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Abstract The main purpose of this paper is to investigate

the interface relaxation FEM–BEM coupling method to

resolve problems involving nonlinear fracture mechanics.

In this coupling technique, the nonlinear portion near the

crack tip is modeled by the finite element method (FEM)

and the remainder of the domain which is linear elastic is

discretized using the boundary element method (BEM). In

the coupling procedure adopted here, there is no need to

combine the coefficients matrices of FEM and BEM sub-

domains and separate computing for each subdomain with

successive renewal of the variables on the interface are

performed to reach the final convergence. To demonstrate

the effectiveness of the developed approach, several prac-

tical problems of nonlinear fracture mechanics are

analyzed. The conventional FEM computations are also

performed, and a critical comparison of the results is made.

Keywords Iterative coupling FEM–BEM � FEM �
BEM � Elastoplastic fracture mechanics

Abbreviations

a Crack length

b Vector of distributed load/unit volume

B Elastic strain displacement matrix

cij Tensor dependent on the location of the field

point

Dep Tangential elastoplastic modular matrix

E Elasticity modulus for plane stress conditions

E0 Elasticity modulus for plane strain conditions

f External applied forces

f Yield function

FF
F

� �
Forces vector applied on the FEM subdomain

FI
F

� �
Forces vector applied on the FEM/BEM interface

G, H Influence coefficient matrices

G Shear modulus of the material

h Hardening parameter

KI,II,

III

Stress intensity factors in mode I, II and III.

K Stiffness matrix for the overall structure

[Ke] Elementary stiffness matrix

M Number of boundary elements.

N Shape functions matrix

r Distance between the field point and the source

point

p Internal point.

{Dp} Incremental elementary force vector

{DR} Vector of the boundary values for the tractions

{t} Incremental force vector

tB
B

n o
Tractions vector applied on the BEM subdomain

tI
B

n o
Tractions vector applied on the FEM/BEM

interface

T(p,

Q)

Matrix containing fundamental solution for the

tractions at point p

{u} Vector of the boundary values of the

displacements

{uB} Displacement vector of the BEM subdomain

uI
B

n o
Displacement vector of the FEM/BEM interface
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uB
B

n o
Displacement vector of the BEM subdomain

except uI
B

n o

{uF} Displacement vector of the FEM subdomain

uI
F

n o
Displacement vector of the FEM/BEM interface

uF
F

n o
Displacement vector of the FEM subdomain

except uI
F

n o

U(p,

Q)

Matrix containing fundamental solution for the

displacements at point p

U Strain energy density

{Dun} Incremental displacement vector at the nodes

{DU}e Incremental strain energy in the element

x Vector containing coordinates

xf Field point

xs Source point

a Subtended angle from point p to the boundary

dij Kronecker delta symbol

{DP} Incremental potential energy stored.

e Strain vector

ep Effective plastic strain

{De}e Incremental strain vector of the element

C Boundary of the domain X
m Poisson’s ratio

r Stress vector

r Effective stress

rY Yield stress

{Dr}e Incremental stress vector of the element.

X Two-dimensional arbitrary domain

x Relaxation parameter

n Local coordinate

{Dw} Residual force vector

BB Superscript indicating boundary element

subdomain without interface

BE Superscript indicating boundary element

subdomain

FE Superscript indicating finite element subdomain

FF Superscript indicating finite element subdomain

without interface

I Superscript indicating interface FEM/BEM

subdomains

IB Superscript indicating interface boundary element

subdomain

IF Superscript indicating interface finite element

subdomain

Introduction

The finite element method (FEM) is a powerful and ver-

satile approach for the solution of a wide class of practical

problems. It is often the method of choice for solving

inhomogeneous, anisotropic, and nonlinear problems [1].

The boundary element method (BEM) is a good alternative

approach, especially for elastic linear and isotropic prob-

lems with infinite extension and regions of high-stress

concentration [2]. The main advantage of the BEM is that

due to the modeling only of the boundary of the bodies,

there is a reduction of the problem dimensionality by one,

which results in significantly decreasing the modeling time.

However, BEM is not preferable when there are inhomo-

geneities and non-linearities in the analysis domain. Thus,

each method performs better than the other in some

domains or some parts of the same domain. Therefore, a

combined formulation that couples FEM and BEM and

exploits the potential of each method seems to be very

useful.

In the case of nonlinear fracture mechanics, the plastic

region is restricted near the crack-tip and their main region

can be treated as linear elastic. In such a problem, an

intermarriage of FEM and BEM is conceptually and

computationally very attractive. It permits to retain the

advantages of each method since it allows discretization of

only this limited plastic zone by finite elements, rather than

that of the entire domain. The rest can be easily modeled

using BEM in which nodal points are only needed on the

boundary instead of throughout the region as required by

the FEM.

From the historical point of view, it seems that the well-

established first paper in this fruitful research area is that of

Zienkiewicz et al. [3]. Then, a variety of combined

approaches has been later developed by several authors

[4–8]. An overview of the literature on this topic published

before 2004 has been presented by Ganguly et al. [9]. The

development and analysis of new techniques for coupling

FEM–BEM have been the subject of growing interest in

recent years. It has been investigated extensively and

applied to different areas such as elastostatics [10–12],

elastoplastic [6, 13], viscoelastic [14, 15], dynamics

[8, 16], fracture mechanics [17–19], biomechanics [20],

heat transfer [21, 22], contact [23, 24], fluid–structure

interaction [25, 26], soil–structure interaction [27, 28],

acoustics [29, 30], magnetostatic problems [31, 32], and

isogeometric [33].

In general, the existing coupling approaches can be

roughly classified into three main categories: (1) FE hosted,

in which BEM subdomain is treated as a macro-finite

element (i.e., in this case, the boundary element equations

are transformed into an equivalent force-displacement

equations system). (2) BE hosted in which, FE subdomain

is treated as an equivalent BE subdomain (i.e., the FEM

equations are transferred into traction-displacement equa-

tions system) and (3) FE–BE approach which gathers

those, which are not included in either of the two above

approaches.
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The first two approaches of coupling (FE hosted and BE

hosted) have been studied thoroughly in the literature

[3–10, 34]. In fact, merging two different kinds of pro-

grams together to form an integrated finite element

boundary element software environment will require con-

siderable effort and has a negative effect on the strong

points of each method. Hence, a change in strategy used in

the coupling procedure was undertaken to overcome some

difficulties and make the coupling method more efficient.

In this context, the most appealing ones are those which

preserve the features of each method. Among those appears

the coupling method by an interface relaxation procedure

which has been selected in this work to deal with elasto-

plastic fracture mechanics problems. The main advantage

of this coupling technique that it does not need to modify

the FEM or BEM matrices, but a separate computing will

be carried out for each subdomain what allows the direct

use of software packages.

The purpose of this paper is to extend the iterative

coupling FEM–BEM approach for solving the nonlinear

problems of elastoplastic fracture mechanics and to high-

light its effectiveness by considering different behaviors,

hardenings, loadings, and configurations. To achieve this

objective, the paper is organized as follows. In the second

section, the FEM–BEM discretization is presented. Noting

that the linear elastic part is modeled by BEM, and how-

ever, the nonlinear elastoplastic subregion in the vicinity of

the crack is modeled by FEM. Details about the application

of both methods in such subregions are given in sections 3

and 4. The use of J-integral in elastoplastic fracture is

described in section 5. The iterative FEM–BEM coupling

and its implementation are outlined in section 6. Finally,

the proposed coupling procedure is carried out for several

practical examples to illustrate its applicability, its accu-

racy, and its efficiency for the analysis of the cracked

structures.

FEM–BEM Discretization

In this work, an interface relaxation FEM–BEM coupling

method was developed. To carry out this approach, the

original problem is decomposed into two subproblems as

shown in Fig. 1. The first is related to an elastoplastic

subdomain XFE containing cracks, while the other is a

linear elastic subdomain XBE. The first is modeled by FEM

and the second by BEM. The final solution is then obtained

by combining the two subproblems at the common inter-

face CI = CIF = CIB. The remaining parts of the boundaries

in the FEM and BEM subdomains are denoted by CFF and

CBB, respectively.

It is important to note that this FEM–BEM coupling

procedure yields a group of approximately independent

subproblems of lower computational difficulty [35]. This

technique considers the separate analysis of the linear and

nonlinear subproblems by preserving the advantages of

both methods FEM and BEM.

It should be noted that to ensure a correct coupling

between both methods, the conditions of equilibrium and

compatibility must be satisfied. The meshes are compatible if

both have common nodes at the interface and the degree of

interpolation functions used in FEM and BEM is identical.

Thus, we have used 8-noded isoparametric quadrilateral

elements for the finite element subdomain, and 3-noded

isoparametric quadratic elements in the boundary element

formulation as shown in Fig. 1. In what follows, we perform

the appropriate formulation for each subdomain, and then,

we apply the iterative principle on the interface between both

subdomains to carry out the coupling.

Boundary Element Modeling of Elastic Subdomain

In this section, we will briefly introduce the applicability of

the direct BEM for the analysis of the elastic linear sub-

region which will be coupled with the nonlinear finite

element’s subregion. Indeed, the BEM has many positive

attributes that make it advantageous for the use in the

elastic linear region of cracked ductile structures. A widely

recognized advantage of the BEM is that it reduces by one

the dimensionality of the problem which leads to a reduced

system of equations of freedom [2, 36]. This is particularly

advantageous for numerical fracture mechanics because

fewer degrees of freedom imply greater numerical stability

in the solution process [37]. In this work, 3-noded

isoparametric parabolic elements are used (Fig. 2). By

using the matrix notation, the geometry of each boundary

element and the variation of the displacement and traction

can be expressed as function of the local coordinate, n as

follows:

xðnÞ ¼ NðnÞ xe

uðnÞ ¼ NðnÞ ue

tðnÞ ¼ NðnÞ te
ðEq 1Þ

where x, u(n) and t(n) are, respectively, vectors containing

coordinates, displacements and tractions components at n;

xe, ue and te are vectors of the corresponding values at the

element nodes, and N(n) is matrix containing the shape

functions for 3-noded isoparametric quadratic elements,

i.e.,:

N1ðnÞ ¼ 1

2
nðn� 1Þ; N2ðnÞ ¼ ð1 � n2Þ;

N3ðnÞ ¼ 1

2
nðnþ 1Þ

ðEq 2Þ

In the direct formulation of the BEM, a numerical

solution for a body of domain X with a boundary C and in
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the absence of the body forces, the displacement boundary

integral equations for elasticity can be written as:

CuðpÞ þ
Z

C
Tðp;QÞuðQÞdC ¼

Z

C
Uðp;QÞtðQÞdC ðEq 3Þ

In Eq (3), also known as Somigliana identity, the matrix C

is 292 matrix of constant which values depend on the type

of point p under consideration. If p is an internal point

C ¼ 1 0

0 1

� �
ðEq 4Þ

If p is a boundary point on smooth surface then,

C ¼
1
2

0

0 1
2

� �
ðEq 5Þ

If p is a corner with subtended angle a, the matrix C is

given by [38],

Fig. 1 Discretization of the

original problem domain using

finite elements and boundary

elements

Fig. 2 Discretization of two-dimensional domain boundary elements—load and field points relationship
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C ¼ c11 c12

c21 c22

� �
ðEq 6Þ

with

c11 ¼ �1 þ 1

4pð1 � mÞ ð2 � 2mÞaþ sin 2a
2

� �
ðEq 7:aÞ

c22 ¼ �1 þ 1

4pð1 � mÞ ð2 � 2mÞa� sin 2a
2

� �
ðEq 7:bÞ

c12 ¼ c21 ¼ � sin2 a ðEq 7:cÞ

The kernels T(p, Q) and U(p, Q) are matrices containing

fundamental solutions for the tractions and displacements

at point p on the boundary. Fundamental solutions are

analytical solutions of the differential equations of

elasticity for point forces at p in an infinite medium

(Kelvin’s solutions). For two-dimensional plane strain

problems, these kernels are given as [2]:

Uijðp;QÞ ¼
1

8pð1 � mÞG ð3 � 4mÞdij ln
1

r
þ or

xi

or

xj

� �
ðEq 8Þ

Tijðp;QÞ ¼
�1

4pð1 � mÞr
or

on
ð1 � 2mÞdij þ 2

or

oxi

or

oxj

� ��

�ð1 � 2mÞ or

oxj
ni �

or

oxi
nj

� �	

ðEq 9Þ

In which dij is the Kronecker delta, G is the shear modulus

of the material, and r is the position vector, i.e., distance

between point source and point field (see Fig. 1).

Substituting (1) into the matrix equation (3), we can

write for each particular node, ‘‘i’’:

CiuiðpÞ

þ
XM

j¼1

Z

Cj

Tðp;QÞNðnÞdC
" #

ue ¼
XM

j¼1

Z

Cj

Uðp;QÞNðnÞdC
" #

te

ðEq 10Þ

where M is the number of boundary elements, and Ce is the

surface of the boundary element.

Now by means of nodal collocation and integration over

the boundary elements, the boundary integral equations are

transformed into the linear algebraic equations. As the

collocation point passes through all the nodal points, the

following system of linear algebraic equations is obtained:

T½ � unf g ¼ U½ � tnf g ðEq 11Þ

where [T] and [U] denote the influence coefficients

matrices which are obtained by integration over the

boundary elements using the fundamental solutions, and

unf g and tnf g contain boundary displacements components

and boundary tractions, respectively.

The final step is to specify the boundary conditions at

each of the M nodes, and then, the system of Eq 11 can be

reordered in such a way all the unknowns are written on the

left-hand side in an {Y} vector, and the knowns on the

right-hand side in an {z} vector to obtain the following

final system.

A½ � Yf g ¼ zf g ðEq 12Þ

which may be solved for unknown nodal quantities, {Y}.

Once the values of displacements and tractions are known

on the boundary, it is possible to calculate the displace-

ments and stresses at any interior point using the

expression [2]:

ui ¼
Z

C
Uðp;QÞtðQÞdC�

Z

C
Tðp;QÞuðQÞdC ðEq 13Þ

rðpÞ ¼
Z

C
Dijðp;QÞtðQÞdC�

Z

C
Sijðp;QÞuðQÞdC

ðEq 14Þ

where

Dij ¼ D1ij D2ij½ � and Sij ¼ S1ij S2ij½ � ðEq 15Þ

The values of the coefficients are:

Dkijðp;QÞ ¼
1

4pð1 � mÞ
1

r

� �
ð1 � 2mÞ dki

or

oxj

��

þdkj
or

oxi
� dij

or

oxk

�
þ2

or

oxi
� or
oxj

� or
oxk

	

ðEq 16Þ

Skijðp;QÞ ¼
G

2pð1 � mÞ
1

r2

� �
2
or

on
ð1 � 2mÞdij

or

oxk

��

þm dik
or

oxj
� djk

or

oxi

� ��
�4

or

oxi
� or
oxj

� or
oxk

�

þ 2m ni
or

oxj

or

oxk
þ nj

or

oxi

or

oxk

� �
þ ð1 � 2mÞ

2nk
or

oxi
� or
oxj

þ nidik þ nidjk

� �
� ð1 � 4mÞnkdij

	

ðEq 17Þ

Finite Element Modeling of Elastoplastic Subdomain

The main goal of this paragraph is to give an overview of

the application of FEM to the computation of the cracked

region with material nonlinearity. A comprehensive bibli-

ography on the finite element method and nonlinearity will

be found in Zienkiewicz and Taylor [1]. Indeed, the basic

formulation applied to linear elastic theory can be used for

nonlinear elastoplastic deformation of solids induced by

small load increments. All physical quantities, including

the displacements, strains, stresses, and strain energy, will
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be dealt with in the incremental sense. As a result, fol-

lowing the usual discretization prescribed in finite element

analysis, we obtain the expressions of the incremental

displacements within any element, Duf ge
, which are given

by

Duf ge¼ N½ � Dunf g ðEq 18Þ

where [N] is the usual matrix of the shape functions, and

{Dun} is the incremental displacement vector at the nodes.

The incremental strains in an element can be related to

the incremental displacement vector {Dun} at the nodes by

the deformation matrix [B]:

Def ge¼ B½ � Dunf g ðEq 19Þ

The incremental stress–strain relationship can be also

expressed in an incremental way as:

Drf ge¼ ½Dep� Def ge ðEq 20Þ

where [Dep] is the elastoplastic stress–strain matrix which

defines the incremental relationship between stress and

total strain and depends on the level of stress. A detailed

description on the determination of the matrix [Dep] can be

found in Owen and Fawkes [39].

The incremental strain energy in the element can be

formulated as:

DUf ge¼ 1

2

Z

Xe

Def gT Drf gdXe ðEq 21Þ

Replacing Def ge
and Drf ge

, respectively, by Eqs 19 and

20, the above expression for DUf ge
can be expressed in

terms of Dunf g as

DUf ge¼ 1

2
Dunf gT

Z

Xe

B½ �T Dep


 �
B½ �

� �
Dunf gdXe

ðEq 22Þ

The incremental potential energy stored can be expressed

as:

DPf g ¼ DUf g � DWf g ðEq 23Þ

In which DWf g is the work done on the element by

external forces

DWf g ¼
Z

Xe

Dunf gT Dbf gdXe þ
Z

Ce

Dunf gT Dff gdCe

ðEq 24Þ

where Dbf g is the increment body force, and Dff g is the

increment external applied forces.

Upon substituting DUf g in Eq 13 and DWf g in Eq 24

into the expression for DPf g and applying the variational

process to this quantity, with respect to Dunf g, leads to the

following set of equations

oðDPÞ
o Dunf g ¼

Z

Xe

B½ �T Dep


 �
B½ �dXe

� �
Dunf g

�
Z

Xe

Dbf gdXe�
Z

Ce

Dff gdCe ¼ 0

ðEq 25Þ

The second portion of the above equality can be rearranged

to give the following element equations:

K½ �e Dunf g ¼ Dpf g ðEq 26Þ

where

K½ �e¼
Z

Xe

B½ � Dep


 �
B½ �TdXe ðEq 27Þ

and

Dpf g ¼
Z

Xe

Dbf gdXeþ
Z

Ce

Dff gdCe ðEq 28Þ

Are, respectively, the tangent stiffness matrix and the

incremental elementary force vector.

The overall structure equation can be readily assembled

from the element equation (26) as follows:

K½ � Duf g ¼ DRf g ðEq 29Þ

where

K½ � ¼
XM

e¼1

K½ �e ðEq 30Þ

DRf g ¼
XM

e¼1

Dpf ge ðEq 31Þ

In which M is equal to the total number of elements in the

structure.

Equation 29 will not generally be satisfied at any stage

of the computation because of the nonlinearity of the

stiffness matrix, and the residual forces is given by:

Dwf g ¼ K½ � Duf g � DRf g 6¼ 0 ðEq 32Þ

Standard solution procedure, at each load increment,

contains iterations over computations of tangent stiffness

(based on current temperature, stress, and plastic strain, if

required), applied loads based on current configuration,

internal force, and residual force. Then, displacement

increment is calculated. With updated displacements, the

plastic strain increments at element integration points are

obtained. Finally, check on convergence is carried out. If

the procedure converged, plastic strains are updated and

next increment proceeds.
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Use of J-Integral in Elastoplastic Fracture

Applications of the finite element method to nonlinear

fracture mechanics are well documented. In fact, several

approaches have been proposed in the literature for fracture

prediction in ductile materials [40, 41], but the J-integral

technique proposed by Rice [42] is currently the most

popular and widely accepted [39]. The aim of this section

is to describe how the J-contour integral can be employed

in elastoplastic fracture problems. Indeed, the J-integral is

also an effective method for the determination of stress

intensity factors. From Fig. 3, it can be shown that the J-

integral, is independent of the actual path chosen, provided

that the initial and end points of the contour C are on

opposite faces of the crack and that the contour contains the

crack tip.

J ¼
Z

CJ

Udy� ti
oui
oxi

ds

� �
ðEq 33Þ

where U denotes the strain energy density, ui is the dis-

placements vector, and ti represents the tractions vector

along the elementary arc ds of the integration contour CJ.

The relationship between the J-integral and the stress

intensity factors is given by:

JI ¼ K2
I

E0 ; JII ¼ K2
II

E0 ; ðEq 34Þ

where the constant E
0

is the elasticity modulus E for plane

stress conditions and E
0 ¼ E=ð1 � m2Þ for plane strain

conditions.

Application of the J-integral to elastoplastic fracture

stems from the solutions derived by Rice and Rosengren

[43] and Hutchinson [44]. These solutions give the stress

and plastic strain fields ahead of a crack in a power-hard-

ening material obeying the laws of total deformation

plasticity to be [39]:

rij /
J

rYr

� �h=hþ1

fijðhÞ; eij /
J

rYr

� �1=hþ1

fijðhÞ

ðEq 35Þ

Where rY the material yield stress, and h is the hardening

exponent.

For elastoplastic problems, the J-integral has been

numerically evaluated by employing the appropriate defi-

nition of the strain energy density, U. Separating U into its

elastic and plastic components

U ¼ Ue þ Up ðEq 36Þ

then Ue is given by

Ue ¼
1

2
rijðeijÞe ðEq 37Þ

where ðeijÞe denotes the elastic components of strain. The

plastic work contribution is given by

Up ¼
Z ep

0

r dep ðEq 38Þ

in which r and ep are the effective stress and effective

plastic strain, respectively.

FEM–BEM Coupling Procedure

In this section, the interface relaxation procedure for FEM–

BEM coupling presented by Lin et al. [45] and Parera and

Alarcon [35] will be extended to resolve the two-dimen-

sional elastoplastic fracture mechanics. Indeed, this method

Fig. 3 Contour path for J-integral evaluation Fig. 4 Algorithm of FEM–BEM coupling for elasto-plastic fracture
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was investigated recently by several authors in different

applications [35, 46, 47].

The principle of this procedure is based on the subdi-

vision of the original problem into two subregions. By this

approach, we resolve the differential equations in separate

meshes and we calculate the equivalent nodal forces to

tractions obtained by BEM at the interface. These latter

will be used as boundary conditions to FEM subdomain to

solve for the interfacial displacements. The procedure is

then iterated until convergence is achieved. Noting that to

accelerate convergence, at each iteration, a relaxation is

accomplished at the interface using the following

relationship:

uI
B

� �
nþ1

¼ x uI
F

� �
n
þ 1 � xð Þ uI

B

� �
n

ðEq 39Þ

where uI
F

� �
n

and uI
B

� �
n

being, respectively, the available

FEM and BEM displacements at the interface in the nth

iteration, and x is a relaxation parameter, which can be

constant or selected dynamically by means of a simple

formula to maximize the rate of convergence of the above

iteration [45]. In all the calculations carried out in this

work, we have adopted a dynamic relaxation parameter.

Equations systems (11) and (32) obtained from both

methods can be rewritten by their partitions into those

associated with the interface, and disassociated from the

interface as follows

H11 H12

H21 H22

� �
uB

B

uI
B

� 	
¼ G11 G12

G21 G22

� �
tBB
tIB

� 	

for BEM subdomain

ðEq 40Þ

DwF
F

DwI
F

� 	
¼ KT11 KT12

KT21 KT22

� �
DuF

F

DuI
F

� 	
� DFF

F

DFI
F

� 	

For the FEM subdomain

ðEq 41Þ

Fig. 5 Cracked plate with: (a) central crack, (b) cracks emanating

from a circular hole

Fig. 6 FEM meshes of the plate

with central crack for different

crack lengths
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where subscripts F, B and I represent finite element,

boundary element and interface, respectively.

The original problem is restored by coupling the sub-

domain which is discretized by finite elements and the

other subdomain modeled by boundary elements, by sat-

isfying the equilibrium and the compatibility conditions

along the interface between both subdomains, i.e.,

uI
B ¼ uI

F on CI ðEq 42Þ

FI
B þ FI

F ¼ 0 on CI ðEq 43Þ

Fig. 7 FEM–BEM meshes of

the plate with central crack for

different crack lengths

Fig. 8 Evolution of J-integral

as a function of normalized

stress for different values of a/W
in the case of a plate with

central crack under plane stress

conditions

Fig. 9 The maximum relative error between the normalized stresses

obtained by FEM and FEM–BEM
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where FI
B

� �
¼ M½ � tIB

� �
is the nodal forces vector obtained

in terms of surface tractions by using the principle of vir-

tual work along the interface. [M] is the converting matrix

due to the weighing of the boundary tractions by the

interpolation functions on the interface (see Aour et al.

[17]).

The order by which the functional blocks characterizing

the proposed coupling method are called, may be sum-

marized as indicated in Fig. 4.

Fig. 10 CPU time for the

elastoplastic analysis of the

central crack plate

Fig. 11 FEM meshes of the perforated plate in uniaxial tension with a

crack emanating from a hole for two different crack lengths: (a) a/

W = 0.2 and (b) a/W = 0.4

Fig. 12 FEM–BEM meshes of the perforated plate in uniaxial tension

with a crack emanating from a hole for two different crack lengths:

(a) a/W = 0.2 and (b) a/W = 0.4
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It should be noted that the coupling method presented

here seems to be easier and more efficient than other

methods (FE hosted and BE hosted), since the user need

not have any access to the computer codes, and it allows to

maintain all the advantageous numerical features of the

FEM matrix. Indeed, only interface information, such as

interface forces and displacements, needs to be communi-

cated between both programs.

Results and Discussion

To highlight the reliability and efficiency of the developed

FEM–BEM coupling method, we will present, in what

follows, the analysis of three problems of nonlinear frac-

ture mechanics. The first one concerns a plate with a

Fig. 13 Evolution of the J-

integral as a function of

normalized stress for a/W = 0.2

and 0.4 in the case of a

perforated plate in uniaxial

tension with a crack emanating

from a hole under plane stress

conditions

Fig. 14 CPU time for the

elastoplastic analysis of the

perforated plate with a crack

emanating from a hole

Fig. 15 Geometry of compact tension specimen
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central crack, the second one concerns a plate composed of

two symmetrical cracks emanating from a circular hole in

the center, and the third is reserved for the problem of a

compact specimen. Since the material is plastic in the

vicinity of the crack, FEM is used in this region since it is

more suitable for modeling nonlinear regions, whereas the

remaining part of the structure which is linear elastic is

easily modeled by BEM. The developed FEM–BEM soft-

ware was designed to be general enough to solve plane

strain/stress problems with elastoplastic failure behavior.

For all numerical simulations performed, the obtained

results have been compared with those provided by FEM.

Center Cracked Plate

The example of center cracked plate under uniaxial tensile

is presented as a first numerical test. This problem has been

used by several authors [17, 48] as a benchmark because an

analytical solution is available [49]. The geometry and

loading assumed in this example are shown in Fig. 5a. The

criterion of Von Mises with a state of plane stress was

assumed. This problem was analyzed considering a per-

fectly plastic elastic behavior. The material properties

employed are as follows: Young’s modulus

E = 10000MPa, Poisson’s ratio m = 0.3, tensile yield stress

rY = 100 MPa.

Due to the symmetry of the problem, only one quarter of

the plate needs to be modeled. The meshes used for FEM

and the coupled FEM–BEM analysis for crack lengths a/

W = 0.2, 0.4 and 0.6 are indicated in Figs. 6 and 7,

respectively. Note that the mesh size was chosen after a

mesh sensitivity study. Furthermore, the same element size

has been chosen for both FEM and FEM–BEM meshes so

that a fair comparison can be made.

Figure 8 shows the evolution of J-integral versus nor-

malized stress r=ry under a plane stress condition for

different values of a/W= {0.2, 0.4, 0.6} obtained by FEM

and FEM–BEM. The results of FEM–BEM coupling

method are in good agreement with those of FEM for

different loading and different crack lengths.

To compare the FEM and the FEM–BEM, the relative

error was defined as follows:

Error% ¼ SolFEM: � SolFEM�BEM

SolFEM

� 100 ðEq 44Þ

As you can see from Fig. 9, the maximum relative errors

obtained for crack lengths a/W = 0.2, 0.4 and 0.6 are,

respectively, equal to 1.92, 2.21 and 2.72%.

Figure 10 illustrates the time required to complete the

FEM and FEM–BEM calculations for different stress

ratios. It can be noted that the CPU time for FEM–BEM is

relatively small compared to that of FEM for most of the

stress values, except for the last case (a/w = 0.7), where it

becomes slightly higher. Note that the CPU time of the

FEM–BEM coupling can be further reduced by using two

processors treating both subdomains in parallel and a work

on this subject is under investigation.

Perforated Plate with a Crack Emanating from the Hole

This problem represents the analysis of a perforated plate

with the existence of a crack emanating from a hole, in a

plane stress state. The plate has been analyzed considering

a perfectly plastic elastic behavior with the following

material properties: Young’s modulus E = 10000 MPa,

Poisson’s ratio = 0.3 and yield stress rY = 100 MPa. The

Von Mises criterion was adopted. The J-integral was

evaluated for two different crack lengths a=2mm and 4mm

as a function of the evolution of the applied load. The FEM

and FEM–BEM analyses were performed with the mesh

models shown in Figs. 11 and 12, respectively.

The evolution of J-integral as a function of the nor-

malized stress r=ry in the mentioned state of plane stress,

for a/W = 0.2 and 0.4 using the finite element method and

the iterative FEM–BEM coupling method is shown in

Fig. 13. The coupled FEM–BEM method matches very

well with the FEM solutions for both values of a/W under

the load intensities and material constants considered.

Indeed, the relative error for both types of crack length

does not exceed 5%.

Fig. 16 Discretization used in (a) FEM and (b) coupled FEM–BEM

analysis (mesh A)
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The time required for the analysis with FEM and FEM–

BEM methods, for various values of ry=r, is presented in

Fig. 14. From this histogram, the difference in CPU time

recorded for both methods is not significant since the

analyzed problem is elastic perfectly plastic and without

using parallel processors.

Fig. 17 Evolution of the normal

stress along the x-axis from the

crack tip

Fig. 18 Evolution of J-integral

as a function of the imposed

displacement in the case of a

compact specimen in uniaxial

tension in plane strain and plane

stress states
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Compact Tensile Specimen

This example describes the application of the coupled

FEM–BEM analysis to the problem of a compact tension

specimen whose geometry is shown in Fig. 15. This

specimen had previously been the subject of an experi-

mental investigation [50] and extensive plasticization

occurred prior to unstable fracture. The relationship

between applied load and the clip gauge measuring the

displacements at the load line between the points AB on the

machined notch had been experimentally recorded. This

problem has also been numerically analyzed by several

other investigators in a comparative study [39]. Material

parameters used are as follows: Young’s modulus

E = 210.915 KN/mm2, Poisson’s ratio m = 0.33, tensile

yield stress rY = 0.48843 KN/mm2.

The finite element mesh of one half of the specimen

employed in analysis is shown in Fig. 16a and contains

1140 8-node quadratic elements. A relatively refined mesh

was used in the vicinity of the crack tip. Zero displace-

ments in the y-direction are imposed on the nodes located

in the uncracked lower part. A displacement U2 was also

imposed, along the direction of loading (see Fig. 15). Plane

stress and strain states were considered. The values of the

effective stress–effective strain curve have been introduced

into the simulation. Figure 16b shows the mesh used for the

FEM–BEM simulation. The first subregion containing the

crack, where are awaited elastoplastic deformations, has

been discretized by FEM using 844 FE. The second sub-

region has been modeled by BEM using 100 BE.

Figure 17 shows the variation of the normal stresses ryy
at the crack plane, along the x-axis from the crack tip, in

plane strain and plane stress states, respectively. A good

agreement between the FEM and FEM–BEM results was

found for the three selected values of imposed displace-

ments (U2 = 0.1, 0.25 and 0.5 mm).

Figure 18 shows the evolution of the J-integral as a

function of the imposed displacement in the case of plane

stress and plane strain. A comparison between the results

obtained by FEM and those of FEM–BEM coupling has

also been presented. There is a good agreement between

the curves of both methods, proving again the validity and

reliability of the proposed coupling method.

To highlight the effect of the mesh on the FEM–BEM

computation time, a second mesh consisting of 536 finite

elements coupled with 156 boundary elements was exam-

ined (see Fig. 19). The comparison between the

computation times in the plane stress state, for both FEM

and FEM–BEM methods using both meshes presented in

Figs. 16 and 19, is presented in Fig. 20. There is a slight

reduction in computation time by shrinking the FEM

subdomain.

Fig. 19 Second FEM–BEM mesh (Mesh B) of the compact tensile

specimen used for the calculation of the CPU time

Fig. 20 CPU time for the

elastoplastic analysis of the

compact specimen in the plane

stress state
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Conclusion

In the framework of the development of a code for solving

fracture mechanics problems, an extension of the iterative

FEM–BEM coupling approach has been proposed in this

paper. The finite element method was used for the calcu-

lation of the subdomain containing the crack, due to its

ability to handle plastic zones and strong stress gradients,

while the remaining subdomain, often linearly elastic, is

analyzed by the boundary element method, which is well

suited for this type of behavior and gives the advantage of

reducing the part of the domain to be meshed.

To highlight the efficiency and the versatility of the

proposed method and its accuracy compared to FEM,

examples of problems with cracks, in elastoplastic behav-

ior, have been solved. The comparison of the results

obtained by FEM and FEM–BEM methods shows that the

coupling method, in addition to its ability to deal with a

wider range of problems, is much better in terms of

accuracy and CPU time than the FEM since the number of

arithmetic operations is greatly reduced.

It should be noted that the iterative FEM–BEM method

has the advantage of conserving the characteristics of the

FEM and BEM, and consequently, a different formulation

can be implemented for each method without alteration of

the global structure of computer codes. Therefore, one can

say that the present coupling is a useful tool for realistic

nonlinear applications, due to the preservation of merits

and accuracy of each method and simplicity to directly use

the different software packages.

In this paper, only two-dimensional solutions have been

presented. The extension of the current coupled approach

for three-dimensional is likely to be worthwhile because

the benefits of reducing the size of the final system of

equations are greater in three dimensions. Therefore, the

coupled approach is more interesting in three-dimensional

elastoplastic fracture mechanics, and research is continuing

in this direction.
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