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Abstract In the interest of obtaining an effective bearing

degradation feature from complex, nonlinear, and nonsta-

tionary vibration signals, a new analytical methodology

based on local characteristic-scale decomposition (LCD)

and relative entropy theory is proposed. On the one hand,

LCD is a new and relatively excellent time-frequency

analysis method to analyze practical vibration signals

polluted by noise. On the other hand, relative entropy

theory is a good way to characterize different degradation

states by calculating the probability distribution difference

between the degradation signals and the normal signal.

Combining the above two theories, two new degradation

features named LRNE and LRQE are extracted to indicate

the bearing degradation trend from normal state to even

failure state. The noise resistance ability and extensive

applicability of both the features are verified by simulation

signal. For further analysis of experimental vibration sig-

nals, the two features have a satisfying performance to

characterize different bearing degradation states. With the

help of gray relational analysis and fuzzy C-means clus-

tering, the proposed two characteristics can identify

different bearing degradation states of inner ring fault

mode with high accuracy. In the end, the two features are

applied to doing bearing failure analysis with the full-life

bearing data. The results show that the LRNE and LRQE

are sensitive to bearing degradation trend in the whole life

of bearing.

Keywords Rolling bearing �
Degradation state identification �

LCD relative spectral entropy � Fuzzy C-means clustering �
Gray relational analysis � Failure analysis

Introduction

Effective degradation state identification and accurate

residual life prediction are helpful for timely bearing main-

tenance and replacement which are crucial to bearing failure

prevention. The degradation features or health indicators are

used for observing health condition that is important for

residual life prediction [1]. However, in the state of degra-

dation, rolling bearing vibration signal shows strong

nonlinear and nonstationary characteristics. Although tra-

ditional feature extraction methods based on traditional time

domain statistics are easy to get, there are disadvantages such

as insensitivity to nonlinear and nonstationary signals and

vulnerability [2]. Owing to the fact that frequency domain

methods describe signals more clearly and can reflect more

details of fault degradation degree. Therefore, in recent

years, the time-frequency analysis methods have been

widely used [3, 4]. These methods can provide the local

characteristics of signals in both time domain and frequency

domain. There are three kinds of typical time-frequency

methods including empirical mode decomposition (EMD),

local mean decomposition (LMD), and local characteristic-

scale decomposition (LCD). The EMD method proposed by

Huang et al is an adaptive decomposition method [5]. This

method can effectively decompose the local feature of the

signal into several components, and has the ability to process

complex nonlinear and nonstationary signal. So it is widely

used in fault diagnosis and prediction [6, 7]. However, owing

to the EMD problems such as the over envelope, the owing

envelope, mode mixing, and the end effect [8], the applica-

tion effect of this method in practical engineering is affected
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to some degree. The LMD method proposed by Smith [9] in

2005 is similar to the EMD method, and is also based on the

inherent characteristic of vibration signal to decompose

complex signals. Because of the use of the division operation

to obtain the product function (PF) component, it can reduce

the number of iterations and then reduce the end effect. At the

same time, the effect of the LMD method overcoming the

over envelope and the owing envelope is better than theEMD

method [10]. This method can decompose the PF compo-

nents which can be closely related to fault. In literature [11],

by analyzing the spectrum of PF components, the charac-

teristic information of fault frequency is extracted

accurately. However, because the traditional LMD method

has defects such as a poor ability to extract weak high fre-

quency components, a large amount of iterative calculation,

and the frequency confusion [12], it needs to be further

optimized. The LCD method is a new adaptive time-fre-

quency analysis method based on intrinsic time-scale

decomposition proposed by Yang et al. [13]. This method

utilizes piecewise linear transformation to obtain the base-

line signal, which can avoid the EMD problems such as over

envelope and owing envelope etc. It can also reduce com-

putation complexity of EMD and LMD. The iteration

number is relatively small and the speed is fast, so it is more

suitable for online real-time monitoring and processing of

signals [14]. This new time-frequency analysis method has

been mainly employed in vibration signal processing and

fault diagnosis and has made some achievements in the past

few years. Zheng et al. [15] utilized LCD and fuzzy entropy

firstly to extract bearing fault feature for diagnosis which

performed effectively. On this basis, Cheng et al. [16] pro-

posed a partly ensemble LCD (PELCD) that could help

extract bearing fault features in time-frequency domains.

However, this methodology has seldom been reported in

data-driven failure analysis and bearing residual life

prediction.

In recent years, the methods based on nonlinear

parameter feature extraction are widely used in the field of

degradation state identification and residual life prediction.

One typical kind is the information entropy theory

including sample entropy, permutation entropy, relative

entropy, and so on [17, 18]. These years, some researchers

have a strong interest in relative entropy in engineering

field. Schmitt et al. [19] put forward a predictability anal-

ysis method based on relative entropy measures for bearing

fault detection and the result was satisfying. The relative

entropy is an index which measures two probability dis-

tribution deviation. The smaller the relative entropy of two

probability distributions is, the greater the similarity of two

probability distributions is, and the converse is also true.

With the constant deepening of the rolling bearing degra-

dation degree, the probability distribution of vibration

signal energy is constantly changing. So the relative

entropy between vibration signals under the normal state

and signals under degradation state can be used to indicate

the bearing degradation trend.

Based on the above analysis, the paper puts forward the

concept of the LCD relative spectral entropy. This method

eliminates the noise which has nothing to do with the

degradation state by means of local characteristic-scale

decomposition and reconstruction. By the calculation of the

reconstructed signal, we can get two degradation charac-

teristics, the LCD relative energy spectrum entropy

(LRNE) and the LCD relative singular spectrum entropy

(LRQE). To solve the problems that the vector group’s

volatility is large and the discrimination degree is not high

in the same kind of degradation state, Gray relational

analysis method based on fuzzy C-means clustering opti-

mization is proposed. This method can get the standard

feature vector set which can distinguish different degra-

dation states accurately by means of fuzzy C-means value.

By calculating the Gray correlation degree between feature

vectors of different samples and the standard feature vec-

tor, the rolling bearing degradation state identification is

realized. What’s more, the both features are applied in the

process of full-life bearing failure analysis and they have a

good ability to indicate full-life degradation trend which is

important to predict when the bearing will fail.

LCD Principle Algorithm

The Conditions ISC Needs to Satisfy

In the literature [20], a single component signal with

physically meaningful instantaneous frequency is defined

based on the local characteristic parameters of the extreme

points, and it’s named intrinsic-scale component (ISC). In

order to make the instantaneous frequency of physical

sense, the ISC component needs to meet the following two

conditions.

(i) In the whole time series, any adjacent two extreme

value points have opposite sign.

(ii) In the corresponding time series range, the sequence

of extreme value points is Xk and the corresponding

moment is sk , where k ¼ 1; 2; � � �;M . For any two

adjacent maximums or minimums Lk and Lkþ2 ,

function of sk is H:

Hkþ1 ¼ Lk þ
skþ1 � sk
skþ2 � sk

ðLkþ2 � LkÞ ðEq 1Þ

The ratio between the value of the function Hkþ1 and the

maximum or minimum Lkþ1 corresponding to the time skþ1

remains nearly unchanged.

The above two conditions have ensured that the ISC

component has local symmetry and possesses a single
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mode between two adjacent extrema. Hence the instanta-

neous frequency of the ISC is meaningful in a physics

view.

The Process of Local Characteristic-Scale

Decomposition

Assuming that the rolling bearing vibration signal is made

up of different ISC components which are unrelated, the

LCD method can decompose the vibration signal into

several ISC components. The specific decomposition steps

[20] are as follows:

(i) Calculate extreme points Lk k ¼ 1; 2; . . .jð Þ of time

series, and then calculate the fitting points

gk ¼
Lk þ Hk

2
ðEq 2Þ

(ii) On the basis of extending the endpoints in time

series, use cubic spline function for fitting all gk, and at last

get the mean curve Bg1ðtÞ.
(iii) Eliminate the mean curve from the original signal.

P1 ¼ xðtÞ � Bg1ðtÞ ðEq 3Þ

(iv) Judge whether P1 meets the ISC conditions or not. If

it is satisfying, take P1 as the first ISC component, signed

as ISC1. If not, take P1 as the original signal and repeat

steps (i), (ii), and (iii). And then cycle k times until Pk

meets the ISC conditions, thus Pk is the first component

ISC1 of signal xðtÞ.
(v) Eliminate ISC1 from xðtÞ, and we can get a new signal

r1. Take r1 as the original signal and repeat steps (i), (ii), (iii),

and (iv), thus we can get the second component ISC2. Repeat

the cycle n times until rn is amonotonic function, thenwe can

get all ISC components of the signal xðtÞ.
(vi) Considering that most of information which is clo-

sely related to the degradation state of rolling bearing is at

the high frequency section, select the first m ISC compo-

nents with high frequency so as to remove noise and other

interference components. The reconstructed signal is set as

x0ðtÞ.

x0ðtÞ ¼
Xm

p¼1

ISCpðtÞ: ðEq 4Þ

Computation and Validation of the LCD Relative

Spectral Entropy

Based on extremum point analysis, the LCD method

decomposes the original signal with local characteristics

and refactors the decomposed ISC components selectively.

In this way, the noise components can be removed with

adaptability. Compared with the rolling bearing vibration

signal at normal state, the probability distribution of the

signal energy which is at degradation state is changing

constantly. Therefore, on the basis of LCD decomposition

and refactoring for the rolling bearing signal at normal state

and the one at a certain fault state, this paper, in combi-

nation with the concept of relative energy spectrum entropy

and relative singular spectrum entropy, presents the two

degradation characteristics, LRNE and LRQE. These two

degradation features define the LCD relative entropy from

different angles of energy spectrum and singular value

spectrum. Compared with one-dimensional degradation

feature, multidimensional degradation features can effec-

tively avoid the errors in the identification of different

degradation states.

The Definition of LRNE and LRQE

For the definite degradation degree of the specific rolling

bearing fault mode, supposing that a total M fault samples

are collected, the relative energy spectrum entropy of the

fault sample xiðtÞ i ¼ 1; 2; ; . . .M; t ¼ 0; 1; 2; . . .N � 1ð Þ
and the group of normal signal xbðtÞ t ¼ 0; 1; 2; . . .N � 1ð Þ
can be calculated by the following steps:

(i) Decompose the obtained normal samples and fault

samples with LCD and choose the first r ISC

components to refactor Lbðt; f Þ and Liðt; f Þ.
(ii) The energy of normal sample and fault sample at

frequency fg is calculated as follows:

E
g
b ¼

XN�1

t¼0

Lb t; fg
� �2 ðEq 5Þ

E
g
i ¼

XN�1

t¼0

Li t; fg
� �2 ðEq 6Þ

Based on this, the energy of the sample sequence at all

frequencies is calculated, and then the LCD energy spec-

trum of normal and fault samples can be calculated

respectively into Eb ¼ E1
b;E

2
b; . . .;E

G
b

� �
and

Ei ¼ E1
i ;E

2
i ; . . .;E

G
i

� �
.

(iii) Calculate the sum of energy of all samples at the

specific frequency as follows:

E
g
L ¼

XM

i¼1

E
g
i þE

g
b ðEq 7Þ

(iv) The proportion of the energy of xb tð Þ and xi tð Þ at the
specific frequency in the total energy is:

p
g
b ¼ E

g
b=E

g
L ðEq 8Þ

p
g
i ¼ E

g
i =E

g
L ðEq 9Þ

(v) According to the concept of relative entropy, the

LCD relative energy spectrum entropy of fault sample i and

normal sample is defined as follows:
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LRNEi
b ¼

XG

g¼1

p
g
i log

p
g
i

p
g
b

����

���� ðEq 10Þ

From the definition of LRNE, it’s obvious that LRNEi
b

can reflect the differences between fault samples and

normal samples at the aspect of energy probability

distribution. The bigger LRNE is, the greater the

difference between degradation state and normal state is

and vice versa.

Meanwhile, due to the selection of ISC components in

the process of LCD, the index is adaptive and stable to

different noise conditions. As a result, LRNE can charac-

terize different degradation states of rolling bearings.

On the basis of the LCD relative entropy, combined with

singular value decomposition (SVD), this paper proposes the

concept of the LCD relatively singular spectrum entropy,

named LRQE. Decompose the time-frequency spectrum

Lbðt; f Þ and Liðt; f Þ with SVD and we can get the singular

value spectrum of the normal sample rb ¼ r1b; r
2
b; . . .; r

G
b

� �
.

For any fault sample group i, its singular value spectrum is

ri ¼ r1i ; r
2
i ; . . .; r

G
i

� �
. Combined with the relative entropy

theory, the relevant probabilities are defined as follows:

qp
g
b ¼ rgb=r

g
L ðEq 11Þ

qp
g
i ¼ rgi =r

g
L; ðEq 12Þ

where rgL ¼
PM

i¼1

rgiþrgb.
Hereby, we can define the LCD relative singular spec-

trum entropy of the fault sample group i and the normal

sample as below:

LRQEi
b ¼

XG

g¼1

qp
g
i log

qp
g
i

qp
g
b

����

���� ðEq 13Þ

In conclusion, LRQE can reflect the difference about

singular value probability distribution between degradation

state and normal state of the rolling bearings. To be

particular, the index can characterize the degradation

degree at the specific fault mode of the rolling bearings.

The Simulation Signal Analysis

In order to verify the feasibility and effectiveness of the

proposed method and the ability of LRNE and LRQE to

characterize the degradation state of the rolling bearings,

the simulation signal is used to simulate the fault degra-

dation state of the rolling bearings. The simulation signal is

chosen as follows [21]:

xðtÞ ¼ cosð2p� 80tÞ þ 0:05t2 cosð2p� 30t þ 2Þ þ nðtÞ;
ðEq 14Þ

where 0:05t2 cosð2p� 30t þ 2Þ is the rolling bearing fault

impact signal whose cosine coefficient 0:05t2 reflects the

process of the continuous deepening of the fault degree.

The formula cosð2p� 80tÞ indicates the signal of rolling

bearing at normal state. The formula nðtÞ represents the

added Gauss noise. The number of signal sampling points

is 20,480. The sampling frequency isfs ¼ 1024. In order to

study the adaptability of the LCD relative entropy method

to different noise environments, six kinds of signal-to-noise

ratio (SNR) are set up respectively: �1dB, �3dB and

�6dB. Figure 1 is the time domain waveform of the sim-

ulation signal whose SNR is þ1dB.

Take the signal whose SNR is þ1dB as an example. At

first, the signal xðtÞ is divided into ten groups and labeled in
order. The sampling number of the every group is 2048.

The ten sets of data are used to represent approximately the

process of the continuous deepening degradation degree of

the rolling bearing at a specific fault mode. The normal

signal is used as reference and the two characteristics of the

ten sets of data, LRNE and LRQE are calculated. In the

same way, we can calculate the characteristic values of the

other five kinds of signals with different SNRs. The results

are shown in Fig. 2.

Figure 2 shows that the two characteristics including

LRNE and LRQE are increasing with the deepening degree

of the degradation in different noise conditions. It’s indi-

cated that the probability distribution of the fault signal

deviates more and more from that of the normal signal with

the continuous evolution of the degradation state. From the

simulation results, the two kinds of characteristics have

strong correlation with the degradation state, and have

good adaptability to different noise intensities, which

proves the effectiveness of the proposed method.

Real Signal Degradation Feature Extraction

Rolling Bearing Test Data Description

In order to verify the effectiveness of the proposed feature

extraction method and state identification method in the

practical engineering field, the experimental data of the

Fig. 1 Time domain waveform for emulation signal
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rolling bearing in the Electrical Engineering Laboratory of

Case Western Reserve University [22] are analyzed. The

test object is SKF6205-2RS deep groove ball bearing

which is shown in Fig. 3. The vibration signals of different

operating conditions are collected. And there are four

operating conditions including operation condition 1

ðn ¼ 1797r=min;P ¼ 0 kWÞ, operation condition 2

ðn ¼ 1772r=min;P ¼ 0:75 kWÞ, operation condition 3

ðn ¼ 1750r=min;P ¼ 1:5 kWÞ, operation condition 4

ðn ¼ 1730r=min;P ¼ 2:25 kWÞ. Vibration signal moni-

toring sampling frequency is divided into two cases of 12

and 48 KHz. In this experiment, the local damage of dif-

ferent degrees is set up by means of electrical discharge

machining. The data collection is carried out on the faults

of the bearing inner ring, the bearing outer ring, and the

rolling body. In each fault mode, five kinds of different

degrees of fault are set. The diameters of damage are 0

(normal), 0.18, 0.36, 0.54, and 0.72 mm.

The data of operation condition 1 are used for analysis.

Different degradation degrees of rolling bearing are char-

acterized by different damage diameters. The sampling

frequency is 12 KHz and the fault mode is inner ring fault.

The number of sampling points in each group is set as

20,480. Figure 4 is time domain diagrams for different

degradation degrees of the rolling bearing.

From Fig. 4, the time domain characteristics of the five

degradation states are not particularly evident and espe-

cially the distinction among degradation state 2, 3, and 4 is

not very high. Therefore time domain analysis cannot be

used to achieve the degradation state identification. How-

ever, we can use the method of LCD relative entropy to

extract the degradation feature, and ultimately achieve state

identification.

Degradation Feature Extraction for the Rolling

Bearings

From the upper analysis, there are five kinds of degradation

states including the normal state in the fault mode of the

bearing inner ring, which are recorded as degradation state

0, 1, 2, 3, and 4 corresponding to the inner ring damage

diameter 0, 0.18, 0.36, 0.54, and 0.72 mm. Ten sets of date

are selected randomly as the training samples of degrada-

tion state identification from the original data of every

degradation states. Each set of data contains 2048 points,

which constitute a set of 5� 10 training samples. At ran-

dom, one set of date from the normal signal is taken as the

reference standard for the calculation of the LCD relative

entropy. By calculation, we can get the two indexes LRNE

Fig. 2 (a) LCD relative spectrum entropy of simulation signal: LRNE. (b) LCD relative spectrum entropy of simulation signal: LRQE

Fig. 3 6205 Bearing
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and LRQE of different degradation states for the ten sets of

date. The waveforms constituted by LRNE and LRQE are

shown in Fig. 5.

Analysis of Fig. 5 shows that the two degradation

characteristics are gradually increasing with the constant

development of degradation. The characteristic levels of

different degradation states are also different at the same

time. And that can ensure good ability for degradation state

distinction and identification. Therefore, the two charac-

teristics can be fused into a two-dimensional feature vector

group which is regarded as the judging basis of degradation

state identification.

The Degradation State Identification of Rolling

Bearings

Gray Relational Analysis Method Based on Fuzzy

C-Means Clustering Optimization

From the above analysis, in the process of rolling bearing

performance evolution from normal state to fault state,

although the degradation index LRNE and LRQE can

distinguish different degradation states, for the certain

training group 6, degradation state 2 and 3 can’t be dis-

tinguished very clearly. The volatility of the degradation

Fig. 4 (a) Vibration signal of rolling bearing under different degradation states. (b) Vibration signal of rolling bearing under different

degradation states. (c) Vibration signal of rolling bearing under different degradation states. (d) Vibration signal of rolling bearing under different
degradation states. (e) Vibration signal of rolling bearing under different degradation states
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characteristics of the same degradation state is still rela-

tively large. Consequently, the two-dimensional feature

vector of any single training group can’t be used as a cri-

terion for recognizing different degradation states. At the

same time, the rolling bearing degradation states show a

strong ambiguity, that is, the boundary of the degradation

state is difficult to be determined. The fuzzy clustering

method based on fuzzy theory can be applied to charac-

terize the degradation states by computing cluster centers.

And that is statistically significant.

The fuzzy clustering algorithm based on fuzzy theory is

fast. Compared with other fuzzy clustering algorithm,

fuzzy C-means (FCM) algorithm is more mature and

widely used [23]. The main idea of this algorithm is to

make the division fuzzy. And the objective function is

shown as follows:

JmFCMðU;V ;XÞ ¼
Xc

i¼1

Xn

j¼1

lmij xj � mi
�� ��ð1� i� c; 1� j� nÞ

ðEq 15Þ

X is a one-dimensional array, expressed as

X ¼ ½x1; x2; � � �; xn�, xi 2 RS. V is one-dimensional vector

made up of c clustering centers, expressed as V ¼
½v1; v2; � � �; vc�: lij is a membership function of xj for

Si.U ¼ lij
�	

is a membership function matrix of c� n

order. Si represents a subset of the X division. The dis-

tance between the sample point xj and the clustering

center mi of the sample group i is indicated as

dij ¼ xj � mi
�� ��, which is chosen as Euclidean distance. m

is the weighted coefficient, generally, m� 1.

The essence of the algorithm is to search a set of

central vector by iteration, which makes the squared error

of the distance from each sample point to the vector

minimum. And the clustering center can be obtained by

calculating.

Fig. 5 (a) Degradation features of rolling bearing inner race: LRNE. (b) Degradation features of rolling bearing inner race: LRQE

Fig. 6 Flow chart of degradation feature extraction and state

recognition
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mi ¼

Pn

j¼1

ðlijÞmxj

Pn

j¼1

ðlijÞm
; i ¼ 1; 2; � � � ; c ðEq 16Þ

On the condition that the sample array X, the total number

of categories c and the weighed coefficient m are known,

the fault sample clustering centers can be obtained by this

method to determine the standard degradation state matrix,

which can guarantee the true reflection of different degra-

dation states.

Gray relational analysis [24] is a dynamic mapping of the

relative changes in the data. This theory is based on the gray

process, which can represent the relative changes of different

factors in the development of the system. If the two factors in

the developing process are changing in the same way, the

gray correlation degree is relatively large, otherwise it’s

small. Considering the degradation evolution of the rolling

bearing as a gray process, the paper presents a gray corre-

lationmethod optimized by fuzzy C-means clustering for the

identification of the rolling bearing degradation states.

The process of the rolling bearing state identification is

represented in Fig. 6. Firstly, the LCD relative entropy

method is used to extract features of the training samples

and the analyzing samples. The standard fault state matrix

can be obtained using FCM clustering. And then the gray

correlation degree between the sample bent solicitation and

the standard matrix can be calculated as the basis for

degradation state identification.

The Standard Fault State Matrix Computation by FCM

Based on the feature data of the training samples extracted

from the ‘‘Degradation feature extraction for the rolling

bearings’’ section, FCM algorithm is used to conduct

clustering analysis of ten degradation feature vectors at

each degradation state. The concrete steps are as follows:

Step 1 Parameter Setting. A set of feature vectors, which

are used to represent the degradation states, are

used as the array of samples, named X. The

number of categories is c ¼ 5. The iterative

stopping threshold is e ¼ 0:001. The initial

clustering center is mð0Þi and the initial number of

iteration is p ¼ 0:

Step 2 Clustering Centers Calculation. The iteration is

computed as follows:

mðpþ1Þ
i

¼

Pn

j¼1

ðlðpþ1Þ
ij

Þmxj

Pn

j¼1

ðlðpþ1Þ
ij

Þm
; i¼ 1;2; � � � ;c ðEq 17Þ

Step 3 The iteration will stop when it meets the condition

v
ðpÞ
i � v

ðpþ1Þ
i

���
���\e: The result of clustering is

shown in Fig. 7

From the clustering results, we can get the clustering

centers of 5 degradation states as shown in Fig. 7. The

standard fault state matrix can be determined by the five-

point coordinates like this:

Q ¼

Q0

Q1

Q2

Q3

Q4

2

66664

3

77775
¼

0:9108 0:4385
2:3513 1:1885
2:7734 1:3640
3:4120 1:7239
3:9635 1:9610

2

66664

3

77775
: ðEq 18Þ

Degradation State Identification Based on Gray

Correlation Degree

Ten sets of analysis samples from each of the five different

degradation states are chosen at random to test accuracy of

the degradation state recognition method. At first, 5� 10

sets of data are calculated to obtain the two-dimensional

Fig. 7 Result of fuzzy C-means

clustering analysis
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feature vector [LRNE LRQE]. And then gray correlation

degree between the certain feature vector and the standard

fault state matrix is computed. The higher the gray corre-

lation degree between a feature vector and a row of the

standard fault state matrix is, the closer these two states are.

Therefore, the result of state identification is the degrada-

tion state whose gray correlation degree is the highest. In

this way, we can determine whether the test results are

consistent with the actual state so as to verify the validity

of the method. The results are shown in Tables 1, 2, 3, 4,

and 5.

The analysis of Tables 1, 2, 3, 4, and 5 shows that the

identification results of Degradation State 0, 1, 3, and 4 are

completely consistent with the actual degradation state.

Only one group of sample’s identification result of

Degradation State 2 is mistaken as Degradation State 1. In

the fifty sets of random samples, only one recognition error

occurs and that is to say, the recognition accuracy rate is as

high as 98%.

Therefore, the relative spectral entropy of LCD can be

used as the degradation characteristics, and the gray cor-

relation analysis based on FCM clustering can be used to

identify the degradation states of the inner ring fault

accurately.

Application for Bearing Failure Analysis

In order to demonstrate the ability of the two features to

indicate bearing degradation trend in failure analysis, a

full-life experiment is conducted in Hangzhou bearing test

and research center. As is shown in Fig. 8a, the test plat-

form mainly consists of an ABLT-1A bearing test machine,

a signal acquisition module, and state monitoring equip-

ment. As Fig. 8b shows, four CA-YD-139 acceleration

sensors are respectively fixed up on four-bearing test sta-

tions and connected to DH-5920 dynamic signal

acquisition instrument. Four sets of rolling bearings can be

Table 1 Identification result of samples in degradation state 0

Sample number

Degradation state

Identification state0 1 2 3 4

1 0.9574 0.6332 0.5678 0.4819 0.4329 0

2 0.9862 0.5983 0.5434 0.4688 0.4251 0

3 0.9795 0.5981 0.5437 0.4695 0.4261 0

4 0.9842 0.6003 0.5456 0.4711 0.4275 0

5 0.9865 0.5994 0.5445 0.4699 0.4262 0

6 0.9910 0.5990 0.5414 0.4642 0.4194 0

7 0.9965 0.5978 0.5407 0.4640 0.4195 0

8 0.9922 0.5948 0.5393 0.4643 0.4205 0

9 0.9835 0.5958 0.5410 0.4666 0.4230 0

10 0.9840 0.5995 0.5448 0.4703 0.4267 0

Table 2 Identification result of samples in degradation state 1

Sample number

Degradation state

Identification state0 1 2 3 4

1 0.5378 0.9257 0.7365 0.5463 0.4584 1

2 0.5378 0.9501 0.8070 0.5474 0.4419 1

3 0.6063 0.8818 0.7282 0.5590 0.4769 1

4 0.5693 0.9258 0.7437 0.5571 0.4696 1

5 0.4333 0.9436 0.8159 0.5532 0.4464 1

6 0.5096 0.9730 0.7507 0.5437 0.4511 1

7 0.5088 0.9206 0.7688 0.5622 0.4691 1

8 0.5889 0.9170 0.7434 0.5616 0.4753 1

9 0.5669 0.9234 0.7420 0.5558 0.4685 1

10 0.5530 0.9338 0.7439 0.5531 0.4646 1
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intensively tested and multiple sets of full-life vibration

data can be stored simultaneously. What’s more, four

thermal resistors and a YD-1 acceleration sensor are

connected with a signal amplifier to monitor the operating

parameters. The sampling interval is ten minutes and when

the test bench running time reaches 9600 minutes, the

Table 3 Identification result of samples in degradation state 2

Sample number

Degradation state

Identification state0 1 2 3 4

1 0.4523 0.7485 0.9102 0.8176 0.6438 2

2 0.4253 0.8206 0.9551 0.6337 0.5071 2

3 0.4261 0.9307 0.8215 0.5626 0.4564 1

4 0.4500 0.8817 0.9680 0.6460 0.5182 2

5 0.4262 0.7673 0.9903 0.6895 0.5489 2

6 0.4105 0.7450 0.9580 0.6962 0.5524 2

7 0.4377 0.7702 0.9783 0.7344 0.5831 2

8 0.4098 0.7976 0.9309 0.6211 0.4963 2

9 0.4206 0.8158 0.9451 0.6268 0.5015 2

10 0.4194 0.7694 0.9987 0.6643 0.5296 2

Table 4 Identification result of samples in degradation state 3

Sample number

Degradation state

Identification state0 1 2 3 4

1 0.4068 0.6077 0.7034 0.9727 0.7901 3

2 0.4226 0.6255 0.7194 0.9787 0.8106 3

3 0.4279 0.6678 0.7904 0.9503 0.7374 3

4 0.4473 0.7266 0.7809 0.9171 0.7175 3

5 0.4231 0.6247 0.7175 0.9726 0.8138 3

6 0.4252 0.6372 0.7371 0.9993 0.7825 3

7 0.4168 0.6207 0.7160 0.9823 0.7850 3

8 0.4065 0.6260 0.7362 0.9466 0.7315 3

9 0.4318 0.6810 0.8112 0.9391 0.7305 3

10 0.4134 0.6218 0.7211 0.9974 0.7657 3

Table 5 Identification result of samples in degradation state 4

Sample number

Degradation state

Identification state0 1 2 3 4

1 0.4656 0.6085 0.6624 0.7853 0.9173 4

2 0.4262 0.6022 0.6780 0.8707 0.9530 4

3 0.4246 0.6270 0.7215 0.8511 0.9827 4

4 0.4251 0.5999 0.6751 0.8657 0.9542 4

5 0.4162 0.5736 0.6386 0.7975 0.9957 4

6 0.4745 0.6136 0.6651 0.7811 0.9023 4

7 0.4206 0.5784 0.6432 0.8012 0.9979 4

8 0.4326 0.6217 0.7057 0.7257 0.9269 4

9 0.4194 0.5878 0.6595 0.8392 0.9624 4

10 0.4338 0.5883 0.6503 0.7985 0.9748 4
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index exceeds the alarm threshold, and the machine is shut

down. Inner ring pitting (Fig. 9b) occurs in the 6204

bearing (Fig. 9a) at No.4 station and that results in bearing

failure.

The collected 960 groups of vibration data record the

whole process of rolling bearing from normal state to

failure state. The first data group is recognized as the

normal state group. Thus the two features, LRNE and

LRQE are calculated and normalized as Fig. 10 shows.

These two features increase with the bearing degradation

and have a good performance to follow the degradation

trend from normal state to failure state. Different from

general features like root mean square (RMS), the proposed

features are sensitive to bearing degradation trend and can

Fig. 10 (a) LRNE with the whole bearing life. (b) LRQE with the whole bearing life

Fig. 8 (a) Bearing life experiment layout: the complete machine. (b) Bearing life experiment layout: sensors

Fig. 9 (a) 6204 Bearing:

normal state. (b) 6204 Bearing:

inner ring pitting failure

J Fail. Anal. and Preven. (2016) 16:655–666 665

123



reflect different degradation states of rolling bearing

clearly. And this ensures that LRNE and LRQE have the

potential to improve effect of bearing failure analysis and

accuracy of bearing residual life prediction which we will

study very soon.

Conclusion

In order to obtain an effective degradation feature that can

reflect different degradation states in the whole life of

bearings, LRNE and LRQE are proposed as degradation

indicators on the basis of LCD and the relative entropy

theory. By signal analyzing and application in bearing

failure analysis, we can reach the following conclusions:

1. By means of LCD, the method can eliminate the noise

and other unrelated components and improve the

adaptability of the two indicators facing different noise

environments. Owing to the probability distribution

difference between the degradation signals and the

normal signal, relative entropy theory guarantees that

the two indicators are sensitive to the bearing degra-

dation state changing and have a good performance to

discover early degradation. And this contributes to

bearing residual life prediction and preventing bearings

from unexpected failure that can cause equipment

damages and even accidents.

2. The gray relational analysis method based on fuzzy

C-means clustering is effective to overcome the defects

of the degradation characteristics data. The reasonable

determination of characteristics of the standard degra-

dation state ensures the high accuracy of bearing

degradation state identification. And this is helpful for

bearing performance assessment which has significance

to conduct timely condition based maintenance (CBM)

and increase service life of rotating machines.
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