through the

coupling, with a motor speed of 1240 r/min.

(2) The vibration signal is detected by an accelerometer.

(3) The signal is sampled by an acquisition system

(uTeKL-uT89) with a sampling frequency of

12 kHz.

(4) A 1-mm broad, 0.4-mm long, and 0.2-mm deep fault

is set in the outer raceway of the bearing, the bearing

type was 6207-2RSR, as shown in Fig. 11.

Figure 12a shows that the raw bearing fault data had no

obvious periodicity in the time-domain portion. However,

in the frequency-domain portion depicted in Fig. 12b, the

fault characteristic frequency was overwhelmed by the

interference frequency, and the fault frequency could not

be accurately identified. The desired characteristic fre-

quency has been completely lost in the real signal

frequency-domain range as compared to the interference-

free simulated signal. The benefits of the suggested

approach are then confirmed in real signals.

According to the bearing outer ring fault characteristic

frequency calculation equation, substituted into the bearing

specific parameters, as shown in Table 1, the calculation

can be obtained from the characteristic frequency of

74.772. The original signal from the bi-stable cascaded SR

system initially had periodic characteristics in the time

domain, as shown in Fig. 12c, the fault frequency of

74.772 Hz is accurately identified in the frequency-domain

portion, but there was still rich frequency information in

the low-frequency region, as shown in Fig. 12d, which

caused difficulty in identifying the fault accurately;

meanwhile, the spectrum diagram also shows the failure

signal multiplier.

Similarly when performing the MSCSR method pro-

posed in this paper, as shown in Fig. 12e, the time-domain

portion exhibited obvious periodicity with the pure signal.

Additionally, there was less band interference, in the low-

frequency band, allowing for clearer identification of the

fault characteristic frequency, as shown in Fig. 12f. The

bearing fault frequency was 74.772 Hz, and the error with

the experimental value of 74.0768 Hz was 0.01%, the

bearing failure type can be determined by failure fre-

quency. It is apparent that the proposed method has an

advantage in high-frequency processing over the improved

method described previously.

It is also verified that the proposed MSCSR method has

a better amplitude enhancement than the bi-stable system,

with an increase in the intensity of 3.39 times. Calculating

the SNR also proved that this method had obvious char-

acteristics that were better than those of the tri-

stable system, under the same initial signal conditions, the

increase in the SNR of the tri-stable system rose with the

number of cascades and eventually stabilized.

Fig. 10 Fault detection test

platform
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The initial fault signal SNR, �40.33 dB, was drowned

in the noise. The SNR of the proposed MSCSR method

increased with the number of cascades and was improved

by 3.83 dB relative to that of the tri-stable system, as

shown in Fig. 13. This demonstrates that the proposed

method enhances the SNR and can be used for weak signal

enhancement.

Comparison Verification

This section discusses a comparison between amplitude

increases. For both signals, the real signal is rich in

information in each region, and there were interfering

signals from the equipment in addition to the added noise.

Therefore, it was more likely that there would be an

insignificant increase during the actual processing. The

simulated signal composition was relatively simpler, and

the amplitude increased to 574% of the original using bi-

stable cascaded system. For verification of the real signal,

the proposed method can still achieve an increase of 339%.

This section discusses an SNR enhancement comparison.

The SNR is enhanced between the tri-stable cascaded

system and the MSCSR system, due to the introduction of

the bi-stable system characteristics, for simulated signal

and the real acquisition signal, the proposed method out-

performed the tri-stable cascaded system. The

enhancement of the SNR by the proposed method was

confirmed by the verification of both signals. In conclusion,

the amplitude of the proposed MSCSR method increased

more than that of the bi-stable cascaded system, and the

SNR enhancement was better than that of the tri-

stable cascaded system. It was also verified for different

Fig. 11 (a) Normal bearing, (b)

faulty bearing position 1, and

(c) faulty bearing position 2
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signals, thereby confirming the advantages of the proposed

method in extracting weak signal features.

Conclusions

In this study, an MSCSR method was used to extract weak

signals from engineering equipment and identify bearing

defects. This study produced three primary conclusions.

(1) The cascade saturation phenomenon was introduced

into an SR cascaded system, which, in addition to the

common amplitude increase saturation, was also

present in the SNR rating index.

(2) The proposed MSCSR method provided new treat-

ments by employing different types of SR systems,

combining the advantages of various systems in

nonlinear treatments. The results showed that the

Fig. 12 Raw fault vibration signal: (a) signal waveform and (b)

frequency-domain spectrum. Stochastic Resonance fault diagnosis

results for the bi-stable system with MSCSR: (c) bi-stable cascaded

system time-domain waveform, (d) bi-stable cascaded system

frequency-domain spectrum, (e) MSCSR system time-domain

waveform, and (f) MSCSR system frequency-domain spectrum

Table 1 Failed bearing parameters

Bearing

type

Pitch diameter

(mm)

Number of

balls (pcs)

Ball

diameter

(mm)

Contact

angle (�)

6207-

2RSR

53.5 9 10.5 0
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results were better than those of a cascade of the

same type of SR systems and provided inspiration

for the study of different system cascades.

(3) The sensitivity of the nonlinear system to the

parameters was exploited to achieve an increase in

the amplitude and the SNR. The results of analyses

of two types of signals showed that the proposed

method could accurately detect weak signals dis-

turbed by noise as well as enhance the characteristics

of weak signals; therefore, this method had the

potential for application in the detection of micro-

faults.
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