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Abstract Mechanical manufacturing companies are

required to produce parts with high quality, greater accu-

racy and high productivity to be competitive. For this

purpose, the present work develops predictive models for

arithmetic surface finish (Ra), flank wear (VB) and tan-

gential force (Fz). The optimization was based on the

desirability function (DF). The machining tests were car-

ried out by hard turning the X210Cr12 hardened steel (56

HRC) using a coated ceramic tool (CC6050), according to

the Taguchi L27 experimental plan. ANOVA was employed

to determine the influence of cutting parameters (cutting

speed—Vc, feed rate—f and machining time—t) on the

output parameters (VB, Ra and Fz). Moreover, the RSM

and the ANN methods were used to model the technolog-

ical parameters. The DF approach was used to determine

the optimal machining conditions minimizing simultane-

ously (VB, Ra and Fz). The results show that VB is mainly

influenced by Vc (Cont.% = 39.96) followed by f

(Cont.% = 35.36). In addition, it was indicated that f and t

have been found as dominant factors affecting Ra with

contributions of 31.71 and 23.78%, respectively. However,

t and f are the main factors affecting Fz with contributions

of 75.74 and 22.66%, respectively. On the other hand,

ANN and RSM models correlate very well with experi-

mental data. However, ANN approach shows better

accuracy and the capability of predicting cutting process

parameters than RSM. The optimum machining setting for

multi-objective optimization corresponds to Vc= 80 m/

min, f = 0.08 mm/rev and t = 4 min.
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Abbreviations

ANOVA Analysis of variance

ANN Artificial neural network

CBN Cubic boron nitride

Cont.% Contribution ratio (%)

DF Desirability function

HT Hard turning

HRC Hardness rockwell

MPE% Model predictive error (%)

MRR Metal removal rate

MS Mean squares

RSM Response surface methodology

RMSE Root mean square error

TanH Hyperbolic tangent

TiN Titanium nitride

SS Sum of squares

List of symbols

ap Depth of cut (mm)

f Feed rate (mm/rev)

Fz Tangential force (N)

Ks Specific cutting force (MPa)

Pc Cutting power (W)

Ra Arithmetic mean roughness (lm)

R2 Determination coefficient

t Cutting time (min)

VB Flank wear (mm)

[VB] Admissible flank wear (mm)
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Introduction

During machining of mechanical parts with high mechan-

ical properties such as high hardness, the cutting tools wear

appears as a major obstacle which degrades the workpiece

surface finish, reduces the tool life and affects the dimen-

sional accuracy and the productivity. This problem is posed

in an acute way during the turning of the quenched parts

with mixed ceramic tools, which limits their implementa-

tion. In this context, numerous studies have highlighted the

impact of various machining process parameters on surface

quality, productivity, cutting force and tool wear, using

ANOVA and various modeling and optimization approa-

ches in hard turning [1–3].

Bouchelaghem et al. [4] used the RSM to propose sta-

tistical models of the effect of machining parameters on

output response (Fx, Fy, Fz, Ra and tool life) of CBN when

hard machining of AISI D3 steel. It has been concluded

that depth of cut (ap) has a big significant effect on cutting

forces, while feed rate (f) had a big influence on the finish

surface.

Davim and Figueira [5] studied the influence of Vc, f

and ap on VB, Ks and Ra during the machining of AISI D2

steel, with ceramic insert, using ANOVA. The results

showed that Vc has the greatest influence on the VB fol-

lowed by t, while the roughness is influenced by t.

Bouacha et al. [6] exploited RSM for the investigation

of the effect of input parameters (Vc, f, ap and t) on output

parameters (Ra, Fa, Fc, Fp and metal removal rate MRR)

during the machining of AISI 52100 steel with CBN.

Results obtained show that the deduced quadratic models

are very adequate.

Aouici et al. [7] used the RSM to develop predictive

model of CBN7020 tool wear during HT of X38CrMoV5-1

steel (50 HRC). Analysis of factors effect indicates that VB

is mainly influenced by machining time t followed by Vc.

Kribes et al. [8] studied the influence of input parame-

ters (Vc, f and ap) on Rt and Ra when turning 42CrMo4

steel, with Al2O3/TiC, using statistical analysis. Results

showed that the f is the most dominant factor affecting the

criteria (Rt and Ra) accounting for about cont.% = 61.67

and 57.49, respectively.

Davim and Figueira [9] used ANOVA to study the

influence of input parameters and to model output param-

eters using conventional and wiper inserts during HT of

AISI D2 tool steel. The authors concluded that the

machining with ceramic wiper allows obtaining roughness

(Ra) and tolerance (IT) lower than 0.8 and 7 lm,

respectively.

Varaprasad et al. [10] used the RSM-based central

composite design to develop a predictive model of ceramic

flank wear, during HT of the AISI D3 steel. Their results

showed that the ap has a great influence on VB; on the

other hand, Vc and ap have a small influence.

Singh and Dureja [11] exploited Taguchi method and

RSMs in the status of comparative study. The authors

found that the optimization provided by the desirability

function (DF) was very close to the optimal solutions

provided by the Taguchi method.

Shalaby et al. [12] evaluated the performance of mixed

ceramic, PCBN and PCBN/TiN tools in terms of tool wear

when turning AISI D2 steel (52 HRC). The comparative

study revealed that the mixed ceramic gave a long tool life

and lower cutting force components. The study showed

also that Vc has a big influence on VB followed by the t,

while the roughness is influenced by the t.

Sahin [13] conducted a comparison of tool life of

ceramic and CBN tools during the machining of AISI

52100 steel using the Taguchi method. The results showed

that Vc is the most dominant factor on tool life, followed

by workpiece hardness and finally f, as the CBN showed

better performance.

Elbah et al. [14] focused its research on the comparison

between conventional and wiper inserts when hard turning

of AISI 4140 steel (60 HRC) based on a Taguchi L27

orthogonal array. RSM and ANOVA were used to verify

the validity of quadratic model and to establish the sig-

nificant parameter affecting Ra. Results demonstrate that

performance of CC6050WH wiper is superior compared to

conventional CC6050 inserts.

Neseli et al. [15] chose the RSM as an essential tech-

nique to optimize the effect of tool geometry parameters on

Ra in hard turning of the AISI 1040 steel with a carbide

tool (P25). The authors found that the nose radius (r) was a

statistically significant factor in Ra.

Bensouilah et al. [16] made a comparison between two

types of ceramic (CC6050 and CC650) in terms of VB and

Ra when machining of high-alloy AISI D3 steel. They have

used RSM approach for modeling the output parameters.

The results obtained indicate that Ra obtained by CC6050-

coated ceramic tool is 1.6 times better than that obtained

with CC650 uncoated ceramic cutting tool, and also for

[VB] = 0.3 mm, the CC6050 tool life is superior of about

33% than the CC650 cutting tool.

Zerti et al. [17] optimized cutting parameters based on

the L18 Taguchi orthogonal array, during dry machining of

AISI D3 steel, using insert ceramic (CC6050), while con-

sidering Vc, f, ap and nose radius r as process parameters.

They concluded that L18 Taguchi approach is adopted to

optimize the cutting parameters.

Dureja et al. [18] conducted an experimental study of

wear mechanisms of a TiN-coated ceramic tool during

(HT) of AISI D3 steel. They concluded that the different

wear mechanisms observed are abrasion wear at low Vc,
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low f and highest work piece hardness. In addition, at

moderate speed, tribo-chemical reactions between cutting

tool and workpiece caused the formation of protective layer

and built-up edge (BUE). At high temperature and high Vc,

these phenomena will no longer exist.

Aslan et al. [19] achieved an experimental investigation

using the Taguchi and ANOVA methods to study the

combined effects of three input parameters Vc, f and ap on

two output parameters VB and Ra. They found that Vc is

the only statistically significant factor that influences VB.

Lima et al. [20] performed dry turning tests to study the

machinability of hardened AISI 4340 and AISI D2 steels at

different hardness levels with cutting tools such as coated

carbide and PCBN. The results showed that the cutting

forces generated during the machining of AISI 4340 steel

are higher with low feed rates and ap, while the increase in

Vc improved Ra of the machined part. The tool was mainly

subjected to abrasive wear during the turning of 42 HRC

steel, while the diffusion was present for the 50 HRC steel.

Quiza et al. [21] conducted an experimental study to

predict the wear of ceramic cutting tools, consisting of

about Al2O3 ? TiC, during HT of AISI D2 steel (60 HRC).

They used two modeling methods, one of them based on

regression statistics and the other based on a multilayer

perception neural network. They concluded that the ANN

model gave better performance than the regression model

in predicting the precise value of the cutting tool wear.

In addition, Tebassi et al. [22] compared the models of

Ra and Fz obtained by RSM and ANN methods in terms of

better R2, RMSE and MPE. Their results indicated that

ANN provides a maximal benefit in terms of precision of

10.1% for Fz and 24.38% for Ra compared with the RSM.

Dureja et al. [23, 24] used the method RSM and DF in

their studies to optimize input parameters (Vc, f, ap and

piece hardness) in order to minimize VB and Ra of the steel

AISI H11 steel machined with coated ceramic and CBN.

Chabbi et al. [25] proposed an optimization method

based on the RSM and DF in order to optimize the input

parameters (Vc, f and ap). This optimization consists in

setting four objectives, a minimum Ra, Fz, Pc and a

maximum MRR.

From the above literature, it is clear that cutting conditions

(Vc, f and ap) have a direct impact on the failure and damage of

the cutting tool, in terms of wear of the tool cutting edges. This

tool failure affects the surface roughness of the workpiece and

increases cutting forces and cutting power. This is a major

problem for the mechanical manufacturing industries,

particularly when machining hard materials. Since there are

many variables to consider, it is therefore not surprising that

tool wear expertise and the decision to change the cutting edge

are rather delicate problems. In this context, very few research

studies have proposed wear prediction models, including cut-

ting time (t) as one of the most important indicators of the

degree of failure of ceramic tools during machining of hard

workpieces.

In this study, machining tests were performed on

X210Cr12 hardened steel (56 HRC) to study the effect of

cutting conditions (Vc and f) and cutting time (t) on the

failure of a coated ceramic tool (TiN) in hard turning. RSM

and ANN models were developed to predict the relation-

ship describing the influence of Vc, f and t on VB, Ra and

Fz. The methods ANN and RSM were compared in terms

of R2, RMSE and MPE. In addition, DF was applied to find

the optimal cutting regime to minimize VB, Ra and Fz.

Experimental

Materials and Equipments

The machining experiments were performed under dry

conditions using SN 40C lathe, with 6.6 kW spindle power.

The workpiece material used during the turning tests was

the hardened and tempered to 56 HRC (X210Cr12) steel.

This steel also known under the American designation AISI

D3 steel and Afnor (Z200Cr12) has a high content in

chromium presenting the minimum of risks of deformation

and change in the dimensions during heat treatments, also

high resistance to wear and a remarkable cutting capacity.

In industry, it is often used for manufacturing the cutting

tools, punching tools, stamping tools, sintering tools, cir-

cular rolling mills and molds for plastics, etc.

The chemical composition of the X210Cr12 steel is

mentioned in Table 1.

The machining of X210Cr12 hardened steel is carried

out by a mixed ceramic CC6050 with a chemical compo-

sition (70% Al2O3 ? 30% TiC), which gives it a better

toughness and a good thermal conductivity. Its ISO des-

ignation is SNGA120408S01525 (tool nose radius 0.8 mm,

chamfered insert 0.15 mm 9 25�) and commercialized by

Sandvik. It also has a TiN layer covered cutting insert,

which allows it to do finishing operations for hardened

materials. The insert is mounted on PSBNR2525K12 tool

holder, with the geometry given in Table 2.

Table 1 Chemical composition of X210Cr12 workpiece material

Composition C Cr Ni Si Mn Mo Cu p S

(wt.%) 2 11. 09 0.277 0.55 0.44 0.207 0.13 0.036 0.056
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Surface roughness (Ra) was measured on the machine

tool without disassembling the workpiece using Surftest

201 (Mitutoyo). The tool wear (VB) generally appears on

tool clearance surface. Flank wear has a significant interest

because it affects the surface roughness, dimensional

accuracy as well as the tool life. In our case, the micro-

scope used for the measurement of wear is a branded

binocular device (Visual Gage 250), with a computer

equipped with Visual Gage 2.2.0 software. A Kistler

dynamometer (model 9257B) connected with a multi-

channel charge amplifier (5011B) was used to measure in

real time the tangential cutting force. An illustration of

measured flank wear and surface roughness is given in

Fig. 1.

Experimental Design

In order to develop the mathematical models necessary for

the present study, a Taguchi L27 experimental plan was

adopted. In the current study, Vc, f and t are chosen as

input controllable parameters affecting the responses such

Table 2 Tool holder geometry

Major cutting edge

angle (vr)
Inclination

angle (k)
Rake angle

(c)
Clearance

angle (a)

? 75� – 6� – 6� ? 6�

Workpiece

Cutting Tool

KISTLER Platform

Output process parameters measurement

Roughness Tool Wear Cutting Force

KISTLER 
(9257B)

Multichannel 
Amplifier

Microscope
Visual Gage 250

Surftest 
SJ-201Mitutoyo

Worn Tool2D surface 
profile

Graphical 
programming

Cutting tool insert
SNGA120408S01525
LE= 11.9 mm 
RE=0.794 mm 
IC: 12.7 mm
S: 4.763 mm

Fig. 1 Experimental setup
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as flank wear (VB), arithmetic surface finish (Ra) and

tangential cutting force (Fz). The levels of the three factors

of cutting parameters are mentioned in Table 3. The ranges

of input parameters are chosen according to the recom-

mendations of the manufacturer of cutting tools (Sandvik).

The depth of cut is 0.2 mm on all cutting tests that were

performed under dry cutting conditions.

RSM

Before choosing the desired model, three types of models

were compared based on the coefficient (R2).These models

have the linear form with the main factors (Vc, f and t), the

linear model with interactions and finally the quadratic

model. The final choice in this study was ended by

selecting the second-order quadratic model for the output

parameters VB, Ra and Fz according to cutting parameters

such as Vc, f and t.

Equation 1 represents the relation between the input

parameters (Vc, f and t) and the output function; in our

case, it can be VB, Ra or Fz [26].

/ ¼ u Vc; f ; tð Þ ðEq 1Þ

The approximation of (/) is suggested using a nonlinear

quadratic model, which is used to evaluate the effects of

input parameters and their interactions on output

parameters. The quadratic model of (/) can be written as

follows (Eq 2):

/ ¼ a0 þ
Xk

i¼1

aiXi þ
Xk

i¼1

aiiX
2
i þ

Xk

i\j

aijXiXj þ e ðEq 2Þ

where (/) represents the predicted response (VB, Ra and

Fz), a0 is constant, ai is the linear coefficient, aii is the

squared coefficient, aij represents the interaction factors

coefficient and k is the number of factors. Xi is the cutting

parameters (in our case cutting speed, feed rate and cutting

time). e represents the random experimental error. The

Design Expert version 10 software has allowed to calculate

the second-order polynomial coefficients in order to esti-

mate the responses of the dependent variable Xi. The RSM

has been used by many researchers to evaluate the influ-

ence of input parameters on responses factors and to

develop predictive mathematical models and plots 3D of

response surface [23–25].

ANN Approach

ANNs are nonlinear mathematical models capable of

establishing relationships between the inputs and outputs

parameters. They have many advantages, but one of the

most recognized is the fact that it can really learn by

observing data sets. ANN is a power full tool used for

random function approximation in order to predict

machining parameters (Fig. 2). These types of tools help to

approximate response functions and arrive at solutions

while defining computing functions or distributions. ANNs

are considered just simple mathematical models to enhance

existing data analysis technologies [22]. ANN is potentially

more precise and can be used as an alternative to the

polynomial regression-based modeling tool, which offers

the modeling of complex nonlinear relationships [27, 28].

In this study, VB, Ra and Fz are modeled separately,

with a different number of hidden neurons (nodes) for each.

The number of neurons in the input layer is predetermined

as three neurons (cutting speed, feed rate and cutting time).

The output layer has a single neuron, which denotes the

desired response (VB, Ra and Fz).The activation function

used in this study is a hyperbolic tangent (TanH), which is

a sigmoid function (Eq 3), which transforms values

between � 1 and 1, where x is the linear combination of

the X variables [29].

TanH ¼ e2x � 1

e2x þ 1
ðEq 3Þ

Comparison Approach Between RSM and ANN

Models

According to Ramezani [30], Rajendra [31] and Gimeno

[32], three predictors, namely coefficients of determination

Table 3 Attribution levels of cutting parameters

Control parameters Unit Symbol

Levels

Level 1 Level 2 Level 3

Cutting speed m/min Vc 80 110 140

Feed rate mm/rev f 0.08 0.11 0.14

Cutting time min t 4 8 12
Fig. 2 General architecture of the artificial neural networks
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(Eq 4), root mean square error (Eq 5) and model predictive

error (Eq 6), were used to evaluate the fit and accuracy of

the ANN and RSM models obtained.

R2 ¼
Pn

i¼1 yi;p � yi;e
� �

Pn
i¼1 yi;p � yaverage
� �2 ðEq 4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi;e � yi;p
� �2q

n
ðEq 5Þ

MPE %ð Þ ¼ 100

n

Xn

i¼1

yi;e � yi;p
� �

yi;p

����

���� ðEq 6Þ

where n represents the number of experiments; yi,e, yi,p are

the experimental value and the predicted value of the ith

experiment, respectively, which are calculated by model;

and yaverage is the average value of experimentally deter-

mined values. In order to study and compare RSM and

ANN models and determine which model can adequately

predict, VB, Ra and Fz values predicted by the RSM and

ANN models are plotted against the corresponding actual

values for showing their ability truth fullness [33].

Results and Discussion

Table 4 presents the experimental results for the response

factors: VB, Ra and Fz. It can be seen that arithmetic mean

roughness was obtained in the range of 0.32–1.27 lm and

flank wear is obtained in the range of 0.021–0.29 mm.

Modeling by RSM

ANOVA for VB, Ra and Fz

The results of ANOVA for flank wear (VB) are given in

Table 5. We find that ‘‘F value’’ of the model is 58.18,

which confirms that it is significant. The level of signifi-

cance is 0.05, which is a confidence level of 95%. In this

case, Vc, f, t, Vc 9 f, Vc2 and f2 are significant terms of the

model with the respective contributions of 39.96, 35.36,

13.51, 1.34, 5.23 and 0.86%. Bouchelaghem [4] reported

similar results when turning AISI D3 strongly alloy steel

having hardness of 60 HRC. The R2 pred = 0.9225 and R2

adj = 0.9519 have almost the same values; the difference is

less than 0.2. Therefore, the model is considered adequate

and can accurately predict the output parameter (for this

case VB) in the range of cutting conditions used. The R2,

RMSE and MPE (Eqs 4, 5 and 6) corresponding to the tool

flank wear model are 0.9686, 0.002269 and 7.35477%.

Concerning the results of ANOVA for the surface

roughness (Ra) given in Table 6, it is observed that the ‘‘F

value’’ model is 25.49, which implies that this model is

significant. However, f is the main factor that influences Ra

with cont.% equal to 31.71, followed by the cutting time (t)

with 23.78% of contribution and lastly Vc with 10.31% of

contribution. The interaction (Vc 9 t) and the term (Vc2)

also have significant effects with contributions of 4.39 and

21.95%, respectively. Similar results were reported by

Aouici [34] and Yalesse [35] during the hard turning of

AISI H11 and X200cr12 steels using CBN tools. Further-

more, the results of Suresh [36] and Fnides [37] during the

turning of AISI H13 and X38CrMoV5-1 hardened steels

using ceramic tools present the similar results. The influ-

ence of f on Ra can be explained physically by the

appearance of the helical grooves on the part surface.

These are generated by the straight movement of tool and

the rotational movement of the part. The increase in f

produces wide and deep grooves, leading to the surface

quality deterioration [38].

Table 4 Experimental results for flank wear, surface roughness and

cutting force

Run

Factors Responses

Vc (m/min) f (mm/rev) t (min) VB (mm) Ra (lm) Fz (N)

1 80 0.08 4 0.021 0.32 41

2 80 0.08 8 0.032 0.36 81.19

3 80 0.08 12 0.047 0.4 110

4 80 0.11 4 0.071 0.44 62.26

5 80 0.11 8 0.092 0.47 97.04

6 80 0.11 12 0.126 0.52 139.64

7 80 0.14 4 0.087 0.66 77.78

8 80 0.14 8 0.114 0.69 127.5

9 80 0.14 12 0.135 0.76 160.93

10 110 0.08 4 0.08 0.37 47.88

11 110 0.08 8 0.11 0.68 82.88

12 110 0.08 12 0.14 0.82 114.55

13 110 0.11 4 0.152 0.78 60.66

14 110 0.11 8 0.186 0.91 108.4

15 110 0.11 12 0.22 1.02 131.31

16 110 0.14 4 0.155 0.75 77.47

17 110 0.14 8 0.196 1.1 117.2

18 110 0.14 12 0.24 1.27 151.27

19 140 0.08 4 0.088 0.33 40.96

20 140 0.08 8 0.14 0.58 77.53

21 140 0.08 12 0.152 0.88 109.73

22 140 0.11 4 0.142 0.51 66.68

23 140 0.11 8 0.175 0.62 95.72

24 140 0.11 12 0.2 0.85 130.7

25 140 0.14 4 0.215 0.71 79.06

26 140 0.14 8 0.25 0.86 116.39

27 140 0.14 12 0.29 1.01 151.23
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The R2pred= 0.8241 and R2adj= 0.8945 have almost the

same values; the difference is less than 0.2. Therefore, the

model is considered adequate and can accurately predict

the output parameter (for this case Ra) in the range of

cutting conditions used. The R2, RMSE and MPE (Eqs 4, 5

and 6) corresponding to the surface roughness model are

0.9310, 0.012461 and 8.00978%.

The results of ANOVA regarding tangential force (Fz)

are given in Table 7. It is noticed that the ‘‘F value’’ of the

model is 227.46, which proves that the model is significant.

However, the factors f and t are significant with cont.%

equal to 22.66 and 75.74%. The rest of the other factors

and interactions are not significant because the maximum

value of contribution recorded did not exceed 1%. It is

clear that the machining time (t) is the predominant factor

on cutting force; this can be explained by the increase in

wear as a function of machining time. This increase in wear

leads on the one hand to the increase in the contact area

between the tool and the workpiece, which induces an

increase in the friction forces; on the other hand, this wear

will also cause a loss of the sharpness of the cutting edge

and consequently the cutting forces increase. Bouacha [6]

and Aouici [35] reported similar results during AISI 52100

(64 HRC) steel turning and AISI H11 steel using CBN7020

tool, respectively.

The R2pred = 0.9804 and R2adj = 0.9874 have almost

the same values; the difference is less than 0.2. Therefore,

the model is considered adequate and can accurately pre-

dict the output parameter (for this case Fz) in the range of

cutting conditions used. The R2, RMSE and MPE (Eqs 4, 5

and 6) corresponding to the tangential force model are

0.9918, 0.587701 and 2.985725%.

Regression Equations and 3D Plots

The statistical processing of the results obtained by the

RSM allowed us to propose second-order quadratic models

of the output technological parameters; thus, the relation

between VB, Ra and Fz and the input factors are given in

Eqs 7, 8 and 9, respectively.

VB mmð Þ ¼ � 0:63615þ 7:81327E � 003Vc þ 3:08179 f

� 5:27778E�004 t þ 0:012870 Vc � f

þ 4:72222E�005Vc � t þ 0:040278 f

� t � 3:58642E � 005Vc2 � 14:56790f 2

� 1:00694E�004t2

ðEq 7Þ

Table 6 ANOVA for Ra

Source SS df MS F-value P value Cont.%

Model 1.53 9 0.17 25.49 \ 0.0001

A-Vc 0.17 1 0.17 24.97 \ 0.0001 10.37

B-f 0.52 1 0.52 78.63 \ 0.0001 31.71

C-t 0.39 1 0.39 59.03 \ 0.0001 23.78

AB 4.80E�03 1 4.80E�03 0.72 0.4077 0.29

AC 0.072 1 0.072 10.82 \ 0.0043 4.39

BC 2.13E�03 1 2.13E�03 0.32 0.5788 0.13

A2 0.36 1 0.36 54.58 \ 0.0001 21.95

B2 1.78E�03 1 1.78E�03 0.27 0.6118 0.11

C2 3.63E�04 1 3.63E�04 0.055 0.8182 0.02

Residual 0.11 17 6.66E�03 6.71

Cor total 1.64 26 100

Table 7 ANOVA for Fz

Source SS df MS F-value P value Cont.%

Model 30321.07 9 3369.01 227.46 \ 0.0001

A-Vc 47.82 1 47.82 3.23 0.0901 0.16

B-f 6927.04 1 6927.04 467.69 \ 0.0001 22.66

C-t 23156.24 1 23156.24 1563.42 \ 0.0001 75.74

AB 20.18 1 20.18 1.36 0.2593 0.07

AC 50.31 1 50.31 3.4 0.0828 0.16

BC 50.76 1 50.76 3.43 0.0816 0.17

A2 5.93 1 5.93 0.4 0.5352 0.02

B2 7.61 1 7.61 0.51 0.4833 0.02

C2 55.19 1 55.19 3.73 0.0704 0.18

Residual 251.79 17 14.81 0.82

Cor total 30572.86 26 100

Table 5 ANOVA for VB

Source SS df MS F-value P value Cont.%

Model 0.115698 9 0.0128553 58.1828 \ 0.0001

A-Vc 0.047740 1 0.0052465 23.7455 \ 0.0001 39.96

B-f 0.042244 1 0.0008162 3.6942 \ 0.0001 35.36

C-t 0.016140 1 0.0000009 0.0041 \ 0.0001 13.51

AB 0.001610 1 0.0016101 7.2872 0.0152 1.34

AC 0.000385 1 0.0003853 1.7440 0.2041 0.32

BC 0.000280 1 0.0002803 1.2688 0.2756 0.23

A2 0.006251 1 0.0062511 28.2924 \ 0.0001 5.23

B2 0.001031 1 0.0010314 4.6681 0.0453 0.86

C2 0.000016 1 0.0000156 0.0705 0.7938 0.01

Residual 0.003756 17 0.0002209 3.14

Cor total 0.119454 26 100
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Ra lmð Þ ¼ �3:33080 þ 0:060642Vc þ 4:80864 f � 0:014097 t

� 0:022222 Vc � f þ 6:45833E�004 Vc

� t� 0:11111 f � t� 2:73457E�004 Vc2

þ 19:13580 f 2� 4:86111E�004 t2

ðEq 8Þ

Fz Nð Þ ¼ �93:85265 þ 0:48373 Vc þ 950:54938 f

þ 11:99118 t � 1:44074 Vc � f � 0:017063 Vc

� t þ 17:13889 f � t � 1:10494E

� 003 Vc2 � 1251:23457 f 2 � 0:18955 t2

ðEq 9Þ

The analysis of the 3D response surfaces (Fig. 3a and b)

shows that the wear (VB) is very sensitive to the increase in

Vc, f and t, which confirms the results of the ANOVA

(Table 5). An increase in Vc severely degrades the

performance of the cutting tool due to thermo-mechanical

stress on the cutting edge [6, 36]. In addition, with

increasing machining time, frictions increase, which speeds

up the flank wear [37–39]. The maximum value of VB is

recorded with the maximum values of Vc, f and t. On the

other hand, the contour plots (Fig. 3c and d) make it pos-

sible to present the variation of the response as a function

of the variation of the cutting conditions. This makes it

possible to find easily the values of the response according

to the desired operating conditions.

This graph shows the relationship between a response

value in this case VB and three variables from an equation

model. The points with the same coordinates are joined to

generate the contour lines of the constant values.

Figure 4 shows the results of the 3D response surface

and contour plot of the surface roughness (Ra) according to

Vc, f and t.With increasing f and t, the roughness (Ra)
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Fig. 3 3D surface plots and contour plot of VB according to Vc, f and t

1024 J Fail. Anal. and Preven. (2018) 18:1017–1033

123



values increase. In the cutting speeds interval (80–110 m/

min), the tool wear (VB) increases substantially, which

causes the degradation of the surface finish. On the other

hand, in the speeds range (110–140 m/min), the effect of

VB decreases, which leads to the improvement in the Ra

values (Fig. 4a and b). The best values of the roughness are

obtained with the minimum f and t as well as the minimum

and maximum cutting speeds.

Figure 5 illustrates the results of the response surface

3D and contour plot of the cutting force (Fz) according to

Vc, f and t. It can be seen that the highest Fz can be resulted

by the combination of the lowest Vc, high f and highest t.

In addition, the lowest Fz value can be observed at lower

values of t and f and the highest value of Vc. With the

increase in Vc, the temperature in the cutting zone

increases, which renders the machined metal more plastic,

and consequently the forces necessary for cutting decrease

[40, 41].

Artificial Neural Networks-Based Models

In order to propose an ANN model, first you have to choose

the architecture of the neural network. The goal is to get an

ANN model with minimal size and errors during the

learning and validation period [42]. In our case, we used a

learning rate of 0.01. Indeed, this step consists in choosing

the optimal number of neurons in the single hidden layer

(H) in terms of better R2, lower RMSE and MPE by

varying the number of iterations.

Tool Flank Wear Model

Figure 6 indicates the ANN architecture of the VB model.

The optimal number of iterations according to this archi-

tecture of 500 leads to better correlation and lowest errors

(RMSE and MPE%). Indeed, the performance parameters

obtained according to the ANN architecture (3–4–8–1) are
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Fig. 4 3D surface plots and contour plot of Ra according to Vc, f and t
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0.99999 for R2, 0.0034197 for RMSE and 1.411102% for

MPE.

Surface Roughness Model

Figure 7 presents the ANN architecture of the arithmetic

mean roughness (Ra) model. The optimal number of iter-

ations according to this architecture of 500 leads to better

correlation and lowest errors (RMSE and MPE%). Indeed,

the performance parameters obtained according to the

ANN architecture (3–8–4–1) are 1 for R2, 3.9613 e�7 for

RMSE and 1.03057% for MPE.

Cutting Force Model

Figure 8 shows the ANN architecture of the tangential

force (Fz) model. The optimal number of iterations
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according to this architecture of 500 leads to better corre-

lation and lowest errors (RMSE and MPE%). Indeed, the

performance parameters obtained according to the ANN

architecture (3–8–4–1) are 1 for R2, 7.613 e�7 for RMSE

and 1.12117% for MPE.

Comparison of RSM and ANN Models

After the ANOVA and modeling, we move to the stage of

comparison between ANN and RSM models in terms of

better accuracy providing maximum reliability. At this

stage, qualified and quantified comparisons are needed to

show differences between values produced by both models

(ANN and RSM) and the experimentally measured values,

in order to test the accuracy of both models. The perfor-

mances of constructed models were measured in terms of

highest R2, lowest RMSE and MPE for output parameters

(VB, Ra and Fz).

There is also research that has discussed the accuracy

and capability of RSM and ANN approaches in terms of

comparative study [8, 21].

Figure 9 illustrates the diagram which allows discover-

ing the difference between experimental values and

predicted values with ANN and RSM for response VB.

It is observed that the deviations of the predicted and

experimental data are smaller for ANN model compared

with the RSM model. Certainly, the R2, RMSE and MPE%

for the RSM model are 0.9686, 0.002269 and 7.35477%,

respectively. Their values for the ANN prediction model

are 0.99999 for R2, 0.0034197 for RMSE and 1.411102%

for MPE (Table 8).

Relating to the surface roughness (Ra), the diagram that

compares the experimental data versus the predicted (ANN

and RSM) values is shown in Fig. 10. Indeed, the obtained
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R2 values for the arithmetic mean roughness (RSM and

ANN) models are 0.9310 and 1, respectively. This can

clarify the competence of ANN model. In addition, ANN

model presents a good RMSE and MPE compared with the

RSM model. Really, RMSE and MPE values are 0.012461

and 8.00978% for surface roughness RSM model, respec-

tively. Their values for ANN prediction model are 3.9613

e–7 and 1.03057%, respectively (Table 8).

Concerning the cutting force (Fz), the diagram that

compares the experimental values versus the predicted

(ANN and RSM) values is shown in Fig. 11. Consequently,

basing on the above discussion, the obtained R2 values for

the cutting force (RSM and ANN) models are 0.9918 and

1, respectively. In addition, ANN model presents a good

RMSE and MPE compared with the RSM. Truly, RMSE

and MPE values are 0.587701 and 2.985725% for cutting

force RSM model, respectively. Their values for ANN

prediction model are 7.613 e�7 and 1.12117%, respec-

tively (Table 8).

Optimization of Responses

The desirability function-based method (DF) has been

tested in various applications in order to improve a man-

ufacturing process (turning, milling, etc.) [8, 16, 43]. Myers

and Montgomery [44] have studied this method for the first

time. This method makes possible the combination of

several responses in a simple one (DF) by choosing a value

between zero and one (least to most desirable, respec-

tively). During the optimization process, the intent is to

decrease the flank wear, surface roughness and cutting

force. The response surface optimization is an optimal

procedure to determine the best combination cutting

parameters in hard turning. To find a solution to this type of

parameter design problem, an objective function F(x) is

defined as follows:

DF ¼
Yn

i¼1

dwii

 ! 1P
n
j¼1

wi

ðEq 10Þ

FðxÞ ¼ �DF ðEq 11Þ

where di represents desirable ranges of each response, n

is the number of responses and wi denotes the

Table 8 Comparison between RSM and ANN approach

Input parameters

RSM ANN

R2 RMSE MPE (%) R2 RMSE MPE (%)

VB 0.9686 0.002269 7.35477 0.99999 0.0034197 1.411102

Ra 0.9310 0.012461 8.00978 1 3.9613 e�7 1.03057

Fz 0.9918 0.587701 2.985725 1 7.613 e�7 1.12117
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comparative scale to weigh each resulting di assigned to

answer i. The values of w affected were equal to one in

this study.

If the objective function is to maximize the output

response, then di is described as follows:

di ¼
Yi � Infi

Supi � Infi

� �
if Infi � Yi � Supi ðEq 12Þ

If the objective function is to minimize the output response,

then di is described as follows:

Table 9 Constraints for optimization of machining parameters

Condition Goal Lower limit Upper limit Lower weight Upper weight Importance

Cutting speed Vc (m/min) In range 80 140 1 1 3

Feed rate f (mm/rev) In range 0.08 0.14 1 1 3

Cutting time t (min) In range 4 12 1 1 3

Flank wear VB (mm) Minimize 0.021 0.29 1 1 5

Arithmetic mean roughness Ra (lm) Minimize 0.32 1.27 1 1 5

Tangential cutting force Fz (N) Minimize 40.96 160.93 1 1 5

Table 10 Response optimization for flank wear, surface roughness and tangential cutting force

Solution no. Vc (m/min) f (mm/rev) t (min) VB (mm) Ra (lm) Fz (N) Desirability Remarks

1 80.000 0.080 4.000 0.019 0.242 41.546 0.998 Selected

2 80.000 0.083 4.001 0.026 0.261 43.877 0.986

3 83.435 0.080 4.000 0.030 0.300 41.957 0.986

4 80.000 0.080 4.536 0.022 0.255 47.111 0.981

5 84.002 0.080 4.414 0.034 0.320 46.304 0.968

6 80.000 0.088 4.000 0.034 0.290 47.278 0.966

7 88.880 0.080 4.000 0.046 0.378 42.555 0.944

8 82.661 0.080 5.256 0.035 0.320 54.670 0.943

9 140.000 0.080 4.000 0.088 0.320 44.975 0.899

10 136.645 0.080 4.000 0.091 0.367 44.993 0.879

Fig. 12 Ramp function graph

of multi-objective optimization
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di ¼
Supi � Yi

Supi � Infi

� �
if Infi � Yi � Supi ðEq 13Þ

where yi is the response value and yimax, yimin represent the

maximum and the values minimum for the response i,

respectively. Many investigations have used the approach

of the desirability function (DF) during machining to

optimize cutting conditions [22–24].

For this research, a desirability function approach based

on the RSM allows to find the optimal combination of the

cutting parameters (Vc, f and t) when machining X210Cr12

steel with a CC6050 ceramic, using the Design Expert

version 10 software. The objective was to find the optimum

values of the cutting parameters in order to produce the

lowest values of the wear (VB), arithmetic mean roughness

(Ra) and tangential cutting force (Fz) during the opti-

mization process. The constraints used for optimization

process are given in Table 9.

The optimal solutions obtained are summarized in

Table 10 in order to decrease their desirability level. For

this optimization case, all output parameters have been

given maximum importance (5). We have assigned the

weight of 1 for all output parameters (VB, Ra and Fz).

It is obvious that the optimal cutting conditions of

Vc = 80 m/min, f = 0.08 mm/rev and t = 4 min lead to the

optimal solution regarding (VB, Ra and Fz), with values of

0.019 mm, 0.242 lm and 41.546 N, respectively, accord-

ing to the highest desirability value of 0.998. This result
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Fig. 13 Contour plot and response surface of desirability variation as a function of cutting conditions
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leads to maximum tool life, which is beneficial for an

industrial manufacturer, because the coated ceramic cutting

insert used is very costly compared with a carbide insert.

Figure 12 shows the ramp function graph regarding the

optimum cutting regime with desirability of 0.998. It

should be noted that the overall desirability corresponds to

the average desirability of each of the optimization

parameters (VB minimized, Ra minimized and Fz

minimized).

Figure 13 shows the variation in desirability as a func-

tion of the values of the elements of the cutting regime (Vc,

f and t). It is noted that the cutting speed, the feed rate and

the cutting time take the minimum value; this regime gives

a better result for the wear (VB) and the roughness (Ra) as

well as the tangential force (Fz).

Conclusions

In the current work, the application of modeling methods

(RSM and ANN) was presented during the hard turning of

X210Cr12 steel having hardness of 56 HRC, using a mixed

ceramic (CC6050). Mathematical models for prediction of

roughness (Ra), wear (VB) and force tangential (Fz) as

function of the machining conditions were studied. The use

of approach of the desirability function (DF) allows to

determine the optimal cutting conditions. The conclusions

of this research can be drawn from the following:

1. The ANOVA confirmed that the cutting speed (Vc)

is the dominant factor affecting the wear (VB),

followed by feed rate (f) and cutting time (t) with

contributions of 39.96, 35.36 and 13.51%,

respectively.

2. The ANOVA shows that the feed rate (f) has a

greater influence on the roughness (Ra) with a

cont.% equal to 31.91%, followed by cutting time

(t) (23.95%) and lastly by the cutting speed (Vc)

(10.13%). The term (Vc2) has also an influence

with 19.84% of contribution.

3. The ANOVA also shows that the tangential force is

influenced principally by the cutting time (t) and

feed rate (f) with contributions of 75.74 and

22.65%, respectively.

4. The machining of hardened steel X210Cr12 (56

HRC) by coated mixed ceramic tools presents an

economic alternative compared with grinding and

CBN tools, since it allows obtaining roughness

(Ra) less than 0.4 lm.

5. The mathematical models obtained present good

agreements with the experimental data. These

models should represent an important industrial

interest for the mechanical manufacturers, since

allowing making predictions, which presents a

significant gain in time and materials.

6. The comparative study of the experimental results

and those estimated by the ANN and RSM models

clearly shows that the models resulting from the

ANN method give excellent results compared with

the models resulting from the RSM.

7. The model of VB obtained by RSM provides a

correlation coefficient (R2) of 0.9686, an RMSE of

0.002269 and an MPE of 7.35477%, whereas the

ANN gives a correlation coefficient of 0.99999, an

RMSE of 0.0034197 and an MPE of & 0%.

8. The model of Ra obtained by RSM provides a

coefficient of determination (R2) of 0.9310, an

RMSE value of 0.012461 and an MPE of

8.00978%. The values of these parameters obtained

by the model constructed by the ANN are, respec-

tively, 1, 3.9613 e�7 and & 0%.

9. The model for prediction of the tangential force

(Fz) obtained by RSM provides a coefficient of

determination (R2) of 0.9918, an RMSE value of

0.587701 and an MPE of 2.985725%. The values of

these parameters obtained by the model constructed

by the ANN are, respectively, 1, 7.613 e�7

and & 0%.

10. The multi-objective optimization of the technolog-

ical parameters (VB, Ra and Fz) using the

desirability function allowed us to find an optimal

regime, which are (Vc) = 80 mm/min,

(f) = 0.08 mm/rev and (t) = 4 min. This optimal

regime corresponds to the following technological

parameters: (VB) = 0.019 mm, (Ra) = 0.242 lm
and (Fz) = 41.55 N with desirability equal to

0.998.
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cutting parameters when turning hardened AISI 4140 steel (63

HRC) with Al2O3 ? TiCN mixed ceramic tool. Mater. Des. 28,
1618–1622 (2007)

20. J.G. Lima, R.F. Avila, A.M. Abrao et al., Hard turning: AISI

4340 high strength low alloy steel and AISI D2 cold work tool

steel. J. Mater. Process. Technol. 169, 388–395 (2005)

21. R. Quiza, L. Figueira, J.P. Davim, Comparing statistical models

and artificial neural networks on predicting the tool wear in hard

machining D2 AISI steel. Int. J. Adv. Manuf. Technol. 37, 641–
648 (2008)

22. H. Tebassi, M.A. Yallese, I. Meddour et al., On the modeling of

surface roughness and cutting force when turning of Inconel 718

using artificial neural network and response surface methodology:

accuracy and benefit. Period. Polytech. Eng.Mech. Eng. 61, 1 (2017)
23. J.S. Dureja, V.K. Gupta, V.S. Sharma et al., Design optimization

of cutting conditions and analysis of their effect on tool wear and

surface roughness during hard turning of AISI-H11 steel with a

coated—mixed ceramic tool. Proc. Inst. Mech. Eng. Part B J.

Eng. Manuf. 223, 1441–1453 (2009)

24. J.S. Dureja, V.K. Gupta, V.S. Sharma et al., Design optimization

of flank wear and surface roughness for CBN-TiN tools during

dry hard turning of hot work die steel. Int. J. Mach. Mach. Mater.

7, 129–147 (2009)

25. A. Chabbi, M.A. Yallese, I. Meddour et al., Predictive modeling

and multi-response optimization of technological parameters in

turning of polyoxymethylene polymer (POM C) using RSM and

desirability function. Measurement 95, 99–115 (2017)

26. H. Tebassi, M.A. Yallese, S. Belhadi et al., Quality-productivity

decision making when turning of Inconel 718 aerospace alloy: a

response surface methodology approach. Int. J. Ind. Eng. Com-

put. 8, 347–362 (2017)

27. Y. Nagata, K.H. Chu, Optimization of a fermentation medium

using neural networks and genetic algorithms. Biotechnol. Lett.

25, 1837–1842 (2003)

28. B. Sarkar, A. Sengupta, S. De et al., Prediction of permeate flux

during electric field enhanced cross-flow ultrafiltration a neural

network approach. Sep. Purif. Technol. 65, 260–268 (2009)

29. A.M. Zain, H. Haron, S.N. Qasem et al., Regression and ANN

models for estimating minimum value of machining performance.

Appl. Math. Model. 36, 1477–1492 (2012)

30. M. Ramezani, A. Afsari, Surface roughness and cutting force

estimation in the CNC turning using artificial neural networks.

Manag. Sci. Lett. 5, 357–362 (2015)

31. M. Rajendra, P.C. Jena, H. Raheman, Prediction of optimized

pretreatment process parameters for biodiesel production using

ANN and GA. Fuel 88, 868–875 (2009)

32. R.M. Garcia-Gimeno, C. Hervas-Martinez, R. Rodriguez-Perez

et al., Modelling the growth of Leuconostoc mesenteroides by

artificial neural networks. Int. J. Food Microbiol. 105, 317–332
(2005)

33. A. Sahoo, A. Rout, D. Das, Response surface and artificial neural

network prediction model and optimization for surface roughness

in machining. Int. J. Ind. Eng. Comput. 6, 229–240 (2015)

34. H. Aouici, M.A. Yallese, K. Chaoui et al., Analysis of surface

roughness and cutting force components in hard turning with

CBN tool: prediction model and cutting conditions optimization.

Measurement 45, 344–353 (2012)

35. M.A. Yallese, J.F. Rigal, K. Chaoui et al., The effects of cutting

conditions on mixed ceramic and cubic boron nitride tool wear

and on surface roughness during machining of X200Cr12 steel

(60 HRC). Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 219, 35–
55 (2005)

36. R. Suresh, S. Basavarajappa, Effect of process parameters on tool

wear and surface roughness during turning of hardened steel with

coated ceramic tool. Procedia Mater. Sci. 5, 1450–1459 (2014)

37. B. Fnides, M.A. Yallese, T. Mabrouki et al., Surface roughness

model in turning hardened hot work steel using mixed ceramic

tool. Mechanics 77, 68–73 (2009)

38. H. Aouici, M.A. Yallese, B. Fnides et al., Machinability inves-

tigation in hard turning of AISI H11 hot work steel with CBN

tool. Mechanics 86, 71–77 (2010)

39. M.A. Yallese, K. Chaoui, N. Zeghib et al., Hard machining of

hardened bearing steel using cubic boron nitride tool. J. Mater.

Process. Technol. 209, 1092–1104 (2009)

40. H. Bouchelaghem, M.A. Yallese, A. Amirat et al., Wear beha-

viour of CBN tool when turning hardened AISI D3 steel.

Mechanics 65, 57–65 (2007)

41. M.A. Yallese, L. Boulanouar, K. Chaoui, Usinage de l’acier
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