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Abstract To fulfill the effective diagnosis of the rubbing

fault between the rotor and the stator, the combination

strategy of adaptive weight particle swarm optimization

(PSO) and general scale transformation stochastic reso-

nance (GSTSR) is proposed in the paper. Firstly, in view of

the self-adaptive weighted PSO featured by high precision

and quick convergence, the method has made self-adaptive

adjustment of systematic parameters based on PSO algo-

rithm (with signal–noise ratio as fitness function).

Secondly, GSTSR can further highlight the characteristic

information otherwise covered by noise. Therefore, self-

adaptive weighted PSO algorithm is combined with

GSTSR to make characteristic extraction of rotor–stator

rubbing faults. Finally, a comparative analysis with other

methods and the analysis of faults in different states all

indicate that the combination of self-adaptive weighted

PSO algorithm and GSTSR can enhance rubbing fault

characteristics and has effective identification of rotor–

stator rubbing faults.

Keywords Rotor–stator rubbing � Fault identification �
Stochastic resonance � Self-adaptive �
Particle swarm optimization

Introduction

Rotor–stator rubbing fault is one of the common faults in

large-sized machinery, for example, aero-engine. Rubbing

is harmful to the normal operation of equipment as a result

of fierce body vibration and obvious rotate speed fluctua-

tion of rotor. A serious rubbing fault will cause the

divergency of amplitude of rotor and endanger the normal

operation of equipment, resulting in a serious accident

[1,2]. Scholars have paid great efforts to studying the

effective identification of rotor–stator rubbing faults. Chen

Xiangmin et al. took advantage of morphological compo-

nent analysis [3] and Zhang Yongqiang et al. singular value

decomposition algorithm [4] to distill impact elements of

rotor rubbing fault signals and consequently implemented

the effective diagnosis of rubbing faults. Yu et al. com-

bined signal separation algorithm and graph signal

processing in characteristic extraction and fault identifica-

tion of rotor–stator rubbing fault [5]. Liu et al. separated

fault signals with Fourier decomposition algorithm, con-

structed frequency-modulated and amplitude-modulated

signals, and effectively solved the difficulty in extracting

fault characteristic frequency of rotor [6].

To improve the SNR of signals and further highlight fault

characteristics, a majority of signal analysis methods start

with how to retrain and filter noises, such aswavelet threshold

value denoising [7], coder denoising [8] and singular value

denoising [9]. The studywith thismethod of signal processing

lies in retaining as much useful information as possible while

suppressing noises. Stochastic resonance (SR), proposed by

Italian scholars Benzi et al. [10–12] in 1981, differs with most

of signal analysis methods, particular at improving SNR in

using the noise to reinforce weak signals instead of eliminat-

ing. In 1998, Mitaim et al. [13] proposed self-adaptive
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stochastic resonance which works by optimizing system

parameters with various optimization algorithms and over-

coming the defect of conventional stochastic resonance

parameter inmanual setting.At present, this algorithmhas had

wide application in fault diagnosis. For example, Quan Zhe-

nya et al. self-adaptively obtained stochastic resonance

parameter with cuckoo algorithm and combined with multi-

point optimal minimum entropy deconvolution adjusted

(MOMEDA). When bearings had weak faults, they success-

fully extracted the characteristic frequency of bearing fault

[14]. Zhao et al. proposed self-adaptive stochastic resonance

method underpinned by bat algorithm and verified themethod

based on fault signals of rolling bearings [15]. Yin proposed

the stochastic resonance with synchronous parameter opti-

mization, which could effectively detect weak fault signals

from strong background noise and then made fault diagnosis

[16]. Ren et al. proposed the combined method of self-adap-

tive stochastic resonance based on genetic algorithm and

Fourier decomposition method. This approach effectively

improves SNR and extracts the distinctive frequency of

bearing fault signal [17]. Particle swarm optimization (PSO)

algorithm was proposed by James Kennedy and Russell

Eberhart on the basis of birdflockmotionmodel [18].Lai et al.

proposed a method based on PSO bistable state stochastic

resonance system and successfully extracted and diagnosed

the fault characteristics of rolling bearings [19]. Zhang et al.

proposed a self-adaptive variable step size stochastic reso-

nance method based on PSO and effectively detected the

rolling bearing fault signals in the context of strong noise [20].

It can be found that self-adaptive stochastic resonance

has a vast application in the fault diagnosis of bearing, but

less in the identification of rubbing faults. Considering that

when a rubbing fault occurs, vibration signal is somewhat

consistent with bearing fault signal (both will create impact

components), the paper has combined adaptive weight PSO

algorithm and general scale transformation stochastic res-

onance for identifying the rotor–stator rubbing faults. To

validate the accuracy and effectiveness of method, a check

analysis based on the proposed method has been given to

the casing vibration signals from different running states.

These states include: different running states (whether a

rubbing fault or not), running extents (slight, medium and

serious), running types (single-point and local rubbing) and

casing thicknesses (4 mm and 7 mm).

Major Algorithm

Improved PSO Algorithm

To guarantee the performance of stochastic resonance in

characteristic extraction, it is necessary to self-adaptively

determine the system parameters a and b according to

signals. PSO is a community cooperation intelligent search

algorithm based on population information sharing. In

PSO, feasible solution of optimization can be abstracted to

a particle in m-dimension searching space, which only

contains the information of location and speed [21]. It is

featured by high precision and quick convergence. Based

on that, the paper introduces PSO algorithm to self-adap-

tively determine the parameters a and b [22].

Inertia weight factor x plays the most important part in

adjusting global and partial optimization capacity of PSO

algorithm. The larger the factor value is, the more powerful

the global optimization capacity will be and the weaker the

partial optimization capacity; otherwise, opposite. To reach

a balance between global and partial optimization capacity

of PSO algorithm, nonlinear dynamic inertia weight coef-

ficient equation is used:

x ¼ xmin � xmax�xminð Þ� l�lminð Þ
lavg�lmin

; l� lavg
xmax ; l[ lavg

(
ðEq 1Þ

where xmax and xmin separately represent the maximum

and minimum value of x; l, target function value of par-

ticle; and lavg and lmin, mean target value and minimum

value of all particles. The name self-adaptive inertia weight

refers to inertia weight varying with target function value,

and the formula of speed and position update is shown as

follows:

vij t þ 1ð Þ ¼ xvij tð Þ þ c1r1 tð Þ pbestij tð Þ � xij tð Þ
� �

þ c2r2 tð Þ gbestij tð Þ � xij tð Þ
� �

ðEq 2Þ

xij t þ 1ð Þ ¼ xij tð Þ þ vij t þ 1ð Þ ðEq 3Þ

In the formula, x is the inertia weight factor; vijðt þ 1Þ, the
speed of jth dimension of ith particle in tth iteration;

xijðt þ 1Þ, position of jth dimension of ith particle in tth

iteration (j=1, 2, …, D); pbest, optimal position of indi-

vidual particle; gbest, optimal position of all particles; c1
and c2, learning factors; r1 and r2, uniform random number

within the range [0,1].

Detailed PSO optimization process is shown in Fig. 1.

The PSO fitness function is depicted as a 3D surface dia-

gram in Fig. 1a. Figure 1b shows the original distribution

diagram of particles. Figure 1c shows the diagram after

optimization of fundamental particles (fixed inertia weight

factor x ¼ 0:9). Figure 1d shows the diagram after self-

adaptive optimization of weight particles.

Through a comparison of Fig. 1c and d, it is easy to find

that under the premise of self-adaptive weight, PSO algo-

rithm has better capacity of exploration, development and

optimization. Specifically, the procedure of improved PSO

algorithm can refer to Ref. 23.

The fitness function is the most frequently used in PSO

algorithm: signal–noise ratio (SNR). SNR is the ratio of

signal and noise power and usually used to measure the
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robustness of output properties and as the basis to evaluate

the quality of signals. The SNR formula is shown as fol-

lows [24]:

SNR ¼ 10 lg
P0Pn

i¼0 Pi � P0

� �
=n

ðEq 4Þ

In the formula, n represents the number of time sequences,

P0 mean power of signal, and Pi the power of ith spot in

time sequence. Generally speaking, the larger SNR the

signal bears, the smaller noise the signal contains and the

more characteristic information the signals contain; other-

wise, opposite.

General Scale Transformation Stochastic Resonance

General scale transformation stochastic resonance can be

matched to different high-frequency input signals with

optimized barrier height to further improve output SNR

and enhance weak signals. The second-order Lagrange

equation of dimensionless underdamping bistable state

system jointly driven by periodic signals and Gaussian

white noise can be written as [25]:

d2x

dt2
¼ ax� bx3 � c

dx

dt
þ S tð Þ þ N tð Þ ðEq 5Þ

In Formula (5), a[ 0; b[ 0; c is the damper factor; SðtÞ ¼
Acosð2pftÞ is the damper factor; SðtÞ ¼ Acosð2pftÞ periodic
signals and A signal amplitude; f frequency of signal much

larger than 1. NðtÞ ¼
ffiffiffiffiffiffi
2D

p
nðtÞ is Gaussian white noise in

which D is the noise intensity and nðtÞ is the standard

Gaussian white noise with mean value and variance equal

to 0 and 1. When m is a large enough constant, the GSTSR

model of Formula (5) can be expressed as:

dz

ds
¼ a

m
z� b

m
z3 þ A

m
cos 2p

f

m
s

� �
þ

ffiffiffiffiffiffi
2D

m

r
n sð Þ ðEq 6Þ

where m is the scale coefficient. After common variable

scale, signal frequency is converted to the 1/m of original

signal; amplitude and noise strength are reduced by 1/m;

through improved PSO algorithm, the optimal system

parameter is m times of original. GSTSR is achieved based

on classical fourth-order Runge–Kutta numerical discrete

algorithm [26]. h represents the step size for calculation.

Proposed Method

To effectively detect rotor–stator rubbing fault, self-adap-

tive weight PSO algorithm is combined with GSTSR

algorithm. Specific steps of the proposed method are shown

in Fig. 2.

Details

(1) Input vibration signals into improved particle swarm

optimization. With SNR as fitness function, output

optimal system parameters a1 and b1.

(a) A 3 D diagram of the fitness function

(c) Particle optimization results 

(b) Initial distribution diagram of the particles

The particle 

(d) Improved particle optimization results 

Fig. 1 Particle search optimization comparison diagram of PSO and improved PSO
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(2) Calculate variable scale system parameters a and b

according to scale coefficient.

(3) Based on obtained variable system parameters a and

b and GSTSR algorithm, rubbing fault signals are

subjected to self-adaptive stochastic resonance.

(4) According to the frequency spectrum of signals after

self-adaptive stochastic resonance, extract features

of the rubbing faults among the rotor and the stator

and recognize fault types.

To verify the advantage of the proposed method, the

proposed method of the literature [27] is combined with

that of paper. The difference between two methods only

lies in the determination of system parameters. The method

of the literature [27] takes fixed ones (a = 1, b = 1, step size

h = 0.2) for different fault signals, while the proposed

method of paper introduces self-adaptive particle swarm

algorithm to determine system parameters according to

different fault signals.

Experiments of Rotor–Stator Rubbing Fault

The experimental data have been collected from rotor tester

of aero-engine shown in Fig. 3a. The details of experiment

are included in Ref. 28. The tester is able to simulate the

typical faults which may happen in aero-motor, for

example, point rubbing and partial rubbing. Figure 3b, c

shows the installation positions of acceleration sensors and

rubbing positions in single-point rubbing experiment

(casing thickness 4 mm). The channel configuration of

each sensor is shown in Table 1. Figure 3d shows turbine

casings of different thicknesses. The installation position of

the acceleration sensor is presented in Fig. 3e and rubbing

position in single-spot rubbing experiment when casing

thickness is 7 mm. (The installation position of sensor on

thick-wall casing is the same as that on thin-wall casing,

but rubbing position is on upper right, lower right, lower

left and upper left of casing.) Figure 3f shows the partial

rubbing experiment in which experiment devices are

adjusted to achieve the goal. Limited by the length of the

System adaptive 

optimization

Fault 

identification

Time-domain signal

Time-domain signal

Vibration signal from aeroengine rotor 

tester

Rubbing fault

Rotor

Stator

Rubbing

2fs

5.5fs

Frequency spectrum

Self-adaptive wight particle swarm optimization

Get the optimal parameters (a1 and b1)

Calculate variable scale system parameter a and b

Frequency spectrum

Fault feature extraction and identification

General scale transformation stochastic resonance

Fig. 2 Method block of the proposed method
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paper, we only choose the rubbing experiment on the ends

of compressor. (Experiment results from turbine end are

similar to that of compressor.) In the experiment, acceler-

ation sensors are still installed on turbine. Details of

rubbing experiment, such as running state, rubbing type,

rubbing position, installation position of sensor (facing

toward turbine casing as standard), rubbing extent, casing

thickness and experimental rotate speed, are shown in

Table 2. Acceleration sensor used in simulation experiment

is model 4508, and the sampling frequency is 10000Hz.

Case Analysis

For verifying the accuracy and superiority of the proposed

new method, a comparative analysis is given to the pre-

sented method of Ref. 27 (the parameters of stochastic

resonance system serve as empirical value) and the result

of comparison is validated. (Fitness functions of two

methods are both SNR.)

Firstly, randomly taking the data of rubbing the hori-

zontal left of casing as an example (randomly opt for the

vibration acceleration signals (CH3) collected by sensor

below the casing), analysis and comparative validation

have been carried out. The corresponding rotate speed is

1726.33r/min, and the rotate frequency (fs) is 28.77Hz. The

rubbing extent is slight, and the casing thickness is 4mm.

Method of Ref. 27

Firstly, based on the presented method of Ref. 27, extract

the features of rubbing faults. The result is presented in

Fig. 4. The difference between Ref. 27 and the proposed

method only lies in the determination of system parame-

ters. The method of the literature [28] takes fixed ones (a =

1, b = 1, step size h = 0.2) for different fault signals.

Figure 4a1 proves the time domain of vibration accelera-

tion signals, and 4b1 shows the frequency spectrum of a1.

According to Ref. 27, the empirical value and step size of a

and b can be obtained h (a = 1, b = 1, h = 0.2) and vibration

signals are subjected to stochastic resonance. Figure 4a2

shows the time domain of output signals after stochastic

resonance and b2 is the frequency spectrum of a2.

Table 1 Channel configuration

Channel Sensor installation position

CH1 Turbine casing vertical on

CH2 Turbine casing horizontal right

CH3 Turbine casing vertical under

CH4 Turbine casing horizontal left

(d) Different thickness casing tester

4mm casing 7mm casing

(f) Subtraction of casing

Deflection Adjustment Device at the End of Compressor

(a) Aeroengine rotor tester (b) The sensor is mounted vertically, horizontally right

CH2CH1Rubbing screws   

(c) Sensors are installed in vertical, horizontally left

CH3 CH4

(e) Single point rubbing of thick wall presser casing

CH4

CH2

CH3

CH1

Rubbing position

Fig. 3 Rotor rubbing fault test
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Figure 4b3 shows the partial enlarged drawing of Fig. 4b2.

Figure 4c shows the comparison of b1 and b2 in rotation

frequency and multiplications.

Firstly, it can be found from the analysis of Fig. 4b1 that

there is evident 2x of rotate frequency (2fs=57.37Hz) and

5.5x (5.5fs=156.3Hz) in the frequency spectrum of original

Table 2 Statistics of experimental data

Cases

Running

status

Rubbing

type

Rubbing

position

Sensor

selected

Degree of

rubbing

Thickness of casing

(mm)

Rotation speed (r/

min)

Case 1 Fault Single-point Horizontal left Under Minor 4 1726.33

Case 2 Normal … … Left … 4 1745.31

Case 3 Fault Single-point Vertical on Under Serious 4 1739.26

Case 4 Fault Partial Partial left Under Medium 4 1236.52

Case 5 Fault Single-point Left upper On Medium 7 1230.18

(a1) (b1)

(a2) (b2)

(b3) (c)

Fig. 4 Rotor–stator rubbing feature extraction based on Ref. 27
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signal. But noise components are large, and high-frequency

signals are highlighted in frequency spectrum.

Secondly, it can be found from the result (Fig. 4b2 and

b3) of the proposed method of the literature [27] that there

is typical rotate frequency (fs = 29.3Hz) and its 2x (2fs =

57.37Hz) and 5.5x (5.5fs=156.3Hz) in the frequency

spectrum of signals. Meanwhile, high-frequency compo-

nents are decreased and characteristics of low-frequency

components are comparatively highlighted, further high-

lighting the characteristic frequency of rubbing faults.

Finally, further analysis can reveal the following limits

of the literature [27]: Compared with the frequency spec-

trum of original signals, amplitude of rotation frequency

multiples decreases (Fig. 4c). (The amplitude of rotation

frequency fs increases from 0.012 to 0.024.) Meanwhile,

the frequency components irrelevant to the type of faults

are still in large number. They are all disadvantageous to

the identification of rubbing faults.

Proposed New Method

To further highlight features of rubbing faults and improve

the performance of identification, next, the proposed new

method (shown in Fig. 2) will be used for extracting the

features of rubbing faults. For a comparison and validation,

the experimental data chosen are entirely the same with

Section ‘‘Method of Ref. 27’’. The time domain and fre-

quency spectrum of vibration acceleration signals are still

as shown in Fig. 4a1 and b1. After the improvement in

particle swarm optimization of signals, optimal parameter

a1 ¼ 1:5516; b1 ¼ 1:0985 can be obtained. Given m=100,

optimal parameter of system a ¼ 0:015516; b ¼ 0:010985

can be acquired with step size h=0.2. (h is entirely the same

with Section‘‘Method of Ref. 27’’) Based on the optimal a

and b, signals are treated by general scale transformation

SR and the result is as shown in Fig. 5. Figure 5a2 shows

the time domain of output signals after stochastic reso-

nance, and 5b2 shows the frequency spectrum of 5a2.

Figure 5b2 shows the partial enlarged drawing of Fig. 5b1.

Figure 5c shows the comparison of amplitudes of rotation

frequency and the frequency multiplication of each

method. For a comparison, Table 3 lists the SNR of orig-

inal signal, output signal of Ref. 27 and the one obtained

based on the proposed new method.

Through the analysis of Fig. 5b1, b2 and c and a com-

parison between 5b1 and 4b2, 5b2 and 4b3, it can be found

Table 3 The SNR of original signal and output signal by Ref. 27 and

proposed method (Unit: dB)

Original signal Ref. 27 Proposed method

SNR �20.0375 �22.9603 4.4487

(a1) (b1)

(b2) (c)

Fig. 5 Rotor–stator rubbing feature extraction based on the proposed new method
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that the frequency spectrum of signals obtained based on

the proposed new method of paper has the following

characteristics:

There is typical and highlighted 1x (fs = 29.3Hz), 2x (2fs
= 57.37Hz) and 5.5x (5.5fs = 156.3Hz) of rotation fre-

quency, which further highlights the characteristic

frequency of rubbing faults. Compared with original sig-

nals and the scheme proposed by the literature [27], the

amplitude of rubbing characteristic frequency obtained by

the proposed method (rotation frequency and its multiples)

sees significant improvement. For example, the amplitude

of 2x (2fs = 57.3Hz) of rotation frequency increases from

0.07 to 0.658, almost 10 times higher. Meanwhile, high-

frequency components and the ones irrelevant to fault

characteristics are largely reduced and characteristic com-

ponents of fault further highlighted.

It can be known from Table 3 that the proposed new

method can obtain the SNR of output signal obviously

higher than the one of original vibration signals and the

proposed method of Ref. 27.

Namely, no matter from the SNR of output signals or the

strength (amplitude) of characteristic frequency of fault in

spectrum, the proposed new method of paper is obviously

superior to Ref. 27 in the performance of characteristic

extraction of rubbing fault.

An Analysis of Effectiveness of Method in Each State

To verify the effectiveness and veracity of the proposed

new method in extracting rubbing fault characteristics of

rotor and stator in different situations, we will implement

characteristic extraction and fault identification based on

the proposed new method of paper with the casing vibra-

tion acceleration signals collected from different running

states, rubbing extents, rubbing types and casing

thicknesses.

Normal Running

Firstly, analyze the accuracy of rubbing fault identification.

Randomly choose the acceleration signal (CH4) detected

by the sensor left as an example in normal running state.

The rotate speed is 1745.31r/min, the rotation frequency

(fs) is 29.08 Hz, and the casing thickness is 4mm. Fig-

ure 6a1 shows the time domain wave of vibration signal,

and 6(b1) shows the frequency spectrum of 6(a1). After

fault signals are treated by improved PSO, we can obtain

optimal parameter a1 ¼ 1:8317; b1 ¼ 2:7641. Given

m=100, a ¼ 0:018317; b ¼ 0:027641 and step size is con-

sistent with Section ‘‘Method of Ref. 27’’ (h = 0.2). Signals

are treated by general scale transformation SR based on

optimal a and b values. Figure 6a2 shows the time domain

of output signals after stochastic resonance, and 6b2 shows

the frequency spectrum of 6a2. Table 4 shows original

vibration signals and the SNR of output signals based on

the proposed method.

Analyzing Fig. 6b1 and b2 and comparing it with

Fig. 5b1, we can find that the proposed new method has the

following features:

When the tester runs normally, the high-frequency

components are largely reduced in the frequency spectrum

of signal (Fig. 6b2). Meanwhile, there is only 1x of rotation

frequency (fs=29.3Hz). Thus, it can be judged that there is

no rubbing fault in the equipment. This can recognize the

running state of equipment. It can be known from Table 4

that based on the proposed method, the SNR of signal

increases from �16.6301 to 6.0623 and output SNR has

significant improvement.

Namely, the proposed new method can largely reduce

noise component, improve SNR and have effective moni-

toring on running state of equipment (with a rubbing or

not).

Different Rubbing Extents

Next, we will analyze the effectiveness of the proposed

method according to different rubbing extents. Randomly

take the vibration acceleration signal (CH3) detected by the

sensor below turbine casing as an example when rubbing

casing is vertically upward. The rotate speed is 1739.26r/

min, the rotation frequency (fs) is 28.98Hz, the rubbing

extent is serious, and the casing thickness is 4mm. Fig-

ure 7a1 remains the time domain of vibration acceleration

signals, and 7(b1) shows the frequency spectrum of (a1).

After fault signals are treated by improved PSO, we can

obtain optimal parameter a1 ¼ 1:5648; b1 ¼ 1:3214. Given

m=100, a ¼ 0:015648; b ¼ 0:013214 and step size is con-

sistent with Section ‘‘Method of Ref. 27’’ (h = 0.2). Signals

are treated by general scale transformation SR based on

optimal a and b values. Figure 7a2 shows the time domain

of output signals after stochastic resonance, and 7b2 shows

the frequency spectrum of 7a2. Figure 7c shows the com-

parison of 7b1 and b2 in rotation frequency and

multiplications. Table 5 shows the SNR of original vibra-

tion signals and the ones obtained by the proposed new

method when rubbing extents are different.

With the analysis of Fig. 7b1, b2 and c, the frequency

spectrum of signals based on the proposed new method in

different rubbing extents has the following characteristics:

In the frequency spectrum, there is obvious 2x and 5.5x

of rotation frequency (2fs=58.59Hz, 5.5fs=157.5Hz). It can

be judged that there is a rubbing fault in the equipment.

Meanwhile, compared with the frequency spectrum of

original signal, noise components are largely reduced and

amplitude of rubbing characteristic frequency has
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significant improvement, highlighting the characteristics of

rubbing fault.

It can be known from Table 5 that based on the proposed

method, the SNR of signal increases from -23.6848 from

8.5960 and the SNR of output signal has a great

improvement.

Namely, the proposed new method of paper can still

greatly reduce noise components, improve SNR and cor-

rectly and effectively identify rubbing faults when rubbing

extents are different.

Different Rubbing Fault Type

The next is the effectiveness analysis of the proposed

method for different rubbing faults. Randomly choose the

vibration acceleration signal (CH3) detected by the sensor

below as an example when the end of compressor is

inclined to left. The corresponding rotate speed is

1236.52r/min, the rotation frequency (fs) is 20.61Hz, the

rubbing extent is moderate, and the casing thickness is

4mm. Figure 8a1 shows the time domain of vibration

acceleration signals, and 8(b1) shows the frequency spec-

trum of (a1). After fault signals are treated by improved

PSO, we can obtain optimal parameter

a1 ¼ 1:1085; b1 ¼ 0:8587. Given m=100, a ¼
0:011085; b ¼ 0:008587 and step size is consistent with

Section ‘‘Method of Ref. 27’’ (h = 0.2). Signals are treated

by general scale transformation SR based on optimal a and

b values. Figure 8a2 shows the time domain of output

signals after stochastic resonance, and 8b2 shows the fre-

quency spectrum of 8a2. Figure 8c shows the comparison

of 8b1 and b2 in rotation frequency and multiplications.

Table 6 shows the SNR of original vibration signal and the

ones obtained by the proposed new method when rubbing

fault type is different.

With the analysis of Fig. 8b1, b2 and c, when partial

rubbing fault happens in the system, namely, in the dif-

ferent rubbing types, the proposed new method of paper

has the following characteristics:

Table 4 The SNR in different running states (Unit: dB)

Original signal Proposed method

SNR �16.6301 6.0623

(a1)

(a2)

(b1)

(b2)

Fig. 6 Rotor–stator rubbing feature extraction in different running states—proposed method
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Frequency components are more complex than single-

point rubbing, but there is obvious 2x (2fs = 40.28Hz) of

rotation frequency. Compared with frequency spectrum of

original signal, noise components are largely reduced.

Meanwhile, characteristics of rubbing fault are more

obvious. (Amplitude of 2x and 5.5x frequency components

has been improved.)

It can be learnt from Table 6 that the SNR of signal

increases from -26.0935 to -0.6531 and output signal SNR

is clearly improved.

That means the proposed new method can still greatly

reduce noise components and improve SNR when rubbing

type is local partial rubbing. Meanwhile, though the fre-

quency components in frequency spectrum are more

complex than single-spot rubbing, it can still precisely and

effectively identify the type of rubbing fault.

Table 5 The SNR in different rubbing degrees (Unit: dB)

Original signal Proposed method

SNR �23.6848 8.5960

(a1) (b1)

(a2) (b2)

(c)

Fig. 7 Rotor–stator rubbing feature extraction in different rubbing degrees—proposed method
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Different Casing Thicknesses and Rubbing Positions

Finally, we will carry out the effectiveness analysis for

different casing thicknesses. When rubbing against the

upper left of casing, randomly take the vibration acceler-

ation signal (CH1) detected by the sensor upper as an

example. The rotate speed is 1230.18r/min, the rotation

frequency (fs) is 20.50Hz, the rubbing extent is moderate,

and the casing thickness is 7mm. Figure 9a1 remains the

time domain of vibration acceleration signals, and 9(b1)

shows the frequency spectrum of (a1). After fault signals

are treated by self-adaptive weight PSO, we can obtain

optimal parameter a1 ¼ 1:8163; b1 ¼ 1:2457. Given

m=100, a ¼ 0:018163; b ¼ 0:012457 and step size is con-

sistent with Section ‘‘Method of Ref. 27’’ (h = 0.2). Signals

are treated by general scale transformation SR based on

optimal a and b values. Figure 9a2 shows the time domain

of output signals after stochastic resonance, and 9(b2)

shows the frequency spectrum of 9a2. Figure 9c shows the

Table 6 The SNR in different rubbing fault types (Unit: dB)

Original signal Proposed method

SNR �26.0935 �0.6531

Fig. 8 Rotor–stator rubbing feature extraction in different rubbing fault types—proposed method
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comparison of 9b1 and b2 in rotation frequency and mul-

tiplications. Table 7 shows the SNRs of original vibration

signals and the ones obtained by the proposed new method

when the casing thickness and rubbing position are

different.

It can be found from the analysis of Fig. 9b1, b2 and 9c

that when casing thickness and rubbing position are dif-

ferent, the proposed new method of paper has the following

features:

There is obvious 2x and 6x frequency component of

rotation frequency (2fs=40.28Hz, 6fs=119.6Hz). Compared

with the frequency spectrum of original signals, noise

components are sharply reduced and characteristic fre-

quency of fault is further highlighted. (Amplitude of

frequency component has obvious improvement.)

Table 7 The SNR in different casing thicknesses and rubbing

positions (Unit: dB)

Original signal Proposed method

SNR �18.2128 �1.6018

(a1) (b1)

(a2) (b2)

(c)

Fig. 9 Rotor–stator rubbing feature extraction in different casing thicknesses and rubbing positions—proposed method
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Compared with thin-walled casing, there are more fre-

quency components in frequency spectrum.

It is known from Table 7 that when casing thickness is

7mm, the SNR of signal based on the proposed new

method increases from �18.2128 to �1.6018 and output

SNR has significant improvement.

Namely, the proposed new method of paper can still

greatly reduce noise components and improve SNR when

casing thickness varies. Meanwhile, though the frequency

components are more complicated than that of thin-wall

casing (4mm), the proposed new method can still precisely

and effectively recognize a rubbing fault.

Conclusion

To effectively and precisely identify a rotor–stator rubbing

fault, the paper has introduced the combined method of

adaptive weight PSO and GSTSR. An analysis has been

given to the fault data in various states, and the following

conclusions can be drawn:

�Improved method of PSO and common variable scale

stochastic resonance can effectively identify the running

state of equipment (if a rubbing fault or not).

`After self-adaptively determining system parameter

with PSO algorithm, high-frequency components are lar-

gely reduced and output SNR is significantly improved in

the frequency spectrum of signal. Meanwhile, the fre-

quency components irrelevant to rubbing fault

characteristics in the spectrum are largely reduced, further

highlighting the characteristic frequency of rubbing fault.

(Amplitude of characteristic frequency of rubbing fault is

largely increased.) That is the combination of PSO and

stochastic resonance can self-adaptively determine system

parameter.

´The proposed new method is insensitive to rubbing

extent (slight, moderate and serious), rubbing type (single-

spot rubbing and partial rubbing), casing thickness (4mm,

7mm) and rubbing position. In various situations, the

proposed method can equally extract obvious characteristic

components of rubbing faults and implement effective

identification.
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