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Abstract As a non-destructive technique, Acoustic

emission (AE) can be employed to detect the damage

inside the material passively and then locate the damage

source. However, fatigue loading poses challenges to AE

signal acquisition and processing. In this paper, AE mon-

itoring is performed on glass fiber/epoxy composite

laminates under fatigue loads. Due to the intrinsic noise,

wavelet packet decomposition is used for noise elimina-

tion. Results show that the noise components in original

AE signals can be effectively eliminated by the wavelet

analysis. Based on the difference of the arrival times, the

line positioning method is shown to locate AE sources

appearing in the laminates successfully. The peak fre-

quency characteristic of each AE signal is utilized for

damage mode classification. The fracture of the laminate is

governed by delamination and fiber/breakage, followed by

fiber/matrix interface debonding.

Keywords Acoustic emission (AE) � Failure analysis �
Composite laminates � Fatigue loading

Introduction

As a type of clean and renewable energy, wind energy has

shown excellent application prospect under the energy

crisis around the world. A high-efficiency system for wind

power generation depends largely on the superior perfor-

mance of wind turbine blades. Now, fiber-reinforced

composites achieve successful application in the blade due

to its high strength/stiffness and low density. However,

severe aerodynamic loads and environments, such as ele-

vated temperature, hygrothermal effects, radiation,

lightning, typhoon and storms, can increase the uncertain-

ties of damage initiation, evolution and accumulation in the

blade. These conditions subject the blades to a variety of

stresses, typically including fatigue, bending, shearing and

torsion. Therefore, structural health monitoring (SHM)

techniques [1–3] should be used to address damage

detection, location and identification so as to avoid the

premature failure of the blade.

Due to complex structures of the wind turbine blade,

SHM on the blade poses challenges: (1) Conventional

testing techniques are time-consuming and labor-intensive

because of large sizes of blades, (2) Planar testing methods

on surface structures cannot be implemented, (3)

Destructive methods undoubtedly affect the remaining

lifetime of the blade. By considering the problems above,

acoustic emission (AE) is commonly taken as a dynamic

non-destructive testing approach and has been widely

applied to defect detection of various composite structures

[4, 5]. Any subtle damage phenomenon in composite

structures can generate an elastic wave, which can be

detected by AE sensors and subsequently recorded in the

AE apparatus, where such failure modes of fiber failure,

matrix cracking, delamination, fiber/matrix interface

debonding and shear failure of the adhesive layer are AE

sources in composite laminates [6–8] and adhesively-bon-

ded structures [9, 10]. Their characteristics can be

identified by AE characteristic features [7, 9, 11, 12], such

as the peak amplitude, energy, counts, rise time and time of
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duration, or waveform recognition methods [13–15], so as

to reflect the damage behaviors of composite structures and

to determine weak areas. In this way, damage mode iden-

tification can be achieved by leveraging machine learning

methods [7, 9, 11, 16, 17] based on some informative AE

features. The most used criterion for filtering informative

feature is the principal component analysis

[7, 9, 11, 16, 17]. Thereafter, the AE characteristics of each

damage mode can be derived, dependent on different

materials and loads [16–18]. Moreover, the AE technique

along with mechanical features allows one to characterize

the damage mechanism of composites [19].

Apart from damage mode identification, AE source

localization shows significance in AE signal processing,

which renders the initial and accumulated damage posi-

tions to be determined accurately. Then, detailed damage

degree and damage mode in each area can also be deter-

mined. However, little research has been performed on the

localization of AE sources, compared with damage mode

identification. Generally, damage location can be calcu-

lated by the difference of arrival time, upon which the same

signal reaches different sensors. It is demonstrated that the

AE technique can effectively locate the position of AE

damage source in the measured composite structure, irre-

spective of the distance between the source and sensor [20].

For example, fiber breakage in the specimen-scale blade

can be detected and located by arranging three AE sensors

based on the Time of Arrival (ToA) [21]. Specifically,

much attention has been focused on the improvement in

positioning accuracy and the corresponding enhancing

algorithm in discontinuous structures. It has been shown

that the delta-T mapping method [22–24] has superior

performance on the source localization in a composite plate

with several holes than the ToA method. Combined with

the delta-T feature, the least square support vector machine

was applicable and accurate in positioning damage in a

structure with a lot of inhomogeneities [25]. In addition,

the accuracy of damage localization in four-layer com-

posite laminates can be improved after temperature

compensation [26]. In summary, these studies above have

shed important insight into the source localization and

damage mechanisms in small-scale composite structures.

This paper experimentally studies damage source

localization and damage mode identification in glass fiber/

epoxy composite laminates under fatigue loads by using

AE technique. AE monitoring is conducted to collect the

AE signals emitted during the whole loading process. After

signal acquisition, the wavelet packet decomposition is

employed to eliminate the effects of noise in fatigue tests.

Comparison between the original signal and the recon-

structed signal shows that the noise components in AE

signals can be effectively eliminated by the wavelet anal-

ysis. The line positioning method is subsequently found to

locate AE damage sources in composite laminates suc-

cessfully. Finally, damage mode identification is achieved

by the peak frequency characteristics of AE signals, which

is validated by SEM.

Methodology for AE Source Localization

AE source localization cannot be achieved by a single AE

sensor. Instead, an array of AE sensors is required such that

one AE source can be detected by these sensors. Obvi-

ously, ToA for each sensor, i.e., the time it takes for the

signal to travel from the source to the sensor, may be

different due to different distance between the source and

these sensors. In this way, the generated time difference

can be utilized to locate the AE source. When it involves

complex structures or complicated loads, the accuracy of

the ToA method should be tested and validated.

Two commonly used methods, i.e., the line and plane

positioning methods, are briefly introduced here. For the

former method, at least two AE sensors are required for the

source localization. The schematic diagram of the method

is shown in Fig. 1a. Given that there is an AE source

between Sensors 1 and 2, the location of the source can be

determined by different arrival times that it takes for the

corresponding elastic wave to spread to different AE sen-

sors, denoted as t1 and t2, respectively. The difference

between the time intervals can be denoted as Dt ¼ t1 � t2.

In this way, the distance from the AE source to Sensor 1

can be calculated as d ¼ 1
2
D� VDtð Þ, where D and V

represent the distance between two sensors and the prop-

agation speed of the AE wave in the detected object,

respectively. For the formula above, there are three special

locations, i.e., Sensor 1, Sensor 2 and the in-between

position, corresponding to time difference of 0, D/V and

� D/V, respectively. By considering AE sources may be

outside the sensor, the time difference is a constant irre-

spective of the distance between the source and the sensor.

Thus, those AE sources will always locate at the position of

sensor. It can be concluded that the line positioning method

can only be utilized for damage localization in one

dimension, i.e., the line between two AE sensors. That is,

plane positioning can’t be easily achieved by two AE

sensors. Indeed, due to the constant value of the distance

difference, the potential position of an AE source XS; YSð Þ
can be any point on the hyperbola with its two focuses on

the positions of sensors, as shown in Fig. 1b. For a more

precise location, it is particularly important to increase the

number of AE sensors and to pay attention to sensor

arrangement. For example, the plane positioning method

by three AE sensors is shown in Fig. 1c. The order of

arrival time corresponding to three AE sensors can be
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derived and hence two time-differences can be computed.

One hyperbola can be determined by Sensors 1 and 2, and

another hyperbola can be determined by Sensors 1 and 3.

The intersect of these two curves is the location of the AE

source. In this paper, the line positioning method is

adopted.

AE Monitoring on Composite Laminates Under Fatigue

Loads

The AE monitoring is carried out on two glass fiber/epoxy

composite laminates subjected to tension–tension fatigue

loads. The fatigue loads vary in a sinusoidal type of

waveform with a frequency of about 1 Hz. The maximum

load and the minimum load are 63 kN and 6 kN, respec-

tively. The geometry of the specimen with a ply-sequence

of [45�/� 45�]3s is detailed in Fig. 2, where L = 200 mm,

h = 3.3 mm and b = 25 mm represent the effective test

length, thickness and width of the specimen, respectively.

L1 and h1 represent the length and thickness of the stiffener

in contact with the fatigue testing machine, respectively.

The stiffener is very thin and has almost no effect on the

fatigue test. Raw materials of laminates include resin,

structural adhesive, glass fiber cloth, core material and

polyurethane coating, where resin and structural adhesive

are both two-component epoxy resin and the fiber type

OCV SE1500 or ECT-468G is employed in main fiber

directions of the glass fiber cloth.

By considering the size of the sensor and the geometry

of specimen, the effect of AE attenuation in such a small-

scale specimen is so weak that it can be neglected. Thus,

two piezoelectric AE sensors are selected in this test, with a

height of 15 mm and a diameter of 18.8 mm. The diameter

of the sensor is close to the width of the specimen. Since

the sensor and the signal may be affected by the fractured

specimen and the signal attenuation in the metal clamping

end is relatively weak, each sensor is fitted with a fixture

and then fixed on the machine, as shown in Fig. 3. Due to

the effects of vibration from fatigue testing machine on AE

signal collection, direct sampling should be performed

Fig. 1 a Line positioning

method by two sensors, b plane

positioning method by two

sensors and c plane position

method by three sensors

Fig. 2 Geometry of glass fiber/epoxy composite laminates

Fig. 3 Fatigue test and AE test on glass fiber/epoxy composite

laminates
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Fig. 4 Time (unit: s) versus amplitude (unit: V) for AE waveforms during fatigue tests for a specimen-1 and b specimen-2

Fig. 5 Time (unit: s) versus amplitude (unit: V) in the time periods for analyzing fracture behaviors of a specimen-1 and b specimen-2
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prior to the tension–tension fatigue test such that appro-

priate threshold value can be set to avoid most of the

inherent noise and to guarantee the stability and accuracy

of the collected AE signals. In this test, the threshold value

is set to 30 mV such that most ambient noise can be

eliminated. The preamplifier gain is set to 40 dB. By

considering the noise reduction and memory space econ-

omization, the intermittent sampling method with the

Fig. 6 a The scale function and

the wavelet function of the db5

wavelet, b the reconstructed

signal and the original signal in

time domain
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threshold trigger mode is selected instead of the continuous

sampling method. The peak definition time (PDT), the hit

definition time (HDT) and the hit lockout time (HLT) are

set to 50 ls, 200 ls and 300 ls, respectively.
Before AE signal collection, it is necessary to perform

velocity calibration so as to locate AE sources. A type of

simulated AE source is required for the generation of

stable signals with a wide frequency band. There are many

ways to simulate the burst-type AE source, including the

laser pulses, the broken glass capillaries and the pencil lead

breaks (PLB). In this work, PLB test is adopted and

repeated for three times. Specifically, the simulated AE

source signal is emitted by the 0.5 HB pencil with a lead

length of 2.5 mm and the lead is broken at the angle of 30�
with the measured blade surface. The peak amplitude in

each PLB test exceeds 95 dB, indicating well-defined AE

signals. And the location where the pencil lead breaks is

well-located.

Results

The numbers of cycles for specimen-1 and specimen-2 are

61364 and 62245, respectively. Since the sampling mode is

intermittent sampling, the total sampling times for these

two specimens are 115.34 s and 69.47 s, respectively. As

shown in Fig. 4, the AE waveforms in the early and middle

stages are dynamically stable, whose amplitudes does not

appear to increase explosively. Despite the existence of

transient signals in the early stage, their amplitudes are

relatively low. However, a great number of damage signals

burst out prior to the ultimate failure of the specimens, with

their amplitudes exceeding 3500 mV, as shown in Fig. 4.

Therefore, only the later signal segments are taken into

consideration for further damage analysis. As shown in

Fig. 5, the time periods for analyzing fracture behaviors of

specimen-1 and specimen-2 are 11.45 s and 15.79 s,

respectively.

In AE tests, the signal strength of AE source originated

from the specimen is generally weak and there exist the

ambient noise and the noise of acquisition system.

Although the ambient noise has been greatly eliminated by

setting an appropriate threshold value, the noise of acqui-

sition system cannot be neglected, especially for fatigue

tests [27, 28]. Therefore, useful AE signals need to be

extracted from the original signals to eliminate noise sig-

nals such that damage mode identification and damage

source localization can be achieved effectively and reli-

ably. Noise reduction is an essential step in the process of

acoustic emission signal processing so as to improve the

signal-to-noise ratio.

Signal denoising methods typically include the time

domain analysis methods, the frequency domain analysis

methods and the time–frequency analysis methods [29].

The time–frequency analysis methods mainly reduce noise

through wavelet analysis. Simple denoising methods, such

as the median filtering, the mean filtering and the ampli-

tude-limiting filtering, can only eliminate impulse

interference caused by accidental factors while fail to cope

with complex noise. At present, the wavelet analysis and

independent component analysis are two commonly used

effective noise reduction methods, where the wavelet

analysis has been widely used by many scholars

[28, 30, 31]. The process is generally divided into three

steps: (1) the appropriate wavelet basis function and the

number of the decomposition layer are selected, (2) the

wavelet coefficients of each layer are processed and (3) the

denoised signal by inverse wavelet transform is

reconstructed.

In this work, the wavelet threshold denoising method is

used to reduce the noise components in the acquired AE

signals. Since results are expectable to differ in the wavelet

Fig. 7 The calculated locations

of AE sources in two specimens

Fig. 8 The fracture diagram of each specimen
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packet functions for analyzing the same signal, the choice

of the appropriate wavelet packet function is the prereq-

uisite for subsequent signal processing. Among multiple

types of wavelet packet functions. The Daubechies series

wavelets, the Coif series wavelets and the Symlet series

wavelets are more in line with the characteristics of AE

signals, which are widely used in AE signal processing.

The most commonly used Daubechies series wavelets are

selected for noise reduction, specifically the db5 wavelet.

The scale function and wavelet function are shown in

Fig. 6a. By comparing the reconstructed signal with the

primary noise-contained signal, the noise components in

the original AE signal can be effectively eliminated by

employing the wavelet analysis, as shown in Fig. 6b.

The positions of the AE sources acquired from two

specimens are calculated by using the line positioning

method, as shown in Fig. 7. In comparison with the frac-

ture position of each specimen in Fig. 8, it is found that a

great number of positioning events gather at the fracture

position of the specimen, where the number of events

exceeds half of the total number. Other positioning events

are distributed in the remaining part of the specimen. That

is, the damage source location evaluated by the AE tech-

nique is consistent with the actual fracture position of the

specimen. Therefore, it is deduced that the line positioning

method based on the ToA method can be used to determine

the location of an AE source effectively, corresponding to

the initial damage or the evolutionary damage in the

specimen.

After damage source localization, the fast Fourier

transform is applied to both the burst signal and the con-

tinuous signal during the later stage so as to further explore

the damage mechanisms which are responsible for the

specimen failure. Taking specimen-1 for example, the

dominant frequency of the burst signal is within a range of

300–400 kHz, as shown in Fig. 9a. It can be seen from

Table 1 The numbers of the burst AE signals in each frequency

range for specimen-1

Channels

30–190

(kHz)

200–320

(kHz)

350–500

(kHz)

[ 500

(kHz) Total

1 0 60 231 11 302

2 1 12 126 15 154

Table 2 The numbers of the burst AE signals in each frequency

range for specimen-2

Channels

30–190

(kHz)

200–320

(kHz)

350–500

(kHz)

[ 500

(kHz) Total

1 0 29 166 16 211

2 0 38 374 20 432

Fig. 9 The frequency spectrum

of damage source for specimen-

1 in the later stage: a the burst

signal, b the continuous signal
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Fig. 9b that the frequency features of damage sources

corresponding to the later continuous signals are more

concentrated in the range of 300–500 kHz. According to a

great deal of previous work in glass fiber/epoxy composites

[32–36], the ranges of the peak frequency for common

damage modes (matrix cracking, matrix/fiber interface

debonding, fiber breakage and delamination) are 30–

190 kHz, 200–320 kHz and 350–500 kHz, respectively.

Thus, in the later stage, it can be deduced that the failure

mechanism is mainly manifested as delamination and fiber

breakage. Furthermore, the peak frequencies of all burst

signals in the later stages for specimen-1 and specimen-2

are grouped into different ranges, with the results listed in

Tables 1 and 2, respectively. The number of AE signals

corresponding to delamination and fiber breakage is much

more than that of other damage modes. Delamination and

fiber breakage are two dominant damage modes during the

final fracture process, which can also be visually observed

through the fracture appearance of specimen-1 and speci-

men-2, as shown in Fig. 8. Such a phenomenon is

consistent with the frequency concentration in Fig. 9. Thus,

it can be deduced that the failure of specimens under

fatigue loads is governed by delamination and fiber

breakage. The numbers of signals recorded by sensor 1 and

sensor 2 are quite different. Specifically, the larger one is

about twice as large as the other one. Thus, it is implied

that the fracture position is deviated from the center line of

the specimen, as exemplified in Fig. 8. The increasing

number of hits for each specimen is further shown in

Fig. 10. It can be seen the increase in the number of hits is

almost a linear function of the fatigue time, except for a

few moments of sudden increase. These moments indicate

the damage accumulation has reached a new stage, leading

to the signal explosion. As can be seen in Fig. 10, prior to

the fracture of the specimen, the number of burst signals

presents a sharp increase for each channel, which implies

the failure of the specimen.

By performing scanning electron microscopy (SEM) on

the fracture surface of specimen-1, matrix cracking and

fiber/matrix interface debonding can also be clearly seen,

as shown in Fig. 11. Matrix cracking and fiber/matrix

interface debonding are likely active in the initial stage as

shown in Fig. 4 while AE activity are slightly weaker than

delamination and fiber breakage during the later stage.

Thus, matrix cracking and fiber/matrix interface debonding

can be identified as two fundamental damage modes for

composites, in agreement with previous research [37, 38].

Concluding Remarks

This paper experimentally monitors the fracture process of

glass fiber/epoxy laminates under fatigue loads by using

the AE technique. AE signal processing is conducted after

initial noise reduction, which is accomplished by the

wavelet packet decomposition. Many AE signals are cal-

culated to be clustered at the actual fracture position of the

specimen. The peak frequency characteristics of various

damage modes are determined. The intensity of AE activity

for each damage mode is further investigated. The failure

process of specimens is governed by delamination and fiber

breakage, followed by less-active fiber/matrix interface

debonding. Matrix cracking and fiber/matrix interface

debonding are shown to be two basic damage modes that

can be easily activated by lower loads.

Fig. 10 The increasing number of hits for a specimen-1 and b
specimen-2
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