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Antônio Carlos Ancelotti Jr.

Submitted: 6 June 2018 / Published online: 16 May 2019

� ASM International 2019

Abstract The use of composite materials has increased

lately and the need to know the behavior of these materials

is very important once these devices are subject to suffer

from damage such as cracks and delamination. Normally,

to analyze failure problems in composite materials, the

following steps are necessary: (1) structure geometry

design, (2) numerical and/or experimental analysis and (3)

use of failure criteria (e.g., Tsai–Wu failure criterion). If

the used composite material has a non-expected failure

criterion, the procedure must be repeated. In order to

eliminate the procedure above, this study proposes the use

of an artificial neural networks (ANN) inversion which can

be used to determine an adequate configuration for the

layers of the composite material from the desired failure

criteria value. Numerical simulations, based on the finite

element method, were made in order to create a database

for ANN training and validation. After the inversion of the

ANN, satisfactory results were obtained and this procedure

could be used to minimize the high number of numerical

simulations normally used in the design of a composite

device.
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Introduction

Composite material has numerous benefits as low weight,

high strength and rigidity. There are many industries using

this type of material, and there are important previous

studies on the behavior of this material mainly about the

possible failures that can occur due to the conditions in

which these types of materials are submitted.

About failure analysis, there are some criteria that are

used to verify whether the material has or not failure. One

of the most used is the Tsai–Wu failure criterion for ani-

sotropic materials which can distinguish the tensile and

compression strength using the concept of strength tensor

[5].

The use of neural networks for analysis of composite

materials has been applied over the last years with good

results encouraging further study on this important topic

[9].

As examples of use of artificial neural networks (ANN)

in composite materials analysis, Brito Jr. et al. [1] used the

technique of neural networks to predict the dynamic-me-

chanical behavior in a composite material used in the

aviation industry and compared the numerical results with

experimental ones. In the study presented by Selva et al.

[17], the researches created a structural integrity monitor-

ing method of composite plates reinforced with carbon

fibers using the technique of neural networks to locate

damage. In the study proposed by Velmurugan et al. [18],

the technique of artificial neural networks to predict the

loss of volume in the heat treatment of a metal matrix

composite material is shown. The research presented by

Fenza et al. [7] shows the use of artificial neural networks

together with methods probability for detecting damage in

composite plates using lamb waves. Mallela and Upadhyay

[14] developed neural networks to predict the shear
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buckling load of laminated composite stiffened panels.

Gomes et al. [8] used the technique of neural networks

together with the genetic algorithm to analyze the failures

in the carbon/epoxy composite material searching mini-

mizes the maximum value of Tsai–Wu failure criterion.

In order to contribute with researches in the composite

materials technology, this study presents numerical simu-

lations, using finite element method (FEM), for a hollow

tubular structure formed from a carbon/epoxy composite

material. After the simulations, it was created a database,

used in the ANN training and validation, which relates the

layers orientation of the structure with the Tsai–Wu failure

criterion. Using the database, an ANN inversion was pro-

posed which relates the desired inputs (Tsai–Wu failure

criteria) with calculated outputs from ANN that inform the

final configuration of the laminate which can resist the load

applied. Using this procedure, an ANN inversion, we hope

to reduce the time when projecting an anisotropic material

as a carbon/epoxy composite material with adequate safety

margin.

Materials and Method

Tsai–Wu Failure Criterion for Composite Materials

The occurrence of a failure, due to various factors such as

load, type of material, fibers orientation, etc., is sometimes

dangerous, and a diagnose of the composite material before

its production can generate many benefits.

Since the composite materials are anisotropic and their

property depends on the fiber orientation, the Tsai–Wu

failure criterion is totally applied to analyze this material.

According to Voyiadjis and Kattan [19], this failure crite-

rion is based on the total strain energy failure theory, where

the failure occurs in the material if the following equation

is violated:

F11r
2
1 þ F22r

2
2 þ F66s

2
12 þ F1r1 þ F2r2 þ F12r1r2 � 1

ðEq 1Þ

where F11;F22;F66;F1;F2;F12 are the strength tensors and

r1; r2; s12 are the normal stresses. According to Voyiadjis

and Kattan [19], the strength tensors are obtained as

follows:
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Thus, an important characteristic of this failure theory, is

that Tsai-Wu is able to distinguish the tensile and

compressive strengths [10].

The Tsai–Wu failure criterion is one of the most used in

research because of its simple computational implementa-

tion. According to Costa [4], it is considered as a relatively

easy method of calculating the loads on the composite

material structure.

Debski and Jonak [6] developed a study comparing the

experimental and numerical results of thin-walled com-

posite materials in relation to the problems of stability and

the capacity to nonlinear loads. In numerical analysis were

considered the Tsai–Wu failure criterion and the finite

elements method. The results proved the efficiency of the

Tsai–Wu failure criterion for failure analysis of a com-

posite material.

In the search proposed by Koc et al. [11], an investi-

gation about the behavior of the composite material under

four-point bending was analyzed. In their study, some

experiments and numerical analysis using the finite ele-

ment method were made looking for a comparison in

between supported rupture load in the simulations and the

generated ones in the experiments. The authors report that

the Tsai–Wu failure criterion demonstrated success in

predicting the failure of the structure.

A composite structure is designed to support a given

load, and the safety margin is considered the capacity of

the structure that must support a given additional loading.

When the structure is able to support this additional load,

its safety margin is positive [2].

The safety margin used for the Tsai–Wu failure criterion

according to Kolios and Proia [12] is obtained by the

equation:

MoS ¼ SR � 1 ðEq 8Þ

The SR as failure rate of the composite material is

obtained by Tsai–Wu failure criteria using the following

equation [12].
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SR ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4 � a

p� �

2 � a
ðEq 9Þ

where a and b are calculated according to the strength

tensors, and the normal stresses are obtained through cal-

culating Tsai–Wu failure criterion. A negative safety

margin indicates that the material will suffer failure. A

positive number indicates that material proves to be safe

and reliable.

Artificial Neural Networks

Since ANN are well fitted to reproduce causal relations, we

can use these devices to map the desired output with the

inputs of the system. Then, an ANN is developed to per-

form an inversion in the composite material design where

the input of the neural network is the desired failure cri-

terion, in this case the Tsai–Wu criterion, and its output is

an adequate configuration for the layers of the composite

material. According to Fig. 1, check a sketching of the

ANN inversion.

The theory of neural network was firstly presented in

1940 by McCulloch and Pitts, and over the years this

theory has been refined and began to gain prominence due

to the advancement of technology [13]. According to

Chong and Zak [3], artificial neural networks resemble the

human brain, and they are formed by simple circuits con-

stituted of interconnected neurons layers to each other by

synaptic connections that have the function of spread

information. Normally, the neural network consists of input

layer that has the function of receiving information from

the external environment, hidden layers that are responsible

for extract the information provided by the input layers and

do the processing and the output layer that transmits the

processed response the hidden layers. The neurons in those

layers have several inputs and only one output. The neu-

rons are housed in groups according to the learning

algorithm that has the function to identify the appropriate

weights and make the necessary adjustment for the network

to behave appropriately and can learn from examples [20].

In this study, we used a multilayer feedforward network

with backpropagation training algorithm that has a super-

vised learning. The network is trained, and generated errors

are transmitted to the previous layers until reach negligible

values [9]. In addition, levenberg-marquardt and gradient

descent (GDX) algorithm were used in the ANN archi-

tecture to promove the training phase correctly, as well a

fast convergence rate.

Numerical Simulation

As there is the possibility of the appearance of failures in

composite materials, it is essential to have some mecha-

nism to predict these drawbacks before the material is

produced. Normally, some tries are required in order to

determine the final composition (e.g., layers orientations)

in a composite material that determines the security

requirements and reliability of the material.

In this study, was used the finite element method (FEM)

as a tool in the numerical simulations. The analyzed

composite system is a hollow tubular cross section beam

used in transtibial prostheses built of prepreg carbon/epoxy

composite material. According to Table 1, check the beam

dimensions.

Fig. 1 The artificial neural network inversion procedure

Table 1 Dimensions of analyzed composite system

Length

External

diameter

External diameter

composite 03 layers

External diameter

composite 06 layers

0.3000 m 0.0300 m 0.0540 m 0.00108 m
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In the structural analysis, we used the following prop-

erties of carbon/epoxy composite as is provided to Table 2.

In order to analyze the failure criterion by FEM, it is

necessary to have other important properties of the com-

posite material. The average values used were obtained by

Martins [15] according to Table 3.

Using the data above, a free-clamped tubular beam was

created using finite elements as shown in Fig. 2. We used a

shell element type, and the beam was exposed to dis-

tributed compressive loads. The following intensity loads

were applied (3000 N, 4480 N, 7500 N, 9000 N and

12,000 N), the fibers orientation in each layer varied in

three values (0�, 45� and 90�), and it was considered

laminates with three and six layers.

After the structural analyses were selected, the maxi-

mum value of failure criteria to each orientation and

databases were created for artificial neural network training

and validation.

Using the database, an ANN inversion was done

allowing a fast and sensible analysis of the behavior of the

composite material in a certain environment with adjust-

ment in the laminate configuration.

Results and Discussion

In this study was separated approximately 5% of the values

of each database for network validation, and the remaining

data were used for training and simulation.

Equally important, backpropagation network was used

as training architecture method. The stopping criterion was

defined about the proposed number of steps when the

algorithm reaches the desired minimum error or when the

minimum gradient recommended is found.

After a few tries, the consistent neural network param-

eters (number of layers, number of neurons, etc.) were

found and used in the numerical simulations.

Composite Material with Three Layers

In this first numerical simulation, we use an ANN with one

input and one output. The input data were the value of the

failure criterion, and output the orientation for a three-layer

laminate. The general configuration of neural network is

shown in Table 4.

After the training, the neural network presented a good

consistence in the results and a small error in the failure

criteria was analyzed. These good results are seen in

Table 5.

According to Table 5, the orientations generated by the

ANN were close to proposed ones (0�, 45� and 90�) and the

obtained Tsai–Wu failure criterion from neural network

was validated from a commercial finite element program

shown consistency in the neural network results.

Fig. 2 Tubular beam analyzed

Table 4 Configuration of neural network for composite material with

three layers

Learning algorithm Levenberg–Marquardt

Activation function (hidden layers) Hyperbolic tangent

Activation function (output layers) Linear

Mean square error 1�15

Number of hidden layers 2

Number of neurons in hidden layers [7 10]

Learning rate 0.02

Number of iterations 15,000

Table 5 Results generated by the network of three layers considered

as input the failure criterion

Failure criterion

(input)

Networks output

(orientations)

Failure criterion

validated

Safety

margin

0.1519 89.07/89.25/3.40 0.1519 5.583

0.2850 38.76/� 3.46/47.32 0.2835 2.527

0.4735 85.83/44.73/45.26 0.4737 1.111

Table 2 Properties of composite materials carbon/epoxy

E1 (GPa) E2 (GPa) G12 (GPa) t12 q (kg/m3)

101.86 3.41 7.56 0.30 1550.00

Table 3 Properties of composite materials carbon/epoxy for failure

criteria

rT1 (MPa) rC1 (MPa) rT2 (MPa) rC2 (MPa) s12 (MPa)

1363.49 572.27 5.86 102.00 200.61
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Figure 3 shows the maximum value of Tsai–Wu failure

criterion for a material composite with three layers using

numerical simulation.

The next application is about the use as input in the

neural network both failure criteria and variable applied

strength (3000 N, 4480 N, 7500 N, 9000 N and 12000 N).

As neural network output was considered the layers ori-

entation. The general configuration of neural network is

seen in Table 6.

The results generated by the ANN are shown in Table 7.

As shown in the last simulation, the results from neural

network with two inputs were very consistent with values

so close to ones obtained from commercial finite element

program.

Figure 4 shows the maximum value of Tsai–Wu failure

criterion for a material composite with three layers and

strength 7500 N using numerical simulation (Table 7).

Composite Material with Six Layers

Neural networks for six layers were made considering one

input and one output. The ANN had as input the value of

the failure criterion and as output the orientation for a six-

layer laminate. It is configured as follows.

Table 8 shows the results of simulations. We can see

that the results from neural network were close to the

Fig. 3 Results Tsai–Wu failure criterion for a three-layer laminate

Fig. 4 Results Tsai–Wu failure criterion for a three-layer laminate

with strength of 7500 N

Table 8 Configuration of neural network for composite material with

six layers

Learning algorithm GDX

Activation function (hidden layers) Hyperbolic tangent

Activation function (output layers) Linear

Mean square error 1�3

Number of hidden layers 2

Number of neurons in hidden layers [350 200]

Learning rate 0.1

Number of iterations 15,000

Table 6 Configuration of neural network for composite material with

three layers with variable strength

Learning algorithm Levenberg–Marquardt

Activation function (hidden layers) Hyperbolic tangent

Activation function (output layers) Linear

Mean square error 1�5

Number of hidden layers 2

Number of neurons in hidden layers [8 23]

Learning rate 0.001

Number of iterations 20,000

Table 7 Results generated by the network of three layers considered

as input the failure criterion and strength variation

Failure

criterion

(input)

Strength

variation

(input)

Networks output

(orientations)

Failure

criterion

validated

Safety

margin

0.1908 3000 1.00/44.18/45.01 0.1908 5.2410

0.1519 4480 88.26/89.40/� 1.14 0.1519 6.5832

0.4746 7500 44.93/� 0.16/44.94 0.4743 2.1070

0.8874 9000 42.06/44.52/1.06 0.8874 1.1268

0.4278 12,000 91.60/89.12/46.54 0.4278 2.3375

Fig. 5 Results Tsai–Wu failure criterion for a six-layer laminate
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expected Tsai–Wu failure criteria values, obtained from a

commercial finite element program, showing the robust-

ness of the adopted methodology.

Figure 5 shows the maximum value of Tsai–Wu failure

criterion for a material composite with six layers using

numerical simulation.

It is possible to see in Table 9 that the layers orienta-

tions obtained from neural network were very close to the

expected values (0�, 45� and 90�).
Studies were performed about linear regression analysis

of the data used in ANN in order to explore the relationship

between the responses generated by the neural network

with the data used for training and validation. Linear

regression analysis is detailed in ‘‘Appendix.’’

Conclusion

In this study, the artificial neural network was used in order

to generate the appropriate hollow tubular structure formed

from a carbon/epoxy composite material according to

Tsai–Wu failure criterion. This failure criterion was used as

input of the neural network, and the orientations of the final

laminate were the output of the neural network. In this

sense, the artificial neural network is developed to perform

an inversion in the composite material design where the

input of the neural network is the desired failure criterion.

The final orientations generated by neural networks

were validated using a commercial finite element program

in order to certify the robustness of the adopted method-

ology. Then, comparing these values of the failure criterion

generated by the commercial finite element program with

ones used as input in the neural network, it was possible to

see that the values are shown very close generating a

similar safety margin.

This study showed the feasibility of using neural net-

works for the study of composite materials. In addition, the

study presented satisfactory and coherent results of the

layup the CFRP laminated tube that comply with the

desired safety factor.

Knowing which orientation of the composite material

layers must have to provide certain safety margin becomes

possible to produce more reliable and accurate structures.

The procedure adopted here can reduce the number of

experiments in the laminated composite material produc-

tion and consequently save the time and materials.
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Appendix

In order to verify the correlation between the data used in

the ANN training and validation, a linear regression anal-

ysis was proposed. In this study were considered

independent variables that are known orientations and the

dependent variables that are the orientation generated by

the network. The fit is measured by coefficient of deter-

mination (R2), that has its values 0�R2 � 1, nearer on one

the coefficient demonstrates that the variables clarify the

regression model [16].

Table 9 Results from the neural network of six layers considered as

input the failure criteria

Failure

criterion

(input) Networks output (orientations)

Failure

criterion

validated

Safety

margin

0.3886 2.99/1.49/94.33/� 4.77/96.22/

90.98

0.3952 1.5628

0.1933 0.93/� 0.34/88.76/90.56/91.21/

0.97

0.1933 4.1733

0.1076 91.07/� 1.59/90.31/45.88/89.89/

90.78

0.1077 8.2850

(a) (b) (c)

Fig. 6 (a) Regression analysis of three layers, (b) regression analysis of three-layer neural network with two inputs, and (c) regression analysis

of six layers
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Regression analysis was made for the neural network

with three layers and an input, three layers and two inputs

and six layers and one input (Fig. 6).
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