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Abstract The effect of an open edge crack on the

parameters of an isotropic aluminum cantilever beam was

investigated. The rotational stiffness and flexibility of the

cantilever beam crack were analytically calculated for

various crack depths. The results showed that as the depth

of the crack increased, the rotational stiffness decreased

and flexibility increased. For the intact cantilever beam,

acceptable variation was validated by comparing the ana-

lytically estimated natural frequencies of the first three

modes of bending vibration, and those obtained through

modal analysis using the block Lanczos method of finite

element analysis software ANSYS v16. The software was

used to perform a structural, modal and harmonic analysis

of the cracked cantilever beam under different scenarios.

The results showed a reduction in the natural frequencies

with the existence of the crack. The amount of the reduc-

tion varied based on the location and depth of the crack and

the pattern of mode shapes. The calculated value of stiff-

ness of the cantilever beam decreased with the presence of

the crack. The amount of the decrease was dependent on

the depth and location of the crack. The calculated values

of the (SIF) stress intensity factor in mode I of the crack

(opening edge crack) were proportional to the depth of the

crack and inversely proportional to the distance of the

crack from the fixed end of the cantilever beam. Based on

these results, it is inferred that changes in the modal and

structural parameters of the cracked cantilever beam were

evidence which could be used to identify cracks.

Keywords Rotational stiffness � Modal analysis �
Harmonic analysis � Cracked cantilever beam � FEA

Introduction

Cracks initiated by fatigue are a major problem in the

dynamic structure of industrial machinery where they can

cause accidents and failures [1]. The vibration behavior of

beams changes when cracks occur, so action can be taken

to prevent more damage [2]. Natural frequencies and mode

shapes can be used to distinguish between healthy and

unhealthy structures [3]. Cantilever beams are used in

many mechanical structures, and researchers have studied

cracked cantilever beams [4–6]. Choudhury et al. [3] car-

ried out a theoretical analysis of a cracked cantilever beam

and observed that frequency values change along with

crack depth and crack location. They observed changes in

frequency behavior in the first three modes of vibrations.

Their results indicated that the range of natural frequency

increased for different crack locations and depths at higher

modes of vibration. They outlined a new optimization

method for estimation of results based on location and

depth of crack. The maximum error in this proposed

method is 0.3 and 0.05% based on crack depth and crack

location, respectively. Liu et al. [7] investigated the

vibration of a cantilever beam with a closed, fully

embedded horizontal crack and developed a new three-

segment beam model with local flexibilities at the crack

tips. They obtained the natural frequencies and mode

shapes of the cracked cantilever beam using the transfer

matrix method and compatibility conditions at the crack

tips. They determined compliance at the crack tips using a

J-integral approach. They validated the J-integral approach

by comparing their results with those calculated using finite
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element analysis and found only small differences between

the two methods. Zeng et al. [8] established the finite

element model of cracked cantilever beams and introduced

the use of the area damage factor when evaluating crack

levels. They discussed vibration response and crack level

identification in three cases of crack severity. They inferred

that a combination of the acceleration–velocity phase

portraits in the excitation direction and lateral velocity–

displacement phase portraits perpendicular to the excitation

direction can be used to identify the crack severity. Mia

et al. [9] have extracted modal analysis, natural frequencies

and mode shapes of transverse vibrations for the first three

modes of both intact and cracked cantilever beams. They

used commercial finite element analysis software ABA-

QUS to analyze various crack depths and locations and

concluded that natural frequency is reduced when a crack is

present. The amount of the reduction depends on the crack

location, depth and opening size. Nandwana and Maiti [10]

used a rotational spring for modeling transverse vibrations

of a slender beam in the presence of an inclined edge or

internal normal crack to detect crack location based on

measurement of natural frequencies. They plotted spring

stiffness versus crack locations for the three lowest trans-

verse modes. Their prediction of crack location was less

than 4.5% when an inclined edge crack was present.

Khalkar and Ramachandran [11] investigated the effects of

transverse cracks and oblique cracks at different locations

and depths on the dynamic responses of the cantilever

beam. They observed that when crack depth increases to

80% of the depth of the beam, a significant reduction in the

natural frequency of the beam occurs. They also observed

that when crack depth is 20% or less of the depth of the

beam, the reduction in the natural frequency of the beam is

least affected. Batabyal et al. [12] carried out parametric

studies using ANSYS software to evaluate natural fre-

quencies and mode shapes for different crack parameters.

They plotted the contour lines of the cracked beam fre-

quencies so that any point represents the frequency at a

specific crack location and depth. They inferred that both

crack location and crack depth have noticeable effects on

the modal parameters of the cracked cantilever beam.

Djidrov et al. [13] introduced a single transversal crack at

Fig. 1 Schematic of present work
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the surface of a cantilever beam and presented changes in

natural frequency and FRF amplitude attributable to the

effect of different crack depths at different crack positions.

Their results indicated that when a crack is located near the

middle of the beam, there are noticeable shifts in both FRF

amplitude and frequency where the severity of the crack

depth is perceptible. In this study, rotational stiffness and

flexibility in a crack are analytically calculated and plotted

for various crack depth ratios, using a described model on a

cracked isotropic aluminum cantilever beam. ANSYS v16

was used to perform finite element analysis (FEA),

including calculations of the modal, harmonic and struc-

tural frequencies for both the intact and cracked cantilever

beams. The natural frequencies for the first three bending

vibration modes for the intact cantilever beam obtained

using FEA were validated with the results obtained through

analytical calculations. Modal analysis was used to derive

the first sixth mode shapes and its natural frequencies,

including the modes of bending vibration, torsional vibra-

tion and deformation in Z. The relationship between the

frequency ratios and the crack depth ratios was plotted and

studied for various crack locations on the cracked beam.

Structural analysis was used to calculate zero frequency

deflection for the intact and cracked beams. The stiffness of

the intact and cracked beams was analytically calculated

using zero frequency deflection and the natural frequency

of the first mode of bending vibration to determine the

percent of error. Deformation response in the Y-direction

was plotted and studied for both the intact and cracked

beams. Structural analysis was also used to determine

longitudinal stress at the crack tips in the cracked can-

tilever beam. The stress intensity factor for mode I of the

crack (opening edge crack) was analytically estimated for

the cracked cantilever beam. The schematic for the present

work is shown in Fig. 1.

Description of Model

For this study, the selected isotropic material for the intact

and cracked cantilever beams is aluminum. The properties

[14] for this material are Young’s modulus of elasticity

(E) = 70 GPa, Poisson’s ratio (m) = 0.346 and density

(q) = 2710 kg/m3. The model used for the cracked can-

tilever beam is shown in Fig. 2. The dimensions and

parameters of the intact and cracked cantilever beam are

length (L) = 600 mm, width (W) = 45 mm, thickness

(t) = 30 mm and load (F) = 150 N. In the analytical cal-

culations and finite element analysis, the crack is single

transversal, assumed to be open edge, and listed based on

Fig. 2 Model of cracked cantilever beam

Fig. 3 Relation between

rotational stiffness in crack and

crack depth ratio
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crack depth ratio (d/t) and crack location ratio (e/L) where

d is the depth of the crack and e is the distance from the

crack to the fixed end of the cantilever beam. For this

analysis, the crack is present at crack location ratios of 0.1,

0.5 and 0.9. For every crack location, the crack depth ratio

was varied as 0.25, 0.4, 0.55 and 0.7.

Rotational Stiffness and Flexibility

Beam cracks can be modeled as equivalent internal springs,

and the linear-moment law can be applied when a crack

opens [15]. To simulate a uniform depth one-dimensional

beam crack, the torsional spring separates an intact beam

Fig. 4 Relation between

flexibility in crack and crack

depth ratio

Fig. 5 FEM model of the

cracked beam: (d/t) = 0.7, (e/

L) = 0.5

Table 1 Material properties and geometry for cracked cantilever

beam model [9]

Property Value

Length 3 m

Width 0.25 m

Depth 0.2 m

Material Mild steel

Elastic modulus 210 9 109 N/m2

Density 7860 kg/m3

Poisson’s ratio 0.3
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into two segments [16]. The approach that replaces the

crack with a rotational spring has been used to analyze a

cracked beam with a rectangular cross section [17, 18]. In

the massless rotational spring model, the stiffness is

inversely proportional to the crack size [10]. The presence

of the crack in the component is informed by local flexi-

bility [19]. The presence of the crack influences the

dynamic response of the system under an external force

with constant amplitude and frequency, and local flexibility

can then be determined based on crack depth [20]. Flexi-

bility was treated as a dimensionless parameter related to

the severity of damage [15]. In this study, rotational stiff-

ness and flexibility in crack were calculated using multiple

methods: rotational stiffness using Eq 1 [21] and Eq 2 [15],

and flexibility using Eq 3 [21] and Eq 4 [15]. The calcu-

lated values of rotational stiffness and flexibility are plotted

versus the crack depth ratios in Figs. 3 and 4, respectively,

showing that as crack depth increases, rotational stiffness

decreases and flexibility increases.

Fig. 6 FEA results for the cracked beam model modes of bending vibration

Table 2 Frequency at different crack locations for crack depth 0.1 m

Crack location from

fixed end (m)

Frequency (cycle/s)

Mode 1 Mode 2 Mode 3

0.5 Results, [9] 15.686 112.980 305.750

FEA 15.3948 112.793 305.162

Variation (%) 1.86 0.17 0.19

1 Results, [9] 16.936 108.77 280.81

FEA 16.7581 108.226 278.3

Variation (%) 1.05 0.5 0.89

1.5 Results, [9] 17.917 99.513 310.080

FEA 17.8092 98.1251 310.093

Variation (%) 0.6 1.39 -0.0042

2 Results, [9] 18.437 102.65 274.09

FEA 18.3974 101.412 271.297

Variation (%) 0.21 1.2 1.02

2.5 Results, [9] 18.6 112.28 285.66

FEA 18.5791 111.982 283.024

Variation (%) 0.11 0.27 0.92
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where Kz is rotational stiffness in crack

Kj ¼ EI

t

0:9 d=tð Þ � 1½ �2

d=tð Þ 2� d=tð Þ½ � ðEq 2Þ

I ¼ 1
12
Wt3, where Kj is rotational stiffness in crack

Fig. 7 Frequency vs. crack location for crack depth 0.1 m at the first three modes

Table 3 Comparison between the FEA and analytically natural

frequencies of the intact cantilever beam

Natural frequency

Finite

element

analysis

(Hz)

Analytical

solution

(Hz)

Difference

(%)

Natural frequency of first

mode of bending

vibration

2.1729 2.1644 0.39

Natural frequency of second

mode of bending

vibration

13.461 13.565 � 0.77

Natural frequency of third

mode of bending

vibration

37.034 37.938 � 2.4
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h ¼ 6p
d

t

� �2

fz
d

t

� �
t=L
� �

ðEq 3Þ

where h is flexibility at crack location

a ¼ EI

Kjð ÞL ðEq 4Þ

where a is a dimensionless parameter related to the severity

of the damage, E is the modulus of elasticity, I is the

moment of inertia, W is beam width, t is beam thickness, d

is crack depth, and L is beam length.

Table 4 The first sixth natural frequencies for intact and cracked cantilever beam

Object

Natural frequency (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Bending

vibration

Deformation

in Z

Bending

vibration

Deformation

in Z

Torsional

vibration

Bending

vibration

Intact beam 2.1729 3.2455 13.461 19.823 35.111 37.034

Cracked beam: (d/t) = 0.25, (e/L) = 0.1 2.0956 3.2003 13.3 19.723 34.839 36.987

Cracked beam: (d/t) = 0.4, (e/L) = 0.1 1.9551 3.1294 13.022 19.566 34.411 36.829

Cracked beam: (d/t) = 0.55, (e/L) = 0.1 1.7263 3.0233 12.636 19.335 33.753 36.588

Cracked beam: (d/t) = 0.7, (e/L) = 0.1 1.3611 2.8647 12.163 19.006 32.793 36.228

Cracked beam: (d/t) = 0.25, (e/L) = 0.5 2.1635 3.2394 13.151 19.651 34.984 37.122

Cracked beam: (d/t) = 0.4, (e/L) = 0.5 2.1365 3.2274 12.545 19.363 34.757 37.090

Cracked beam: (d/t) = 0.55, (e/L) = 0.5 2.08 3.2084 11.508 18.928 34.393 37.050

Cracked beam: (d/t) = 0.7, (e/L) = 0.5 1.9432 3.176 9.849 18.263 33.837 37.007

Cracked beam: (d/t) = 0.25, (e/L) = 0.9 2.1772 3.2482 13.482 19.829 35.107 37.007

Cracked beam: (d/t) = 0.4, (e/L) = 0.9 2.1779 3.2494 13.471 19.825 35.102 36.786

Cracked beam: (d/t) = 0.55, (e/L) = 0.9 2.1780 3.2505 13.428 19.813 35.082 36.223

Object

Natural frequency (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Bending vibration Deformation in Z Bending vibration Deformation in Z Bending vibration Torsional vibration

Cracked beam: (d/t)

= 0.7, (e/L) = 0.9

2.1786 3.2516 13.356 19.794 34.566 35.061

Fig. 8 Third mode shape

(second mode of bending

vibration): cracked beam; (d/

t) = 0.7, (e/L) = 0.9
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Finite Element Analysis (FEA)

ANSYS v16 [22] is used to perform finite element analysis

(structural, modal and harmonic) of a 3D model of the

intact and cracked cantilever beams. The finite element

analysis of the cracked cantilever beam is performed at

different crack locations and depths. The solid 185 element

used in the analysis is suitable for modeling the 3D solid

structure and has special features such as large deflection,

large strain, plasticity, hyper-elasticity, stress stiffening and

fracture parameter calculations. The solid 185 element is

defined along eight nodes with three degrees of freedom at

each node: translations in the nodal x, y and z directions.

The region around the crack tip is crucially important in the

finite element modeling where it has high gradients of

stress and deformation fields. A refined mesh in the region

around the crack tip should be used to pick up the rapidly

varying stress and deformation fields. In linear elastic

problems, the displacements near the crack tip (or crack

front) vary as a function of Hr, where r is the distance from

the crack tip. The stresses and strains are singular at the

crack tip, varying as a function of 1/Hr. The crack faces

should be coincident, and the elements around the crack tip

(or crack front) called singular elements should be quad-

ratic, with the mid-side nodes placed at the quarter points

to capture the singularity in stresses and strains. In the

Fig. 9 Third mode shape

(second mode of bending

vibration): cracked beam; (d/

t) = 0.7, (e/L) = 0.5

Fig. 10 Third mode shape

(second mode of bending

vibration): cracked beam; (d/

t) = 0.7, (e/L) = 0.1
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finite element analysis, the singular elements are used for

meshing the region around the crack tip, as shown in

Fig. 5. For meshing 2D cracked beam model, plane 183

element type is used and then the 2D model is extruded in

Z-direction to obtain 3D cracked beam model. The plane

183 element is changed to solid 185 element type for

meshing 3D cracked model. The applied load (F) = 150 N

is applied at the free end of the 3D model of the intact and

cracked cantilever beams during structural and harmonic

analysis. The cracked beam and its crack tip are meshed in

ANSYS v16, as shown in Fig. 5.

Validation of FEA Results

A comparison between the ANSYS FEA natural frequen-

cies of the first three modes of bending vibration and those

obtained by Mia et al. [9] for cracked cantilever beam

model is carried out. The material properties and geometry

for the cracked cantilever beam model are given in Table 1

[9]. In the finite element analysis, the crack is a V-shaped

notched of opening 2 mm as described in [9]. The solid 185

element is applied for meshing the 3D cracked beam in the

ANSYS analysis. Figure 6 shows FEA results for the

cracked cantilever beam mode shapes of bending vibration.

Table 2 presents the results at different crack locations for

crack depth 0.1 m obtained by 3D ANSYS analysis and

Fig. 11 Sixth mode shape

(third mode of bending

vibration): cracked beam; (d/

t) = 0.55, (e/L) = 0.9

Fig. 12 Sixth mode shape

(third mode of bending

vibration): cracked beam; (d/

t) = 0.55, (e/L) = 0.5
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those obtained by Mia et al. [9] using 3D ABAQUS

analysis. Plot of comparison results of frequency versus

crack location from fixed end at the first three modes of

bending vibration is presented in Fig. 7. The results in

Table 2 and Fig. 7 showed that the variations can give

validation for ANSYS FEA results, where the maximum

variation is 1.86%.

Modal Analysis

The block Lanczos method was used to extract mode

shapes and natural frequencies [23–26]. The natural fre-

quencies of the first three modes of bending vibration for

the intact cantilever beam model were validated by com-

paring the ANSYS FEA results to the values obtained using

the analytical equation in Eq 5 [27]. The results of the two

methods are listed in Table 3. The differences do not

exceed � 2.4%.

xn ¼ bnlð Þ2
ffiffiffiffiffiffiffiffiffi
EI

qAl4

s
ðEq 5Þ

where xn is the natural frequency describing the n-th mode

of bending vibrations, E is Young’s modulus, I is the

moment of inertia, q is the material density, A is the area of

cross section, and l is the length of cantilever beam.

b1l ¼ 1:875; b2l ¼ 4:694; and for n� 3 bnl
¼ 2n� 1ð Þp=2

The first sixth natural frequencies of the intact and

cracked cantilever beams are listed in Table 4. Figures 8,

9, 10, 11, 12, 13, 14 and 15 show mode shapes for the

cracked cantilever beam with a specified crack depth and

crack location ratio. For the first three bending vibration

mode shapes, the frequency ratio for the cracked beam was

determined by calculating the ratio of the frequency of the

cracked beam to that of the intact beam. The first three

bending frequency ratios were plotted as a function of the

crack depth ratio (d/t) for varying crack location ratios (e/

L) in Figs. 16, 17 and 18. For the first mode of bending

vibration, the frequency ratio decreased when the crack

depth ratio increased and the crack location ratio

decreased. For the second mode of bending vibration, the

frequency ratio versus crack depth ratio at (e/L) = 0.5 was

less than that at (e/L) = 0.1, as shown in Fig. 17. This

result was inconsistent because as the crack neared the

fixed end of the beam, the frequency ratio should decrease.

Further analysis showed that the Y-deformation that

occurred at (e/L) = 0.5 in the pattern of the second mode

shape of bending vibration was greater than that at (e/

L) = 0.1, as shown in Figs. 9 and 10. Also, the pattern of

the third mode shape of bending vibration obtained using

Fig. 18 where Y-deformation of this mode shape occurred

at (e/L) = 0.5 is slightly similar to that of the intact beam,

as shown in Fig. 12. As a result, the frequency ratio versus

crack depth ratio at (e/L) = 0.5 is nearly equal to one. Y-

deformation in the third mode of bending vibration

occurred at (e/L) = 0.9, which is greater than that at (e/

L) = 0.1, as shown in Figs. 11 and 13; this explains why

the reason the frequency ratio for (e/L) = 0.9 is less than

that at (e/L) = 0.1 in Fig. 18.

Fig. 13 Sixth mode shape

(third mode of bending

vibration): cracked beam; (d/

t) = 0.55, (e/L) = 0.1
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Fig. 14 Sixth mode shape (first

mode of torsional vibration):

cracked beam; (d/t) = 0.7, (e/

L) = 0.9

Fig. 15 Fifth mode shape (first

mode of torsional vibration):

cracked beam; (d/t) = 0.55, (e/

L) = 0.1

Fig. 16 Frequency ratio vs.

crack depth ratio at first mode of

bending vibration
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Fig. 17 Frequency ratio vs.

crack depth ratio at second

mode of bending vibration

Fig. 18 Frequency ratio vs.

crack depth ratio at third mode

of bending vibration

Fig. 19 Zero frequency

deflection: cracked beam; (d/

t) = 0.7, (e/L) = 0.1
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Stiffness of Intact and Cracked Cantilever Beam

Khalkar and Ramachandran [28] obtained the stiffness of

the cracked beam by dividing the applied load at the free

end of the cracked beam by the zero frequency deflection.

The zero frequency deflection is obtained through a

structural analysis of the deflection at the free end of the

cantilever beam. The stiffness was validated using modal

analysis to obtain the natural frequency of the first mode of

bending vibration for the cracked beam and substituting it

in Eq 6 [28]. There was agreement in the computed stiff-

ness calculated under the two methods. In this analysis, the

stiffness of the intact and cracked beam was calculated

using the same two methods indicated in [28]. The mass of

the cracked cantilever beam was treated as identical to the

mass of the intact cantilever beam, as the computed dif-

ference between these two masses was very small to

negligible.

Fig. 20 Zero frequency

deflection: cracked beam; (d/

t) = 0.25, (e/L) = 0.5

Fig. 21 Natural frequency of

the first mode of bending

vibration: cracked beam; (d/

t) = 0.7, (e/L) = 0.1
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fn ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

0:2357m

r
ðEq 6Þ

where k is the stiffness of an intact cantilever beam and

0.2357 m is the effective mass of an intact cantilever beam.

Plots of the natural frequencies of the first mode of bending

vibration and zero frequency deflection are shown in

Figs. 19, 20, 21 and 22. The computed stiffness values for

the intact and cracked cantilever beam are listed in Table 5.

Harmonic Analysis

Harmonic analysis involves plotting the calculated

response of a structure to cyclic loads over a frequency

range on an amplitude versus frequency graph [23, 25].

Harmonic analysis is used to determine shifts in the natural

frequencies and study the frequency response functions for

the cracked beam [13]. The frequency response diagram is

an important tool which can be used to detect a crack in the

beam [2]. Ma et al. [29] analyzed the effects of excitation

load and crack parameters on slant-cracked cantilever

beam vibration responses. They used the amplitude

Fig. 22 Natural frequency of

the first mode of bending

vibration: cracked beam; (d/

t) = 0.25, (e/L) = 0.5

Table 5 Stiffness of the intact and cracked cantilever beam

Object

Based on structural analysis Based on modal analysis

Percent

error (%)

Zero frequency

deflection (mm)

Stiffness

(N/mm)

Natural frequency of first mode

of bending vibration (Hz)

Stiffness

(N/mm)

Intact beam 1.51 99.3 2.1729 96.3 3.021

Cracked beam: (d/t) = 0.25, (e/L) = 0.1 1.60 93.8 2.0956 89.6 4.478

Cracked beam: (d/t) = 0.4, (e/L) = 0.1 1.8 83.3 1.9551 78 6.363

Cracked beam: (d/t) = 0.55, (e/L) = 0.1 2.23 67.3 1.7263 60.8 9.658

Cracked beam: (d/t) = 0.7, (e/L) = 0.1 3.41 44 1.3611 37.8 14.091

Cracked beam: (d/t) = 0.25, (e/L) = 0.5 1.54 97.4 2.1635 95.5 1.951

Cracked beam: (d/t) = 0.4, (e/L) = 0.5 1.6 93.8 2.1365 93.1 0.746

Cracked beam: (d/t) = 0.55, (e/L) = 0.5 1.74 86.2 2.08 88.3 � 2.436

Cracked beam: (d/t) = 0.7, (e/L) = 0.5 2.11 71.1 1.9432 77 � 8.298

Cracked beam: (d/t) = 0.25, (e/L) = 0.9 1.51 99.3 2.1772 96.7 2.618

Cracked beam: (d/t) = 0.4, (e/L) = 0.9 1.512 99.2 2.1779 96.8 2.419

Cracked beam: (d/t) = 0.55, (e/L) = 0.9 1.52 98.7 2.1780 96.8 1.925

Cracked beam: (d/t) = 0.7, (e/L) = 0.9 1.53 98 2.1786 96.8 1.224
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Fig. 23 Deformation response

in Y-direction for the cracked

cantilever beam; (e/L) = 0.1

Fig. 24 Deformation response

in Y-direction for the cracked

cantilever beam; (e/L) = 0.5
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frequency responses in three frequency regions to describe

the super-harmonic resonance, resonance and sub-har-

monic resonance. In this study, harmonic analysis was used

to examine the difference in the deformation responses in

the Y-direction for the intact and cracked cantilever beams

at different crack depth ratios in specified crack locations.

The deformation responses in the Y-direction in the range

of 0–40 Hz are shown in Figs. 23, 24 and 25 for both the

intact and cracked cantilever beams. The natural

Fig. 25 Deformation response

in Y-direction for the cracked

cantilever beam; (e/L) = 0.9

Fig. 26 Enlarged view of the

longitudinal stress distribution

around the crack tip; (d/t) = 0.7,

(e/L) = 0.1
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frequencies of the cracked beam differ from those of the

intact beam in the following ways:

1. For the first mode of bending vibration, (a) at (e/

L) = 0.9, it is very small (at its lowest), (b) at (e/

L) = 0.5, it increases, and (c) at (e/L) = 0.1, it

increases more.

2. For the second mode of bending vibration, (a) at (e/

L) = 0.9, it is very small (at its lowest), (b) at (e/

L) = 0.1, it increases, and (c) at (e/L) = 0.5, it

increases more (to its highest).

3. For the third mode of bending vibration, (a) at (e/

L) = 0.5, it is very small (at its lowest), (b) at (e/

L) = 0.1, it increases, and (c) at (e/L) = 0.9, it

increases more (to its highest).

The observations in Figs. 23, 24 and 25 are used to

establish the information in Figs. 16, 17 and 18 of the

modal analysis and the pattern of mode shapes.

Stress Intensity Factor

Stress intensity factor is defined as the crack driving force;

its critical value is fracture toughness, a material property

which reflects resistance to extension of the crack [30].

Stress intensity factor can be evaluated for three crack

modes: mode I the crack is opening under tensile stress,

mode II the crack is sliding under applied shear stress, and

mode III the crack is tearing under applied shear stress

[31]. The stress intensity factor denotes the severity of the

crack. Many authors have presented studies on estimating

the stress intensity factor for cracks [32–37].

The stress intensity factor for mode I (opening edge

crack) was determined using Eq 7 [21]. ANSYS was used

for a structural analysis of the stresses inside the crack. The

contour of the longitudinal stress distribution around the

crack tip for cracked cantilever beam (d/t) = 0.7, (e/

L) = 0.1 is shown in Fig. 26. The SIF versus crack depth

ratio was plotted for various crack locations in Fig. 27,

showing that as crack depth ratio increased and crack

location ratio decreased, the SIF values increased.

SIF ¼ r
ffiffiffiffiffiffi
pd

p
f d=tð Þ ðEq 7Þ

f d=tð Þ ¼ 1:13� 1:374 d=tð Þ þ 5:749 d=tð Þ2�4:464 d=tð Þ3

where SIF is the first stress intensity factor,r is stress in the

crack, d is crack depth, and t is the thickness of the can-

tilever beam.

Conclusions

Based on the results obtained in this study, the following

conclusions were drawn:

1. An increase in crack depth led to decreased rotational

stiffness and increased flexibility in the crack.

2. At specific crack locations, the reduction in the natural

frequencies of the cracked cantilever beam was

proportional to the depth of crack.

3. For the first bending vibration mode, the natural

frequency of the cracked cantilever beam was propor-

tional to the distance of the crack from the fixed end of

the cantilever beam.

4. For the second and third bending vibration modes, the

pattern of mode shapes was vital to understanding the

variation in the natural frequency of the cracked

cantilever beam.

5. In the modal analysis, plotting the deformation

responses in the Y-direction for the intact and cracked

cantilever beams revealed a noticeable shift in the

natural frequencies.

6. Where the depth of the crack was constant, the

stiffness of the cracked beam increased as the distance

Fig. 27 Plot of SIF vs. crack

depth ratio
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of the crack from the fixed end of the cantilever beam

increased.

7. Where the location of the crack was constant, the

stiffness of the cracked beam decreased as the crack

depth increased.

8. Stress intensity factor values in mode I increased as

crack depth increased and the distance of the crack

from the fixed end of the cantilever beam decreased.
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