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Abstract Conventional reliability analysis of load-shar-

ing parallel systems is mainly based on the assumption that

there is failure of components. When a component fails, the

load redistributes among the remaining surviving compo-

nents. But sometimes there is no failure of components

during the usage of a load-sharing parallel system. When

there is no failure of components, working load is dis-

patched among components, which means the load on each

component is almost the same during the whole working

process. The degradation process of each component is also

almost the same. The reliability analysis of a load-sharing

parallel system with no component fails can be simplified

to the reliability analysis of a component. In this paper,

three cases are studied. First, based on stress-strength

interference model, estimation of component reliability

with load application times is generated, which considered

the nonlinear fatigue damage model. Then, Poisson process

is used to describe reliability changed with time. Third, the

reliability is studied when the working load is not constant

but changed with time or load application times. Some

examples are used to illustrate the application of these

models, and the Monte Carlo simulation method is used as

standard to verify the proposed models.
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Introduction

For a mechanical system, the redundancy technique is a

commonly used applicationwhich can improve the reliability

of system, so the k/n redundancy systems are widely applied

in many fields. Load-sharing parallel system is the simplest

form of k/n redundancy system. Airplane’s multi-engine

system, bridge’s wire cable, flow transmission system, task

processing system and the body’s kidney are all load-sharing

parallel systems [1, 2]. So the evaluation of load-sharing

parallel systems’ reliability plays an important role in the

normal operating process of mechanical systems. A signifi-

cant body of research has accumulated in the reliability study

of load-sharing systems. Almost all the studies assume there

is component failure. In a load-sharing system, if a compo-

nent fails, the total workload will be shared by the remaining

components, resulting in an increased load shared by each

surviving component [3, 4]. Lots of researchers use failure

rate to analyze the reliability of load-sharing systems [5–10].

Amari et al. [8] provided a closed-form analytical solution for

the reliability of tampered failure rate load-sharing systems

with identical components where all components share the

load equally. Tang et al. [11] described the increase in the

same component’s failure rate under different loads on the

basis of capacity flowmodel and studied the reliability of the

load-sharing systemwith different components. Themethods

mentioned above assumed the failure time distribution, for

the components are exponential distribution. In order to

overcome this limitation, Liu [12] developed a method to get

the reliability of a load-sharing k-out-of-n: G system, whose

components are nonidentical and the failure time distribution

of each component can be the same or different. Zhang et al.

[15] used the first-order method, which linearized the com-

ponent limit-state function at the most probable point, to

X. Yu � T. Yu (&) � K. Song � B. Song
School of Aeronautics, Northwestern Polytechnical University,

Xi’an, China

e-mail: Tianxiangyu@nwpu.edu.cn

123

J Fail. Anal. and Preven. (2019) 19:1244–1251

https://doi.org/10.1007/s11668-019-00710-1

http://orcid.org/0000-0002-5260-7969
http://crossmark.crossref.org/dialog/?doi=10.1007/s11668-019-00710-1&amp;domain=pdf
https://doi.org/10.1007/s11668-019-00710-1


calculate the reliability of a load-sharing k-out-of-n: G sys-

tem. Xie et al. [16] presented an approach, which is based on

system-level load-strength interference analysis and a con-

cept of ‘conditional failure probability of component,’ to

calculate the system’s reliability.

Regardless the lifetime’s distribution, the reliability

analysis methods of load-sharing systems mentioned above

are almost based on the calculation of mechanical compo-

nents’ failure rate. However, in order to get the failure rates

of mechanical components, large amount samples of load

and strength degradation should be needed, which is hard to

get. Because of the vibration, complex working environment

and so on, the fatigue, corrosion and wear frequently appear

in the working process of mechanical system. All of these

reasons can degrade the component’s strength, which will

result in the variation of the reliability of components with

load application times or time. So it is important to consider

the strength degradation process in the reliability analysis of

mechanical components [13]. Lots of researchers studied the

reliability of load-sharing systems with degrading compo-

nents. Yang et al. [17] combined the tampered failure rate

model with a performance degradation model to analyze the

reliability of load-sharing k-out-of-n system with degrading

components. Gao et al. [13] calculated the system’s relia-

bility in terms of stress and strength parameters, which

consider the degradation mechanism of mechanical com-

ponents. Zhao et al. [14] analyzed the reliability of the load-

sharing systems with identical components subject to con-

tinuous degradation.

All of the studies are based on the assumption that the

component of load-sharing parallel system has only two

states: functioning or failed. But sometimes, the compo-

nents will degrade instead of fail. In this paper, we will

study the reliability analysis of load-sharing parallel system

with no component fails and the system fails to meet a

required performance threshold. This paper is organized as

follows. In part 2, we discuss the load-sharing parallel

systems with no failure of components when the systems

cannot meet the requirement. We divide this situation into

three cases: the relationship between reliability and load

application times, the relationship between reliability and

time and reliability analysis with increment process of

working load. In part 3, some numerical examples are used

to illustrate the application of the models under the three

cases. Concluding remarks are discussed in part 4.

Load-Sharing Parallel Systems with No Failure

of Components

For a mechanical load-sharing parallel system, components

are usually chosen with identical property parameters.

Traditional load-sharing parallel system models assume

that all components share the working load with some load-

sharing rules. When one of the components fails, the load

will be automatically redistributed to the remaining com-

ponents. The failure of each component is always sudden,

which leads the whole system to stop working immedi-

ately. However, there are some situations that the

components have no failure, but with the increased work-

ing time and working load application times, the strength

of each component will degrade. Then, the whole perfor-

mance of the system will degrade. In order to work

normally, each system has a threshold. When the total

degradation of the system reaches the threshold, the system

will fail [2]. As in Fig. 1, four plates combined to form a

torsional spring system, which is widely used in armored

vehicles. These plates are identically distributed, which

means these four plates equally share the total load. In the

working process, the torsional spring system needs to be

torqued time after time. After torqued some angle, the

torsional spring can afford some certain torque, and the

torque always needs to fit some requirements. In this sys-

tem, these four plates will degrade gradually with the work

load application times. The system will fail when the

generated torque cannot meet the requirement. During the

whole working process, there is no sudden failure of

components.

For a load-sharing parallel system without failure of

components, the system working load is allocated to the

components by some sharing rules (e.g., equal load sharing,

tapered load sharing, local load sharing, etc.) [24]. In this

paper, we use the equal load sharing principle. In the

process of working, the strength of components degrades

along with application times of loads. Along with the

strength degradation of components, the work load will be

changed to balance the degradation. If one component

degrades fast, the working load it allocated will be small,

so the degradation of it will be slow. The whole working

load allocated by other components will be large; then, the

degradation of other components will be fast. Because of

this, we can assume that the degradation level and working

load shared by each component are almost the same during

the working time of a system. When the strength is smaller

than the desired stress of a component, which means the

component will fail, the whole load-sharing parallel system

will fail.

Because of the reasons mentioned above, the reliability

analysis of a load-sharing parallel system with no failure of

Fig. 1 Load-sharing parallel system of torsional spring
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components can be simplified into the reliability analysis of

each component of this system. Based on the actual

working condition, three cases will be discussed in the

following parts.

Dynamic Reliability Models with Nonlinear Strength

Degradation

If the fatigue is considered to be the only one failure mode,

then the process of load application will be discrete. And

the load process can be characterized by two factors, which

are application times and magnitude. When only the failure

mode of fatigue is considered, the reliability analysis of

mechanical components at a given time instant will be

insignificance. The study of reliability with load applica-

tion times will be more meaningful [18]. As we all know,

when there is no appearance of load application, there will

be no degradation of strength, which means that the

strength degradation process is not continuous.

After n times of load application, the remaining strength

of the mechanical components can be expressed as [19]:

rðnÞ ¼ r0½1� DðnÞ�a ðEq 1Þ

where r0, n and a are the initial strength, load application

times and material parameter, respectively. D(n) is the

cumulative damage caused by load, the magnitude of it is

determined by load application times n and the magnitude

of load.

The damage caused by a load with a magnitude of si
once can be got by the Miner rule, which can be expressed

as:

Dið1Þ ¼
1

Ni

ðEq 2Þ

where Ni is the lifetime under the load si.

When the initial strength is determined, the remaining

strength based on the Miner rule after n times of load

application can be expressed as [18]:

rðnÞ ¼ r0½1� DðnÞ�a ¼ r0 1� n0n

N0

� �a

¼ r0 1�
n
R1
�1 smfsðsÞds

C

� �a

ðEq 3Þ

where m and C are material parameters.

And the reliability can be expressed as:

RðnÞ ¼
Yn�1

i¼0

Z r0 1�
i

R1

�1
smfsðsÞds

C

� �a

�1
fsðsÞds

2
64

3
75 ðEq 4Þ

In the model mentioned above, the cumulative damage

caused by load is established by the Miner linear damage

accumulation rule. But the Miner rule has some obvious

drawbacks: the effects of loading sequence, load

interaction and the damage contribution caused by those

stresses below the fatigue limit are ignored. Because of

these reasons, the results between the predicted and

experimental value got by Miner rule always have

difference. So, in this paper, we choose the nonlinear

fatigue damage model proposed by Manson and Halford

[20] to instead the Miner rule to overcome these

drawbacks. In this nonlinear fatigue damage model, the

damage caused by load si once can be expressed as:

Dð1Þ ¼ 1

Ni

� �BN
b
i

ðEq 5Þ

where B and b are material parameters.

The relationship between the load magnitude si and the

corresponding lifetime Ni, which can be got by the S–N

curve theory of components, can be expressed as:

rmi Ni ¼ C; Ni ¼
C

rmi
; ðEq 6Þ

where m and C are material parameters.

Then, Eq 5 can be expressed as:

Dð1Þ ¼ rmi
C

� �B C
rm
i

� �b

ðEq 7Þ

When we know the probability density function (pdf)

fsðsÞ of the random load, the damage caused by stress si
once can be expressed as:

Dð1Þ ¼
Z þ1

�1

sm

C

� �B C
smð Þb

fsðsÞds ðEq 8Þ

The remaining strength considered nonlinear strength

degradation with n load application times can be expressed

as:

rðnÞ ¼ r0 1� n

Z þ1

�1

sm

C

� �B C
smð Þb

fsðsÞds

2
4

3
5
a

ðEq 9Þ

Then, after n times of load application, the reliability of

the mechanical component can be derived as:

RðnÞ ¼
Yn�1

i¼0

Z r0 1�i
R þ1

�1
sm

Cð ÞB
C
smð Þb

fsðsÞds

� �a

�1
fsðsÞds

8><
>:

9>=
>;

ðEq 10Þ

Monte Carlo Simulation Method

In order to validate the proposed model, the Monte Carlo

simulation method is carried out. The main steps of the

Monte Carlo simulation are listed as follows:
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Step 1: The load application times n and the total times

of the Monte Carlo simulation trials k will be fixed

firstly, and let i = 0, m = 1 and j = 1.

Step 2: Get the value of initial strength of the component

r0. Let rj = r0.

Step 3: Get the value of random load sj.

Step 4: If rj [ sj, let i ¼ iþ 1 and go to step 5; otherwise

go to step 6.

Step 5: If m ¼ k, go to step 7; otherwise let m ¼ mþ 1

and j ¼ 1.

Step 6: If j ¼ n, go to step 5; otherwise calculate

remaining strength r, let rj ¼ r and j = j?1, then go to

step 3.

Step 7: Use the formula R ¼ 1� i=k to get the reliability

of the system.

Step 8: Stop the simulation.

Reliability Analysis over Time

In the working process of mechanical equipment or system,

the working loads are always related with time. The

working process of loads can be described by random

process [21, 22].

Poisson Process

As an important process of counting, Poisson process can

be used to describe the variation of the number of random

loads over time. N(t) is the total number of random loads

during period (0, t), which fits the following conditions as

[23]:

1. When t = 0, the number of random loads is zero,

which means N(0) = 0;

2. In any period of time, the appearance of the load is

independent of each other, which means 0\t1\
� � �\tn; Nðt1Þ;Nðt2Þ � Nðt1Þ; . . .;NðtnÞ � Nðtn�1Þ are

independent of each other.

3. The number of random loads has non-relationship with

initial time, it only has relationship with the time

period, which means 8s; t� 0; n � 0;P½Nðsþ tÞ �
NðsÞ ¼ n� ¼ P½NðtÞ ¼ n�;

4. For any t[ 0 and sufficiently small Dt(Dt[ 0), there

is:

P½Nðt þ DtÞ � NðtÞ ¼ 1� ¼ kðtÞDt þ oðDtÞ
P½Nðt þ DtÞ � NðtÞ� 2� ¼ oðDtÞ

�

where kðtÞ is the intensity of the Poisson process. Then, the

total number of random loads N(t) can be seen as Poisson

process with rate function kðtÞ. And the probability of n

times of loads at any time t can be expressed as:

P½NðtÞ � Nð0Þ ¼ n� ¼
R t

0
kðtÞdt

	 
n
n!

exp �
Z t

0

kðtÞdt
� �

ðEq 11Þ

Based on the Poisson process theory mentioned

above and the total probability theorem, the reliability

considered nonlinear strength degradation between the

time 0 and t can be got by:

RðtÞ ¼ exp �
Z t

0

kðtÞdt
� �

þ
X1
n¼1

R t

0
kðtÞdt

	 
n
n!

� exp �
Z t

0

kðtÞdt
� �

� exp
Yn�1

i¼1

Z r0 1�i
R þ1

�1
sm

Cð ÞB
C
smð Þb

fsðsÞds

� �a

�1
fsðsÞds

2
64

3
75

8><
>:

9>=
>;

ðEq 12Þ

Based on the Taylor expression of exponential function,

which is:

expðxÞ ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � �

Equation 12 can be simplified as:

RðtÞ ¼ exp �
Z t

0

kðtÞdt
� �

þ 1� exp �
Z t

0

kðtÞdt
� �� �

� exp
Yn�1

i¼1

Z r0 1�i
R þ1

�1
sm

Cð ÞB
C
smð Þb

fsðsÞds

� �a

�1
fsðsÞds

2
64

3
75

8><
>:

9>=
>;

ðEq 13Þ

Due to manufacturing, materials and other factors, the

initial strength has some dispersion. The pdf of r0 ðfr0ðr0ÞÞ
can be used to denote the dispersion of initial strength.

Then, the reliability can be expressed as:

RðtÞ ¼ exp �
Z t

0

kðtÞdt
� �Z 1

�1
f ðr0Þdr0

þ
X1
n¼1

R t

0
kðtÞdt

	 
n
n!

� exp �
Z t

0

kðtÞdt
� �

� exp

Z 1

�1
fr0ðr0Þ

Yn�1

i¼0

Z r0½1�i
R þ1

�1
sm

Cð ÞB
C
smð Þb

fsðsÞds�a

�1
fsðsÞds

2
64

3
75

8><
>:

9>=
>;dr0

8><
>:

9>=
>;

ðEq 14Þ

Reliability Analysis with Increment Process

of Working Load

In the process of working, the working load may be not

constant but changed with time or load application times.

As in Fig. 2, three bars are fixed at one end and suffered a

total load F at the other end. In the process of working, the
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total working load F can be changed with time or work

load application times.

This means that the pdf of stress will be changed, which

can be expressed as fsðs; tÞ. Then, the reliability under the

application of random load n times can be expressed as:

RðnÞ ¼
Yn�1

i¼0

Z r0 1�i
R þ1

�1
ðs;tÞm
C

	 
B C
ðs;tÞm

� �b

fsðs;tÞds

2
4

3
5

a

�1
fsðs; tÞds

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ðEq 15Þ

And the reliability considered nonlinear strength

degradation between the time interval (0, t) can be

expressed as:

RðtÞ ¼ exp �
Z t

0

kðtÞdt
� �

þ
X1
n¼1

R t

0
kðtÞdt

	 
n
n!

� exp �
Z t

0

kðtÞdt
� �

�
Yn�1

i¼1

Z r0 1�i
R þ1

�1
ðs;tÞm
C

	 
B C
ðs;tÞm

� �b

fsðs;tÞds

2
4

3
5

a

�1
fsðs; tÞds

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ðEq 16Þ

Numerical Examples

Case 1: Reliability under load application times with

nonlinear strength degradation.

In this section, the material parameters are given by

m = 2, a = 1 and C = 108 MPa2. The constants B and b are

2/3 and 0.4 according to the research by Manson and

Halford. The initial strength is normally distributed with a

mean value l(r0) and a standard deviation of r(r0). The
stress at each load application follows the normal distri-

bution with a mean value of l(s) and a standard deviation

of r(s). The value of the mean value and standard deviation

of the initial strength and stress are listed in Table 1.

The reliability with load application times got by Monte

Carlo method and the proposed model (Eq 10) in this paper

are listed in Fig. 3.

From this figure, we can see that the reliability, which

considered the nonlinear strength degradation progress,

decreases with load application times. The reliability cal-

culated by the proposed method in this paper agrees well

with the results calculated by the Monte Carlo simulation.

Case 2: Reliability over time.

Consider the random load follows the Poisson process

with an intensity of 0.6 h�1, the material parameters are the

same as Case 1. The mean and standard deviation of stress

and initial strength are also the same as Case 1. Then, the

results of reliability over time calculated by the proposed

model (Eq 12) in this paper are listed in Fig. 4.

From this figure, we can see that the reliability, which

considered the nonlinear strength degradation process and

the Poisson process, decreases with the increment of time.

Within 0–400 h, the reliability is close to 1, during 400–

1000 h, it decreases rapidly, and after 1000 h, the relia-

bility of the load-sharing parallel system is almost zero.

The model proposed in this paper provides an analytical

method for reliability analysis considering nonlinear

strength degradation and Poisson process over time.

Fig. 2 Load-sharing parallel system of three bars

Table 1 Value of mean and standard deviation of stress and initial

strength

lðr0Þ (MPa) rðr0Þ (MPa) lðsÞ (MPa) rðsÞ (MPa)

600 10 500 20

Fig. 3 Reliability with load application times from the proposed

model and Monte Carlo simulation
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Case 3: Reliability with changed working load.

As long as we know the change law of stress, the reli-

ability under application of random load times and

considered Poisson process over time will be got.

In this paper, we study the situation that the working

load linearly increases with time, which can be seen fre-

quently in an actual engineering, and the rate of this linear

function is v. Under this approximation, the working load

increment process can be expressed as W(t) = vt. But there

is always fluctuation in the increment process of working

load. Candidate stochastic processes (Gamma process,

Compound Poisson process, Inverse Gaussian distribution)

are suitable to describe the working load increment process

[25]. In this paper, Possion process is used to describe the

variation of the number of random loads over time. So in

this case, compound Poisson process is choose to describe

the working load increment process.

The Compound Poisson Process If the rate of working

load application is not high, we may consider the com-

pound Poisson process to describe the process with

increased working load. The expression of compound

Poisson process can be seen as:

WðtÞ ¼
XNðtÞ
i¼1

Wi

where fNðtÞ; t� 0g is a non-homogeneous Poisson process

with rate function kðtÞ, and Wi is the working load with

each arrival, which are i.i.d. The mean of WðtÞ is given by

kðtÞt � EðWiÞ.
The working load increment process of the compound

Poisson process can be seen as in Fig. 5.

In this figure, the rate function of Poisson process is

kðtÞ ¼ 0:6 h�1 and the workloads associated with each

arrival follows exponential distribution. The rate parameter

of exponential distribution is 1
l, which means Wi �Cð1; 1lÞ.

The increment of stress is 5 MPa per 100 h.

In this case, the torsional spring is used as an example.

The length, width and height of each thin plate are

306 mm, 21 mm and 2 mm, respectively. The material is

made up of 60Si2Mn. The shear modulus

G ¼ 79:9� 103 MPa, the Poisson ratio k ¼ 0:29. Accord-

ing to the S–N curve of 60Si2Mn, the material parameters

are m ¼ 3, a ¼ 1 and C ¼ 1013 MPa2. After torqueing 90�,
the maximum shear stress is 820 MPa. The mean and

standard deviation values of the stress and initial strength

are listed in Table 2.

The torsional spring fails without fracture of compo-

nents, and each component degrades almost in the same

path. The reliability of the torsional spring system can be

expressed by the reliability of each component. So the

reliability comparison of torsional spring system with no

increased working load and increased working load can be

seen in Fig. 6. In Fig. 6, the process of increment working

load is the same with the process shown in Fig. 5.

In this figure, we can see that the reliability decreases

with the increment of time. The reliability with increased

working load decreases more rapidly than the reliability

with no increased working load, which means that when

the working load increases, the system will fail easily.

Fig. 5 Working load increment process of compound Poisson

process

Table 2 Value of mean and standard deviation of stress and initial

strength

lðr0Þ (MPa) rðr0Þ (MPa) lðsÞ (MPa) rðsÞ (MPa)

900 10 820 10

Fig. 4 Reliability with time of load
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Conclusions

In the working process of the load-sharing parallel system,

there are some situations that the components of the system

have no failure. For this condition, the reliability calcula-

tion of the system can be simplified to the reliability

calculation of each component. Three cases are used to

illustrate the different conditions.

1. With the increment of load application times, the

strength of components will degrade. The Miner rule is

widely used to describe the strength degradation of

mechanical components, but the Miner rules have no

consideration of the effects of loading sequence, load

interaction and the damage contribution induced by

those stresses below the fatigue limit. Based on

nonlinear strength degradation, the relationship

between dynamic reliability model of load-sharing

parallel system with no failure components and load

application times is developed in this paper.

2. With the consideration of the Poisson process, the

reliability model of the system over time is also

studied.

3. When mechanical components works, the working

loads are not always constant but changed. The model

of this situation is also studied. The situation with

gradually increased working load is studied in this

paper. Compound Poisson process is used to describe

the working load increment process. The larger the

working load, the faster the strength degradation

process, and the reliability of load-sharing parallel

system decreases more rapidly.

Funding The research is supported by The Natural Science

Foundation of China under Grant No. 51675428.

References

1. G. Hao, L. Xie, Damage equivalent method of fatigue reliability

analysis of load-sharing parallel system. Adv. Mater. Res. 44(46),
853–858 (2008)

2. A. Lisnianski, G. Levitin, Multi-state System Reliability,

Assessment, Optimization and Application (Word Scientific

Publishing Co Pte Ltd, Singapore, 2003), pp. 33–38

3. A. Barros, C. Berenguer, A. Grall, Optimization of replacement

times using imperfect monitoring information. IEEE Trans.

Reliab. 52(4), 523–533 (2003)

4. Yu. Haiyang, C. Chu, E. Chatelet, F. Yalaoui, Reliability opti-

mization of a redundant system with failure dependencies.

Reliab. Eng. Syst. Saf. 92, 1627–1634 (2007)

5. E.M. Scheuer, Reliability of an m-out-of-n system when com-

ponent failure induces higher failure rates in survivors. Trans.

Reliab. 37(1), 73–74 (1988)

6. J. Shao, L.R. Lamberson, Modeling a shared-load k-out-of-n: G

system. IEEE Trans. Reliab. 40(2), 205–209 (1991)

7. S. Somasundaram, D.A.M. Dhas, Reliability of a dynamic n-unit

shared load parallel system under different failure times. Micro-

electron. Reliab. 37(5), 869–871 (1997)

8. S.V. Amari, K.B. Misra, H. Pham. Reliability analysis of tam-

pered failure rate load-sharing k-out-of-n: G systems. in

Proceedings of the 12th ISSAT International Conference on

Reliability and Quality in Design, (2006) pp. 30–35

9. L. Huang, Q. Xu, Lifetime reliability of load-sharing redundant

systems with arbitrary failure distributions. IEEE Trans. Reliab.

59(2), 319–330 (2010)

10. P. Pozsgai, W. Neher, B. Bertsche. Models to consider load-

sharing in reliability calculation and simulation of systems con-

sisting of mechanical components. Reliability and

Maintainability Symposium, (2003) pp. 493–499

11. T. Yinghui, Z. Jing, New model for load-sharing k-out-of-n: G

system with different components. J. Syst. Eng. Electron. 19(4),
748–751 (2008)

12. H. Liu, Reliability of a load-sharing k-out-of-n: G system: non-iid

components with arbitrary distributions. IEEE Trans. Reliab.

47(3), 279–284 (1998)

13. P. Gao, L. Xie, Dynamic reliability models of mechanical load-

sharing parallel systems considering strength degradation of

components. J. Mech. Eng. Sci. 229(13), 2484–2495 (2015)

14. X. Zhao, B. Liu, Y. Liu, Reliability modeling and analysis of

load-sharing systems with continuously degrading components.

IEEE Trans. Reliab. 67(3), 1096–1110 (2018)

15. T. Zhang, Y. Zhang, D. Xiaoping, Reliability analysis for k-out-

of-n systems with shared load and dependent components. Struct.

Multidiscip. Optim. 57, 913–923 (2018)

16. L. Xie, J. Zhou, C. Hao, System-level load-strength interference

based reliability modeling of k-out-of-n system. Reliab. Eng.

Syst. Saf. 84, 311–317 (2004)

17. C. Yang, S. Zeng, J. Guo, Reliability analysis of load-sharing k-

out-of-n system considering component degradation. Math. Probl.

Eng. 2015, 1–10 (2015)

18. P. Gao, S. Yan, L. Xie, J. Wu, Dynamic reliability analysis of

mechanical components based on equivalent strength degradation

paths. J. Mech. Eng. 56(6), 387–399 (2013)

19. Y.A. Gu, A.H. AnWG, Structural reliability analysis under dead

load and fatigue load. Acta Armamentar 28(12), 1473–1477

(2007)

20. S.S. Manson, G.R. Halford, Practical implementation of the

double linear damage rule and damage curve approach for

treating cumulative fatigue damage. Int. J. Fract. 17(2), 169–192
(1981)

Fig. 6 Reliability of torsional springs system with time t

1250 J Fail. Anal. and Preven. (2019) 19:1244–1251

123



21. O. Ditlevsen, Stochastic model for joint wave and wind loads on

offshore structures. Struct. Saf. 24, 139–163 (2002)

22. J.P. Li, G. Thompson, A method to take account of in-homo-

geneity in mechanical component reliability calculations. IEEE

Trans. Reliab. 54(1), 159–168 (2005)

23. Z. Wang, L. Xie, B. Li, J. Zhang, Time-dependent reliability

model of system with common cause failure. China Mech. Eng.

19(1), 5–9 (2008)

24. S. Durham, J. Lynch, W. Padgett, T. Horan, W. Owen, J. Surles,

Localized load-sharing rules and Markov–Weibull fibers: a

comparison of microcomposite failure data with Monte Carlo

simulations. J. Compos. Mater. 31(18), 1856–1882 (1997)

25. Z. Ye, M. Revie, L. Walls, A load sharing system reliability

model with managed components degradation. IEEE Trans.

Reliab. 63(3), 721–730 (2014)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

J Fail. Anal. and Preven. (2019) 19:1244–1251 1251

123


	Reliability Analysis for Load-Sharing Parallel Systems with No Failure of Components
	Abstract
	Introduction
	Load-Sharing Parallel Systems with No Failure of Components
	Dynamic Reliability Models with Nonlinear Strength Degradation
	Monte Carlo Simulation Method

	Reliability Analysis over Time
	Poisson Process

	Reliability Analysis with Increment Process of Working Load

	Numerical Examples
	Conclusions
	References




