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Abstract The rolling bearing is the key component of

rotating machinery, and fault diagnosis for rolling bearings

can ensure the safe operation of rotating machinery. Fault

diagnosis technology based on deep learning has been

largely studied for bearing fault diagnosis. However, for

the deep learning model based on convolutional neural

network, there are some intrinsic problems of producing

inconspicuous features and useful feature information loss

in the process of feature extraction of the raw fault vibra-

tion signals. In this work, an intelligent fault diagnosis

method of rolling bearings based on short-time Fourier

transform and convolutional neural network (STFT-CNN)

is proposed. The one-dimensional vibration signals are

converted into time–frequency images by STFT. Then,

time–frequency images are inputted into STFT-CNN

model for fault feature learning and fault identification. For

the STFT of the vibration signals, the window type, win-

dow width and translation overlap width of the five typical

window functions are studied and optimal one is obtained.

And in the STFT-CNN model, the stacked double convo-

lutional layers are adopted to improve the nonlinear

expression capability of the model. To verify the effec-

tiveness of the proposed method, experiments are carried

out on the Case Western Reserve University (CWRU) and

the Machine Failure Prevention Technology (MFPT)

Society bearing datasets. The results show that the pro-

posed method outperforms other comparative methods and

reaches the identification accuracy of 100% and 99.96% for

CWRU and MFPT, respectively.
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Introduction

Rolling bearings are widely used in industrial production

equipment. As the most common components of rotating

machinery, the normal state of rolling bearings directly

affects the efficient and safe operation of mechanical

equipment [1], so it is important to carry out the fault

diagnosis of rolling bearings in advance. In recent years,

many fault diagnosis methods have been applied to rolling

bearings, and fault diagnosis technology has developed

rapidly with numerous achievements [2]. The fault diag-

nosis technology can be divided into four categories:

model-based [3–5], signal-based [6], knowledge-based

(also named as data-driven) [7], and hybrid [8]. Most of the

current research that focuses in data-driven fault diagnosis

are based on deep learning methods, with convolutional

neural network (CNN) being the most widely used. In the

last decade, CNN has been widely used in the field of

machinery fault diagnosis and has achieved good results

[9]. Generally, the use of CNN for fault diagnosis can be

divided into four processes: data collection, model build-

ing, feature learning, and decision making [10].

Due to the high effectiveness in the vibration signal

processing, one-dimensional (1D) convolutional neural

networks were successfully applied to bearing fault

detection and diagnosis [11, 12]. Zhang et al. [13] proposed

a 1D CNN bearing fault diagnosis model acting on time

domain signals. Abdeljaber et al. [14] fed raw time domain

signals into a 1D CNN and applied it to real-time structural
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damage detection in bleachers. Su et al. [15] proposed

ResNet to directly process the raw time domain signal for

fault diagnosis of a high-speed train bogie. Wang et al. [16]

proposed a multi-attention one-dimensional convolutional

neural network (MA1DCNN) to diagnose wheelset bearing

faults. Zhao et al. [17] transformed the 1D time domain

signals into frequency domain images by fast Fourier

transform (FFT), which were fed into BiLSTM, LeNet,

AlexNet, ResNet18 and other models for fault diagnosis.

Janssens et al. [18] used the discrete Fourier transform

(DFT) to change the time domain signal into a frequency

domain signal, which was fed into a CNN for fault diag-

nosis. Although 1D CNN has been applied in the field of

fault diagnosis, the following shortcomings still exist in the

1D CNN model.

(1) The advantages of CNN cannot be fully utilized

when 1D signals are used as the input, and after all,

CNN was originally designed to solve the learning

problems of the two-dimensional (2D) images.

(2) When 1D CNN is used for processing the time

domain signal directly, the useful fault feature

information is lost. The 1D CNN model cannot

obtain the accurate fault characteristics.

Image classification techniques using deep learning for

fault diagnosis are more efficient and better applicable.

Two-dimensional images often contain a wealth of fault

information, and deep learning can autonomously extract

features from the images that can characterize the type of

faults at a deep level in bearings. The process is to convert

1D vibration signal into 2D form, followed by image

classification [19] to achieve identification of bearing fault

states. Bhadane et al. [20] extracted statistical features from

vibration data as input to the model and further developed a

2D CNN for bearing fault classification. Hoang et al. [21]

converted the original time domain signals into 2D gray-

scale images according to the time series as an input to

CNN for fault diagnosis. Wang et al. [22] segmented the

1D raw signals and converted them into frequency domain

signals using FFT and then, converted the frequency

domain signals into 2D images. Finally, the 2D images

were fed into an improved LeNet-5 model, which was

successfully used to rapidly evaluate the bearing reliability

and predict the remaining bearing life. Wen et al. [23]

proposed to convert the original time domain signals into

2D gray-scale images and input the improved LeNet-5

model for fault diagnosis.

Unlike the 2D transform above, the 1D signals can also

be transformed by the short-time Fourier transform (STFT)

to generate 2D time–frequency images. The time–fre-

quency images have both time domain and frequency

domain information and contain more fault information.

Compared with time series signals, time–frequency images

are easier to extract information in noisy environments. In

the study of the fault diagnosis, it has been demonstrated

that time–frequency domain inputs are better than time

domain inputs [24]. STFT is widely used in the signal

processing of rotating machinery fault diagnosis, and many

researchers have made a lot of contributions to rolling

bearings fault diagnosis based on STFT. David et al. [25]

used three time–frequency analysis methods to convert

time domain signals into the corresponding time–frequency

images. Then, the time–frequency images were fed into the

proposed CNN model for fault diagnosis, and better results

were achieved with fewer learnable parameters. Zhu et al.

[26] used the STFT to generate 2D images from 1D signals,

followed by fault diagnosis using a capsule network. Tao

et al. [27] generated time–frequency images from the

original 1D vibration signals by STFT, which were input to

CatGAN for fault identification.

From the above literatures, it can be found that the

window width of the STFT and its effect on the diagnosis

results were investigated. But the type of window function

or the width of the translation overlap was hardly consid-

ered, or even both. Therefore, we analyze in depth the

respective effects of the window function type, window

width and translation overlap width on the fault diagnosis

model. And furthermore, we construct a new network for

rolling bearing fault diagnosis based on short-time Fourier

transform and convolutional neural network (STFT-CNN).

The main contributions of this work are summarized as

follows:

(1) Convert the 1D vibration signals into time–fre-

quency images as the input of the STFT-CNN which

can express more comprehensive fault information

and illustrate more obvious fault characteristics.

(2) The effects of five different window functions in the

STFT on the diagnostic performance of the proposed

model are investigated, and the types of window

functions, window widths and translation overlap

widths suitable for fault diagnosis are determined.

(3) A new two-layer stacked CNN is proposed to

improve the nonlinear expression capability of the

model.

The remainder of this article is organized as follows.

Section ‘‘Theoretical fundamentals’’ briefly introduces the

CNN structure and time–frequency analysis methods.

Section ‘‘The proposed method’’ gives a detailed descrip-

tion of the proposed machinery fault diagnosis method,

STFT to generate time–frequency images and the STFT-

CNN model structure. Section ‘‘Experimental validations’’

uses two cases to verify the effectiveness of the proposed

method and shows a comparison analysis with recent

methods for rolling bearing fault diagnosis. Finally, Sect.

‘‘Conclusion’’ summarizes the paper.
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Theoretical Fundamentals

Convolutional Neural Network (CNN)

Traditional CNN is widely used in computer vision and is

very good at extracting feature information from images. It

contains many well-known networks, such as LeNet [28],

AlexNet [29], VGGNet [30], ResNet [31], and MobileNet

[32]. Almost all major breakthroughs in image recognition

in recent years have used convolutional neural networks

(CNNs). A general CNN structure is shown in Fig. 1.

A CNN is mainly composed of three parts: convolu-

tional layer, pooling layer and fully connected layer, with

the convolutional layer and the previous layer connected in

a locally connected and weight sharing manner.

The convolution operation is defined as follows:

Hlþ1
j ¼

X
i2xj

Hl
j � wlþ1

ij þ blþ1
j

� �
ðEq 1Þ

where Hlþ1
j denotes the jth feature map of the neuron at

layer lþ 1, � denotes the convolution operation, wlþ1
ij

denotes the convolution kernel connecting the jth feature

map of the neuron at layer lþ 1 and the ith feature map of

the neuron at layer l, blþ1
j denotes the bias, and xj denotes

the image of the input CNN.

The convolution layer is a linear operation. To enhance

the classification ability of the model, a nonlinear activa-

tion function is added. The commonly used activation

functions are the Sigmoid function, Tanh function and

ReLU function, which are defined as follows:

fsigmoidðxÞ ¼
1

1 þ e�x
ðEq 2Þ

fTanhðxÞ ¼
ex � e�x

ex þ e�x
ðEq 3Þ

fReLUðxÞ ¼
x; x� 0

0; x\0

�
¼ max 0; xð Þ ðEq 4Þ

The three activation function curves are shown in Fig. 2.

Pooling layers are used to reduce network parameters,

and it is defined as follows:

Hlþ1
j ¼ f blþ1

j down Hl
j

� �
þ blþ1

j

� �
ðEq 5Þ

where downð�Þ denotes a subsampling function, b denotes

the multiplicative bias.

The common pooling methods are maximum pooling

and average pooling. Maximum pooling outputs the max-

imum value of the window, and average pooling averages

the values of the window and outputs them. A diagram of

the two pooling methods is shown in Fig. 3. The size of the

convolution kernel is 2 9 2, and the step size is 2 in the

example.

The fully connected layer is used to classify the feature

data extracted earlier, and this operation is expressed as

follows:

yk ¼ f wkxk�1 þ bk
� �

ðEq 6Þ

where k is the k-th layer network, xk�1 is the input of the (k-

1)-th fully connected layer, the yk is the output of the k-th

fully connected layer, wk is the weight coefficient, bk is the

bias, and f is the classification function.

Softmax is used as the activation function of the fully

connected layer to map the output of multiple neurons

between (0, 1). It is used for multi-classification tasks, and

the expression is shown below:

q xið Þ ¼ exi
PC

c¼1 e
xc

ðEq 7Þ

where x is the logical input value of the Softmax layer, and

q xið Þ is the C-dimensional probability vector corresponding

to x. The Softmax function converts the output value of the

last layer node into a probability value with a sum of 1 by

Fig. 1 General CNN structure
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the formula permutation. The label corresponding to the

maximum probability value is the type to which the sample

belongs.

For the most of classification problems, the cross-en-

tropy loss function is often used to represent the difference

between the true probability and the predicted probability

distribution. The smaller the value of cross-entropy, the

better the model predicts the classification effect. In addi-

tion, the cross-entropy loss function is often used with the

Softmax function, and it is defined as follows:

H p; qð Þ ¼ �
Xn

i¼1

p xið Þ log q xið Þð Þ ðEq 8Þ

where p xið Þ denotes the true distribution of the input

sample x, and q xið Þ denotes the predicted distribution of the

input sample x.

Time–Frequency Analysis

Time–frequency analysis technology is widely used in

speech processing, signal detection, state detection and

equipment fault diagnosis. The research on time–frequency

analysis technology began in the 1940s. Common time–

frequency analysis methods include continuous wavelet

transform (CWT), S-Transform, STFT, etc. Time–fre-

quency analysis maps 1D time domain signals to 2D time–

frequency planes and reflects the joint time–frequency

characteristics of the signal [33].

Suppose the wavelet mother function is w tð Þ, and the

scale factor and translation factor are a and b, respectively.

The wavelet mother function is scaled and translated to

obtain the subfunction, whose equation is shown as

follows:

wa;b tð Þ ¼ 1ffiffiffi
a

p w
t � b

a

� 	
a; b 2 R; a[ 0 ðEq 9Þ

Since the scale factor and translation factor are

continuously transformed, it is called the continuous

wavelet function basis. The expansion of the continuous

signal s tð Þ in the wavelet basis is called the continuous

wavelet transform. The CWT is defined as follows:

WT a; bð Þ ¼ 1ffiffiffi
a

p
Z

R

s tð Þw� t � b

a

� 	
dt ðEq 10Þ

The S-Transform is defined as follows:

S s; fð Þ ¼
Z þ1

�1
s tð Þ fj jffiffiffiffiffiffi

2p
p e�

t�sð Þ2 f 2
2 e�j2pftdt ðEq 11Þ

where t is the time, f is the frequency, j is an imaginary

unit, and s is the center of the Gaussian window function.

In 1946, Dennis Gabor proposed the STFT. The basic

idea is to assume that the signal is smooth in a very short

Fig. 2 Three activation function curve graphs. (a) Sigmoid, (b) Tanh, (c) ReLU

Fig. 3 Pooling methods. (a) Maximum pooling (b) Average pooling

798 J Fail. Anal. and Preven. (2023) 23:795–811

123



time. A window function is used to divide the signal into

small segments, and STFT is performed on each segment

of the signal. Then, connect all the spectral analysis to form

a time–frequency image, and the operation process is

expressed as follows:

STFT t;xð Þ ¼
Z

1
�1 s sð Þg s� tð Þe�jxtds ðEq 12Þ

Its spectrogram can be computed as follows:

STFT t;xð Þj j2¼
Z

1
�1 s sð Þg s� tð Þe�jxtds












2

¼ G t;xð Þ

ðEq 13Þ

where s tð Þ denotes the signal, g tð Þ denotes the window

function, t and s denote the moment, g s� tð Þ denotes the

window function whose center is located at moment t, and

x denotes the frequency.

The Proposed Method

Procedures of Proposed Method

Based on the theoretical fundamentals given above, we

design a bearing fault diagnosis method. Figure 4 shows

the flowchart of the proposed fault diagnosis framework

based on STFT and CNN. It can be clearly seen that 1D

vibration signals are sampled and subsequently conducted

by the optimal STFT to form time–frequency images, and

then, the images are inputted into the 2D CNN for fault

classification and identification. The details of the fault

diagnosis procedure are described as follows.

(1) Data preprocessing stage: Sensors collect the bearing

vibration signals, and the vibration signals are divi-

ded into sample sequences in order. After that, the

sample sequences are transformed into time-fre-

quency images via the optimal STFT. To speed up

the data processing, the time-frequency image data

are normalized by Z-Score, and the formula is shown

as Eq. 14:

Xi ¼
xi � l
r

ðEq 14Þ

where xi represents each data in the time–frequency image,

Xi represents each data in the time–frequency image after

normalization, l and r represent the mean and standard

deviation of the data in the time–frequency image.

(2) Model training stage: The training set samples are

inputted into the designed 2D-CNN model. The

trained model can be obtained by continuously

updating the weights iteratively to minimize and

stabilize the loss function.

(3) Fault diagnosis stage: The testing set samples are

inputted to the trained model to obtain fault diagno-

sis results.

Data Split

In the data preprocessing stage, we need to split the

acquired signal. The most common method of data split in

intelligent fault diagnosis field is random sampling, as

shown in Fig. 5. We use this method in the experiments. To

prevent information leakage, we did not perform over-

lapped samplings. In the generated samples, 80% of the

samples are randomly selected as the training set and 20%

samples as the testing set. After that, the generated samples

are inputted into the STFT-CNN model.

Signal to Image Conversion

STFT contains both time domain and frequency domain

information after transforming 1D vibration signals into 2D

time–frequency images. STFT has two important parame-

ters, window width and translation overlap width. The

wider the width of the window function provides higher

frequency domain resolution, and the narrower the width

provides higher the time domain resolution. According to

the Heisenberg inaccuracy principle, it is known that both

cannot be obtained. So only the appropriate window width

can be chosen to achieve the optimal result.

Fig. 4 Flowchart of the proposed bearing fault diagnosis method

J Fail. Anal. and Preven. (2023) 23:795–811 799

123



The one-dimensional signal is passed through STFT to

form a time–frequency image, and the time domain reso-

lution is calculated as:

T ¼ Nx � No

Nw � No

� �
ðEq 15Þ

where �½ � denotes rounding down, Nx is the sample length,

No is the window function translation overlap width, and

Nw represents the window function width.

The formula for the frequency domain resolution is

divided into two cases where Nw is even and odd:

(1) When Nw is an even number, the frequency domain

resolution equation is:

F ¼ Nw

2
þ 1 ðEq 16Þ

(2) When Nw is an odd number, the frequency domain

resolution equation is:

F ¼ Nw þ 1

2
ðEq 17Þ

Reasonable time domain and frequency domain

resolution can make the fault signal more obvious and

reduce noise interference. Since the CNN input is

preferably square matrices, four window function widths

Nw and translation overlap widths No are set in this

experiment, as shown in Table 1. The time–frequency

images generated from four different window widths are

input to the proposed STFT-CNN model for training and

testing. Determine the window width and translation

overlap width of the window function according to the

accuracy index and time index.

Details of the STFT-CNN Model Structure

Figure 6 shows the proposed STFT-CNN, which consists

of five convolutional layers (C), two maximum pooling

layers (MP), one adaptive maximum pooling layer (AMP)

and three fully connected layers (FC). FM denotes the

feature map; OP denotes the output bearing state result.

The original signals are converted into images, which are

fed into the proposed STFT-CNN model to classify the

images. In this study, the proposed STFT-CNN model is

used to solve the fault diagnosis task.

The detailed structural parameters of each layer of the

STFT-CNN model are shown in Table 2. The model con-

sists of four parts. The first part consists of 32

convolutional kernels of size 5 9 5 followed by a 2 9 2

maximum pooling layers. The second part consists of a

two-layer stack of 32 convolutional kernels of size 3 9 3

followed by a 2 9 2 maximum pooling layer. The third

part consists of a two-layer stack of 64 convolutional

kernels of size 3 9 3 followed by a 2 9 2 adaptive max-

imum pooling layer. The first convolutional layer is

followed by maximum pooling, the remaining two con-

volutional layers are stacked, and then, maximum pooling

is used. The fourth part is a three-layer full connection

layer with input dimensions of 256, 1024, and 128,

respectively. The Sigmoid activation function is initially

selected for the convolutional layer, and the ReLU acti-

vation function is used for the full connection layer of the

benchmark model.

Fig. 5 Diagram of data split

Table 1 STFT window parameters setting

Nw No Size

64 34 33 9 33

128 114 65 9 65

256 250 129 9 129

512 510 257 9 257
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Moreover, the advantages of the STFT-CNN model are

summarized as follows:

(1) The first layer of convolution adopts a 5 9 5

convolution kernel, which can extract the informa-

tion from the larger neighborhood range of the time–

frequency image and obtain better features. Large

convolutional kernels are used in the first layer to

increase the receptive field, acquire more data, and

provide more information for the subsequent layers

of the network, and the large convolutional kernels

can better suppress high-frequency noise [34].

(2) Use two 3 9 3 convolution kernels instead of one

5 9 5 convolution kernel. Two 3 9 3 convolution

layers need two activation functions, which can

increase the nonlinear expression capability. Mean-

while, two stacked convolutional layers can improve

the feature extraction ability, while fewer parameters

can reduce the computational effort [25].

In addition to the settings of the network structural

parameters, the STFT-CNN benchmark parameters are set

as shown in Table 3. The loss function uses the cross-

entropy loss function. The Adam optimizer is used to

optimize the model parameters, the initial learning rate is

0.001, and the batch size is set to 16.

Experimental Validations

To verify the validity of the proposed model, experimental

validation is conducted on two rolling bearing datasets

using the deep learning framework Pytorch, and the net-

work model is built in the Pytorch environment using

Python 3.8. The computer configuration used for the

experiments is CPU i7-11800H, RAM 16 GB, GPU

GeForce RTX 3050Ti 4 GB.

Case Study 1: Case Western Reserve University

(CWRU) Bearing Dataset

The proposed method was first validated on the CWRU

bearing dataset, USA [35]. The data acquisition platform is

shown in Fig. 7. A 2-hp three-phase asynchronous drive

motor is used as the power source on the left side, and a

torque transducer is installed in the middle to measure the

speed and torque. A dynamometer is installed on the right

side to generate the rated load. An acceleration sensor is

installed at 12 o’clock position on the drive side to collect

the vibration signal with a sampling frequency of

12,000 Hz.

The bearing type used in the experiment is the SKF

6205-2RS JEM deep groove ball bearing. The bearings

were seeded with single point faults using electro-

Fig. 6 Proposed STFT-CNN structure

Table 2 Structural parameters of each layer of the STFT-CNN model

Layer Parameters

C1 Conv2d(5 9 5 9 32)

MP1 MaxPool2d(2 9 2)

C2 Conv2d(3 9 3 9 32)

C3 Conv2d(3 9 3 9 32)

MP2 MaxPool2d(2 9 2)

C4 Conv2d(3 9 3 9 64)

C5 Conv2d(3 9 3 9 64)

AMP AdaptiveMaxPool(2 9 2)

FC1 Input dimensions = 256

FC2 Input dimensions = 1024

FC3 Input dimensions = 128

Table 3 Benchmark model parameter setting

Parameter Value

Batch size 16

Learning rate 0.001

Optimizer Adam

Normalization method Z-Score

Loss function CrossEntropy Loss
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discharge machining (EDM). And bearing faults are divi-

ded into three categories, namely inner race fault (IR),

outer race fault (OR) and rolling element fault (BF). There

are also three different degrees of damage for each fault

type, with damage sizes of 0.18 mm, 0.36 mm, and

0.54 mm. The CWRU bearing dataset contains four load

states of the bearing: 0HP, 1HP, 2HP, and 3HP. This

experiment uses the drive end data at 0, 1, 2, and 3HP, and

four loads to verify the performance of the proposed

method. Nine fault types plus one normal state make a total

of 10 health states under each load. The data of the same

fault location, the same damage level, and different loads

are treated as one health state. So the four loads can also be

divided into 10 health states, and the detailed fault repre-

sentation is shown in Table 4. To contain sufficient

information for each sample, 1024 data points are used as a

sample length. A total of 5940 samples can be generated

for 10 health states. There are 4752 samples in the training

set and 1188 samples in the test set.

We use the proposed bearing fault diagnosis method to

conduct the CWRU bearing dataset, and first, the time–

frequency images can be obtained. Figure 8 shows a nor-

mal state signal and the corresponding time–frequency

image. The left side is the time domain waveform of the

normal signal, and the right side is the time–frequency

image converted by STFT from the time domain signal. In

the time–frequency image, the horizontal coordinate is

time, and the vertical coordinate is frequency. The vibra-

tion components of normal state are mostly in the low- and

medium-frequency band.

For STFT, different window functions will undoubtedly

lead to different time–frequency spectra. So, it is much

necessary to explore the effects of different window

functions in STFT. Thus, five common types of window

functions, namely Hamming window, Blackman window,

Bartlett window, Hann window, and Rectangle window,

are chosen to further investigate the effects of different

window function types, window width, and translation

overlap width on diagnostic results. The shapes of the five

window functions in the time and frequency domains are

shown in Fig. 9.

It can be observed from Fig. 9 that five different types of

window functions have obviously different frequency

domain characteristics although the Hamming window,

Blackman window and Hann window have the same time

domain shapes. Moreover, the distinction and intrinsic

Fig. 7 Bearing data acquisition

platform of CWRU

Table 4 The details of the used datasets in CWRU

Fault Location Fault Size (mm) Load (HP) Label

NO / 0,1,2,3 0

IR 0.18 0,1,2,3 1

BF 0.18 0,1,2,3 2

OF 0.18 0,1,2,3 3

IR 0.36 0,1,2,3 4

BF 0.36 0,1,2,3 5

OF 0.36 0,1,2,3 6

IR 0.54 0,1,2,3 7

BF 0.54 0,1,2,3 8

OF 0.54 0,1,2,3 9
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features of five different types of window functions can be

summarized as follows:

(1) The advantage of rectangle window is that the

mainlobe is more concentrated. The disadvantage is

that rectangle window has a large sidelobe and a

negative side lobe. It is easy to introduce high-

frequency interference and leakage during the trans-

formation process, and even negative spectrum

phenomena occur. The frequency resolution is the

highest, while the sidelobe leakage is the most

serious, so the rectangle window is not an ideal

window.

(2) Compared with the rectangle window, the Hann

window has a wider mainlobe and a smaller

sidelobe. From the viewpoint of reducing leakage,

the Hann window is better than the rectangle

window. However, the widening of the mainlobe

of the Hann window corresponds to a widening of

the analysis bandwidth and a decrease in frequency

resolution. In this situation, the Hann window is not

suitable for accurate measurements of small signals.

(3) The Hamming window and the Hann window are

both cosine windows, but with different weighting

factors. The weighted coefficients of the Hamming

window make the sidelobe smaller, so that they

decay more slowly than the Hann window and are

more effective in reducing the amplitude of the

sidelobe. Therefore, the Hamming window is a

greatly useful window function.

(4) The Blackman window has a wide mainlobe and a

small sidelobe. The amplitude resolution is the

highest, but the frequency resolution is the lowest.

(5) The Bartlett window has a triangular shape in the

time domain and is often used for sharpening a

signal, without forming too much ripple in the

frequency domain.

To obtain the optimal STFT, a comparative analysis was

implemented on the five different types of window

functions. In our STFT-CNN model, different window

functions were utilized, and the window width and trans-

lation overlap width of each window function type are set

to each value listed in Table 1. After that, 10 health state

signals are used for experiment validation. The experi-

mental results of the five window function types are shown

in Fig. 10.

As can be found from Fig. 10, the bearing fault identi-

fication accuracies obtained via the proposed model with

five different window functions, window widths, and

translation overlap widths can reach more than 91% for 10

health states. When the window function is Hamming

window, the window width is 64 and the translation

overlap width is 34, the identification accuracy is the best

and up to 99.94%.

Figure 11 shows the time–frequency images of 10

health states. These images are generated by using STFT

with a Hamming window of width 64. The size of the

generated image is 33 9 33, and the converted image

contains 1089 pixels. From Fig. 11, it can be easily seen

that any two images are obviously different, which illus-

trates that STFT can obtain the distinctive features of

different health states.

The activation function types also affect the perfor-

mance of the model. To further improve the diagnostic

accuracy of the model, the activation function of the model

is optimized. During a series of experiments, it is verified

that the highest identification accuracy of the model was

100% when the convolutional layer used the ReLU acti-

vation function and the fully connected layer used the Tanh

activation function with a training batch size of 32.

The diagnostic efficiency is also considered for the

proposed model, and the time consumption of the five

window functions during the verification process is recor-

ded. The results show that the five window functions take

equal time for the same window width. Thus, only the time

consumption by Hamming window for the four window

widths is given, as shown in Fig. 12.

Fig. 8 1D Signal to 2D image
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It can be easily seen from Fig. 12 that as the window

width increases, the test time gradually increases in the first

epoch. When the window width is 64, the least time is

required, and the highest diagnostic efficiency can be

achieved. Thus, the model has the highest diagnostic

accuracy and diagnostic efficiency when the Hamming

Fig. 9 The shapes of five window functions in the time and frequency domains. (a) Hamming window, (b) Blackman window, (c) Bartlett

window, (d) Hann window, (e) Rectangle window
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window is selected, and the window width is 64. The above

results can determine the window function type, window

width, translation overlap width and the settings of the

proposed model parameters.

Figure 13 shows the accuracy curves and loss curves of

the training and testing sets. The curves show that the

proposed model can obtain satisfactory results, reaching

100% accuracy at the 6th epoch with the loss function

tending to zero and stabilizing.

To make the experimental results more intuitive, Fig. 14

shows the confusion matrix of the STFT-CNN verification

experiment on the CWRU bearing dataset, with the hori-

zontal coordinates indicating the predicted labels of each

fault and the vertical coordinates indicating the true labels

of the corresponding faults. The results show that the

proposed method achieves 100% prediction accuracy for

all fault types, implying that the proposed method can

accurately identify the 10 fault status of the rolling bearing.

To further evaluate the performance of the proposed

method, we compared the method with eight other meth-

ods: ADCNN [36], DBN Based HDN [37], Sparse filter

[38], CNN [23], ResNet-DA [39], Self-CNN [40], gcForest

[41], and DRL [42]. The classification accuracies of all the

methods are shown in Table 5.

It is noted that we repeated the procedure of each

method 10 times on the CWRU bearing dataset and used

the average accuracy of the 10-time classification results as

the performance index of each method to avoid the ran-

domness of the experimental results. It can be easily seen

that the accuracies of ADCNN, DBN Based HDN, Sparse

filter, CNN, ResNet-DA, Self-CNN, gcForest, and DRL are

98.10%, 99.03%, 99.66%, 99.79%, 99.91%, 97.32%,

Fig. 10 The classification accuracies of five window functions on CWRU
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99.20%, and 99.98%, respectively. Among them, ResNet-

DA and Self-CNN methods can process 1D signals

directly. ADCNN, CNN, gcForest, and DRL methods need

to convert 1D signals into two dimensions before pro-

cessing. The accuracy of the STFT-CNN method is 100%,

which is the best compared with eight other methods,

indicating the effectiveness of the proposed method.

Case Study 2: Machine Failure Prevention Technology

(MFPT) Bearing Dataset

Fig. 11 Time–frequency images of 10 health states

Fig. 12 Time consumption of

Hamming window at four

window widths
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In this experiment, bearing data were acquired from the

Machine Failure Prevention Technology Society [43]

public dataset, provided by Dr. Eric Bechhoefer. The

installed bearings are NICE bearings, including outer race

fault, inner race fault, and normal in three conditions, and

the faults are shown in Fig. 15.

The bearing data are divided into four groups.

(1) Three normal states: 270 Ibs of load with a sampling

frequency of 97,656 Hz and duration of 6 s.

(2) Three outer race faults: 270 Ibs of load with a

sampling frequency of 97,656 Hz and duration of

6 s.

(3) Seven outer race faults: 25, 50, 100, 150, 200, 250,

300 Ibs of load with a sampling frequency of 48,828

HZ and duration of 3 s.

(4) Seven inner race faults: 0, 50, 100, 150, 200, 250,

300 Ibs of load with a sampling frequency of

48,828 Hz and duration of 3 s.

This experiment uses the three normal states, seven

outer race faults, and seven inner race faults, and the

detailed experimental data are given in Table 6. The

number of sampling points selected in this dataset is also

1024. A total of 3717 samples can be generated for three

health states. There are 2974 samples in the training set and

743 samples in the test set.

The time–frequency images generated through the

Hamming window with a window width of 64 for the three

health states of the MFPT dataset are shown in Fig. 16. It

can be seen from Fig. 16 that the images are obviously

different, and the different colors represent the size of the

frequency amplitude. This allows for better classification of

three fault types.

We carried out the same processing procedures as the

case study 1 for the three health states of the MFPT dataset.

The experimental results of the five window functions on

the MFPT dataset are shown in Fig. 17.

The experimental results show that the proposed model

can achieve identification accuracies of more than 97% for

different window functions, window widths, and transla-

tion overlap widths on the MFPT bearing dataset. When the

window function is Bartlett window, the window width is

128, and the translation overlap width is 114, the identifi-

cation result is the best, and the identification accuracy

reaches 99.98%. The window function determined in the

Fig. 13 The accuracy curves

and loss curves on CWRU. (a)

Accuracy curves of training and

testing sets and (b) Loss curves

of training and testing sets

Fig. 14 Confusion matrix of bearing fault identification

Table 5 Classification results of all the methods

Methods Year Accuracy, %

ADCNN 2016 98.10

DBN Based HDN 2016 99.03

Sparse filter 2016 99.66

CNN 2018 99.79

ResNet-DA 2018 99.91

Self-CNN 2021 97.32

gcForest 2021 99.20

DRL 2022 99.98

STFT-CNN 100
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CWRU bearing dataset is the Hamming window with a

window width of 64, and identification accuracy is 99.96%,

which is second only to the Bartlett window and can meet

the needs of diagnosis. However, in terms of diagnostic

efficiency, since the Bartlett window takes 1.3 s in every

epoch during the test and the Hamming window only takes

0.21 s, the determined window function is more efficient

for diagnosis.

When using the Hamming window, the accuracy curves,

and loss curves of the training and testing sets are shown in

Fig. 18. The curves illustrate that the network has been

trained sufficiently, so the identification results are

convincing.

To further verify the superiority of the proposed method,

we compare it with four well-known deep learning meth-

ods. The processing procedure for the MFPT bearing

dataset is absolutely the same as that for the CWRU

bearing dataset. And thus, the average diagnostic accuracy

and testing time of each method are shown in Table 7.

The accuracies of LeNet, ResNet18, ResNet34, and

BiLSTM [17] are 97.65%, 99.25%, 99.79%, and 96.15%,

respectively. And meantime, the STFT-CNN method can

achieve the accuracy of 99.96%, which is higher than the

Fig. 15 Types of bearing fault.

(a) Inner race fault and (b)

Outer race fault

Table 6 The details of the used datasets in MFPT

Fault type Sample rate Load (Ibs) Label

Three normal states 97,656 270 0

Seven outer race faults 48,828 25, 50, 100, 150, 200, 250, 300 1

Seven inner race faults 48,828 0, 50, 100, 150, 200, 250, 300 2

Fig. 16 Time–frequency images of three health states
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accuracies of the other four methods. The results validate

the effectiveness of the proposed method. In addition, the

testing time of the STFT-CNN model is 0.21 s in each

epoch, which is less than that of the ResNet18, ResNet34,

and BiLSTM models (i.e., 0.69 s, 1.07 s, 0.35 s, respec-

tively). It is only 0.09 s longer than the LeNet, but the

Fig. 17 The classification accuracies of five window functions on MFPT

Fig. 18 The accuracy curves

and loss curves on CWRU. (a)

Accuracy curves of training and

testing sets and (b) Loss curves

of training and testing sets
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accuracy is much higher, which is acceptable. This

experiment also demonstrates that the proposed method is

good at diagnosing rolling bearing faults.

Conclusion

In this paper, we propose a fault diagnosis method based on

STFT and CNN. This method strikes the problem of feature

loss when extracting features of 1D vibration signals. The

original time domain signals are converted to time–fre-

quency images via optimized STFT, and subsequently the

images are inputted to 2D-CNN for fault classification and

identification. To obtain optimal STFT, the window func-

tion types, window widths, and translation overlap widths

suitable for the 1D bearing vibration signals are deter-

mined. In addition, a new CNN architecture is proposed for

use in rolling bearings fault diagnosis. The STFT-CNN

framework is constructed with two convolutional layers

stacked to increase the nonlinear expression capability. The

proposed method is tested on two benchmark bearing

datasets, and the results show that STFT-CNN model can

achieve high fault identification rates with prediction

accuracies of 100% and 99.96%, respectively, outper-

forming other methods. The experimental results

demonstrate the effectiveness of the proposed method and

strongly suggest that the proposed method has a great

potential in fault diagnosis of rolling bearings and rotating

machinery.
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