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Abstract Delamination is a dominating failure mecha-

nism in composites. Deep insight into mixed-mode

delamination failure mechanism requires advanced

numerical methods. Currently, the cohesive zone model

(CZM) by combining with the finite element analysis has

become a powerful tool for modeling the delamination

initiation and growth of composites. Based on the middle-

plane interpolation technique, this paper first develops a 3D

finite element technique for implementing exponential

CZM using ABAQUS-UEL (User element subroutine).

Then, the effects of the cohesive strength, mesh size and

initial delamination crack length on the delamination

behavior and load response for two single-leg bending

composite specimens with mixed-mode I/II delamination

modes are studied by comparison with the experimental

results. In addition, the viscous effect on the load–dis-

placement curves for two specimens is also studied.
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Introduction

Delamination of composite laminates due to low bonding

strength of the adhesive layer is an important failure

mechanism, which leads to the loss of stiffness and strength

of composite structures. Deep insight into the delamination

failure mechanism and load-bearing ability of composites

requires advanced numerical methods. From the fracture

mechanics perspective, the delamination with irreversible

crack propagation includes different fracture modes, e.g.,

mode-I, mode-II and mixed-mode I/II. Compared with the

single delamination mode, mixed-mode delamination is

more common for composite structures. Reeder and Crews

[1] proposed a standard mixed-mode bending specimen

(MMB, ASTM D6671-01) for delamination research of

composites. Although the MMB has been widely accepted

for testing unidirectional coupons, it requires a complex

test apparatus. Subsequently, some other types of mixed-

mode specimens have been proposed, in which a typical

specimen is the single-leg bending (SLB) delamination

coupon proposed by Yoon and Hong [2] and developed by

Davidson and Sundararaman [3], Polaha et al. [4], Pieracci

et al. [5] and Szekrenyes and Uj [6]. In general, the SLB

was developed as a modified end-notched flexure speci-

men. In their work, the delamination fracture toughness

was studied by analytical and experimental approaches.

Compared with the MMB, the SLB is a simpler test

specimen since it does not require a complex loading

apparatus.

Because of very small thickness (e.g., 0.1 mm) and

complicated mechanical properties of adhesive layers,

modeling and simulation on the delamination crack initi-

ation and propagation of composites are a tough task.

However, analytical approaches based on the classic beam

theory [3–6] cannot predict the crack propagation process

of composites. Currently, the cohesive theory, which was

first introduced by Dugdale [7] and Barenblatt [8] to

describe discrete fracture as a material separation across

P. F. Liu (&) � Z. P. Gu
Institute of Chemical Machinery and Process Equipment,

Zhejiang University, Hangzhou 310027, China

e-mail: pfliu@zju.edu.cn; 56691747@qq.com

Z. P. Gu

e-mail: 347975465@qq.com

123

J Fail. Anal. and Preven. (2015) 15:846–852

DOI 10.1007/s11668-015-0021-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s11668-015-0021-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11668-015-0021-x&amp;domain=pdf


the interface, has been demonstrated to be the most popular

approach for the delamination analysis because it avoids

the consideration of the crack-tip singularity and can pre-

dict both the delamination crack initiation and propagation.

Although the MMB specimen has been widely studied

using the cohesive zone model (CZM), the SLB specimen

is hardly studied using CZM.

In this paper, we first perform experimental research on

the SLB specimens. Second, we develop 3D finite element

numerical codes for the exponential CZM proposed by Liu

and Islam [9] based on the middle-plane interpolation

technique by ABAQUS-UEL (User element subroutine).

Finally, the purpose of this paper is to study the effects of

the cohesive strength, mesh size and initial delamination

crack length on the delamination behavior and load

response of the SLB specimens. The developed numerical

technique is also validated by comparing numerical and

experimental results.

Exponential CZM

The exponential CZM proposed by Liu et al. [9] is used,

where the traction–displacement jump curve is shown in

Fig. 1. For single-mode delamination, the damaged cohe-

sive laws Ti � Dmax
i Dmax

i ¼ max Dmax
i ;Di

� �� �
are written as

Ti ¼ eTc
i

�
Dc
iD

max
i exp �Dmax

i

Dc
i

1� dsi
� ��1

� �
; i ¼ 1; 2; 3ð Þ;

ðEq 1Þ

where dsi i ¼ 1; 2; 3ð Þ are the damage variables in the

normal and tangential directions which are written as

dsi ¼
1� exp � Dmax

i �Dc
i

Df
i�Dc

i

� �

1� expð�1Þ ; i ¼ 1,2,3ð Þ; ðEq 2Þ

where Dc
i ði ¼ 1; 2; 3Þ and Df

i ði ¼ 1; 2; 3Þ are the initial and
critical failure displacement jumps, respectively. The

critical displacement jump Df
i ði ¼ 1; 2; 3Þ in Eq 2 can be

numerically solved by the following equation

Z Df
i

0

eTc
i =D

c
iD
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i exp �Dmax

i =Dc
i

� �
dDi

¼ eTc
i D

c
i � eTc

i Dc
i þ Df

i

� �
exp �Df

i=D
c
i

� �

¼ lGc
i ; i ¼ 1,2,3ð Þ;

ðEq 3Þ

where l is a constant approximating unity and Df
i ¼

11:76Dc
i ði ¼ 1; 2; 3Þ is obtained at l = 0.9999. The

traction–displacement jump relationship T �
Dmax Dmax ¼ max Dmax;Dð Þð Þ for mixed-mode

delamination is assumed by

T ¼ etc=DcDmax exp �Dmax

Dc

1

1� ds

	 

; ðEq 4Þ

where ds is the scalar interfacial damage variable for

mixed-mode delamination. Dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dc
1

� �2þ Dc
2

� �2þ Dc
3

� �2
q

and Tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc
1

� �2þ Tc
2

� �2þ Tc
3

� �2
q

are the equivalent critical

displacement jump and critical traction, respectively. The

variable displacement jump D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

� �2þ D2

� �2þ D3

� �2
q

is

assumed.

For mixed-mode delamination, the damage variable ds is

given by

ds ¼
1� exp � Dmax�Dc

Df�Dc

� �

1� expð�1Þ : ðEq 5Þ

The mixed-mode critical failure displacement jump Df can

be numerically solved by

Z Df

0

eTc=DcDmax exp �Dmax=Dcð ÞdD

¼ eTcDc � eTc Dc þ Df
� �

exp �Df=Dc
� �

¼ Gc;

ðEq 6Þ

where the mixed-mode fracture toughness Gc is assumed to

obey the B-K law [10].

The second-order tangent stiffness tensor Dtan for

mixed-mode delamination is derived from Eqs 1 and 5 by

considering the interpenetration between the delaminated

interfaceFig. 1 Exponential CZM

J Fail. Anal. and Preven. (2015) 15:846–852 847

123



where

ods
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¼ ods
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; ðEq 8Þ
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� 
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ðEq 10Þ

and n is a penalty factor and dij is the Kronecker dalta.

Finite Element Formulation for Implementing CZM

Segurado and Llorca [11] proposed a 3D finite element

formulation for implementing CZM by adopting the mid-

dle-plane numerical technique, as shown in Fig. 2. Similar

to the standard isoparametric element, the local coordinate

system n; g; fð Þ and the global coordinate system x; y; zð Þ
are defined. The displacement jump in the local coordinate

system ½½u]] for the cohesive element is calculated as

D ¼ ½½u]] ¼ uT ½½uðn; gÞ]]; u ¼ uðn;~t1;~t2Þ ðEq 11Þ

where uðn;~t1;~t2Þ is a 3 9 3 transformation matrix of the

local coordinate system to the global one and three

orthotropic directions are given by

n ¼
oxR

on � oxR

og

� �

oxR

on � oxR

og

���
���
; ~t1 ¼

oxR

on

oxR

on

���
���
; ~t2 ¼ ~t1 � n ðEq 12Þ

where the coordinate of middle-plane point xR is written as

xR ¼ 1

2
H n; gð ÞðI12�12 j I12�12Þðxþ u� Þ ðEq 13Þ

where x and u� are the 24 9 1 node coordinate matrix and

the 24 9 1 node displacement matrix for 3D eight-node

elements, respectively. H n; gð Þ is a 3 9 12 matrix for 3D

eight-node elements including the shape function and

I12�12 is the identity matrix.

The relative displacement at the point n; gð Þ between the

element sides is interpolated as a function of the relative

displacement between the paired nodes

½½uðn; gÞ]] ¼
½½u1ðn; gÞ]]
½½u2ðn; gÞ]]
½½u3ðn; gÞ]]

8
<

:

9
=

;
¼ H n; gð Þ[[uN��

¼ H n; gð Þ/u� ¼ Lu� ðEq 14Þ

where L is a 3 9 24 matrix and �1� n; g� 1 are local

coordinates of elements. / ¼ I12�12 j I12�12ð Þ is a

12 9 24 matrix. Finally, the node force vector

Fc 24� 1 matrixð Þ and the stiffness matrix

Kc 24� 24 matrixð Þ are written as

Fc¼
Z Z

LTuTTdA¼
Z Z

MTTdA¼
X

i
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xixjM
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ðEq 15Þ

where Jj j is the Jacobian for isoparametric transformation

and x is the weight. M ¼ uL is a 3 9 24 shape function

matrix for 3D cohesive elements.
Fig. 2 Middle-plane interpolation technique for implementing a 3D

cohesive element using FEA
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Cohesive Zone Length

CZM introduces a length scale (generally called cohe-

sive zone length) due to cohesive softening behavior.

The cohesive zone length is defined as the distance from

the crack tip to the position where the maximum

cohesive traction is attained [12, 13]. If the cohesive

length scale is not considered in the delamination

analysis, the dissipation of delamination fracture energy

cannot be accurately captured which will lead to a mesh

sensitivity problem. Thus, the cohesive zone length

must be properly evaluated. Turon et al. [12] suggested

that three elements in the cohesive zone are sufficient to

predict the delamination growth, which is adopted in

this research.

SLB Experiments

Two T700/8911 SLB composite specimens with different

initial delamination crack sizes were used for delamination

test, as shown in Fig. 3. Geometry sizes for the two spec-

imens are listed in Table 1. Composite specimens were

prepared according to the Chinese standard-ASTM D6671/

D6671M-06 [14] and a Teflon film was inserted at the

middle plane of specimens to make an initial delamination

crack. The loaded specimen is shown in Fig. 4. After the

specimen was positioned, the displacement with a velocity

of 3 mm/min was exerted on the specimen using the

MTS810-25ton electro-hydraulic servo material test

system. Load–displacement curves were recorded to vali-

date the numerical results.

Numerical Results Using Exponential CZM

Table 2 lists the material parameters for T700/8911 com-

posites. The delamination analysis using CZM requires

mode-I and II delamination fracture toughness Gc
I and Gc

II,

which are calculated using Eq 16 derived by Szekrenyes

and Uj [6]

Fig. 4 SLB experiment

Fig. 3 SLB composite specimen

Table 1 Geometry sizes for SLB specimens

Specimen L (mm) W (mm) H (mm) A (mm) B (mm)

A 66 20 3.2 41 25

B 66 20 3.2 66 25

Table 2 Material properties for T700/8911 composites

Ply longitudinal

modulus

E1 135 GPa

Ply transverse modulus E2 11.41 GPa

Out-of-plane modulus E3 11.41 GPa

Inplane shear modulus G12 7.92 GPa

Out-of-plane shear

modulus

G13 7.92 GPa

G23 3.79 GPa

Poisson’s ratio v12 0.33

v13 0.33

v23 0.49

Mode-I delamination

fracture toughness

Gc
I 0.1092 N/mm (a = 41 mm)

0.2699 N/mm (a = 66 mm)

Mode-II delamination

fracture toughness

Gc
II 0.0754 N/mm (a = 41 mm)

0.1922 N/mm (a = 66 mm)
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where E11 and E33 are the elastic moduli and G13 is the

shear modulus.

Liu and Islam [9] proposed an exponential cohesive

model and established four-node zero-thickness cohesive

elements using ABAQUS-UEL (User element subroutine)

to study 2D delamination. In this research, eight-node zero-

thickness interface elements are further established to study

3D delamination, where the main work in each iteration is

to update the node residual force DFc and the element

stiffness matrix Kc 24� 24 matrixð Þ in Eq 15.

Figure 5 shows fine and coarse mesh models for two

specimens using ABAQUS. The C3D8R element is used to

model the lamina and the zero-thickness cohesive element

is used to model the delamination interface. The number of

solid elements for two mesh models is 5520 and 22,000,

respectively, and the number of cohesive element for

specimen-A is 500 and 2000, and 370 and 1500 for spec-

imen-B. Due to cohesive softening behavior, the artificial

viscous force Fv is introduced to improve the convergence

[15]

Fext � Fc � Fv ¼ R;

Fv ¼ cM	v; v ¼ Du� =Dt

(

ðEq 17Þ

where M	 is an artificial mass matrix calculated with unity

density,v is the node velocity, Du� is the node displacement

increment, R is the tolerance, c is a constant damping

factor and the viscous constant c = 1e�4 in Eq 17 is

generally used, and Dt is the time increment during non-

linear iterations. It is noted the introduced viscous forces

should be large enough to regularize cohesive softening

behaviors but small enough not to affect the numerical

accuracy. A very small time increment is required to

guarantee the numerical precision (the initial, minimum

and maximum time increments are Dt ¼ 0.0001 s, 1e�10 s

and 0.001 s, respectively). Numerical calculations were

performed on the I5-2540M Lenovo computer with the

main configurations: Intel Xeon CPU with 4 processors

(main frequency of each processor is 2.6 GHz) and 4 GB

memory.

Figure 6 shows the load–displacement curves for two

specimens by comparing the numerical and experimental

results at Tc
1 ¼ Tc

2 ¼ Tc
3 ¼ 50MPa. The numerical results

are basically consistent with the experimental results using

the two mesh models. The delamination appears at about

1.6 mm displacement for specimen-A and at 2.6 mm dis-

placement for specimen-B. Then, the delamination enters

into an unstable stage. For the coarse mesh, more unsta-

ble delamination appears at the softening stage, which is

generally called the ‘‘solution jump’’. The reason for

numerical oscillation using the coarse size is that the

softening property of the interface element leads to the

sudden release of strain energy in the lamina which leads to

instantaneous failure of the element. In such a case, a non-

physical limit point in the form of a snap-through or a snap-

back situation arises in the numerical solution [16]. By

comparison, the fine mesh contributes to alleviating this

numerical problem. By comparing the two specimens, a

larger stiffness is obtained before the delamination for

specimen-A than that for specimen-B because of shorter

initial crack length for specimen-A than for specimen-B.

From the delamination initiation to stable delamination, the

delamination rate is faster for specimen-A than for speci-

men-B. Before the collapse of the specimens, the crack

propagation length is 61 mm for specimen-A and 29 mm

for specimen-B. In addition, the load-bearing ability for

specimen-A is higher than that for specimen-B.

Figures 7 and 8 show the load–displacement curves at

different cohesive strengths for the two specimens. The

cohesive strength affects the initial delamination dis-

placement and unstable delamination behavior. With the

increase of cohesive strength from 20 to 80 MPa,

Fig. 6 Load–displacement curves for two specimens at cohesive

strength 50 MPaFig. 5 Mesh models for two specimens
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numerical results using CZM become gradually closer to

the experimental results. However, a convergence diffi-

culty appears at 80 MPa cohesive strength, which was also

found by Alfano and Crisfield [17], Turon et al. [12] and

Liu and Islam [9]. Thus, there is an integrated considera-

tion in appropriately selecting the cohesive strength using

CZM.

Figures 9 and 10 show the effects of the viscous con-

stant c in [17] on the load–displacement curves. The

viscous effect starts to work when the delamination initi-

ation appears, and the predicted load and dissipated energy

increase with the increase of c, which leads to slightly

larger error from the delamination initiation. By compar-

ison, c = 1e�4 is acceptable. Figures 11 and 12 show the

delamination growth processes for the two specimens at

different displacements. By comparison, the crack

propagation rate for specimen-A is faster than that for

specimen-B, and a more unstable delamination process is

encountered for specimen-A than for specimen-B.

Fig. 10 Viscous effect on the load–displacement curves for speci-

men-B

Fig. 9 Viscous effect on the load–displacement curves for specimen-

A

Fig. 8 Load–displacement curves for specimen-B at different cohe-

sive strengths

Fig. 7 Load–displacement curves for specimen-A at different cohe-

sive strengths

Fig. 11 Delamination growth processes for specimen-A at the

displacement (a) 1.6 mm, (b) 5.9 mm and (c) 9.3 mm at cohesive

strength 50 MPa
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Conclusions

This paper develops 3D finite element codes to implement

the exponential cohesive model for the delamination

analysis of SLB composite specimens using ABAQUS-

UEL, and aims to study the influence of the cohesive

strength, mesh size and initial delamination crack length on

the delamination behavior and load response of SLB

specimens. From 3D finite element analysis (FEA), three

main conclusions are obtained. (1) Numerical results are

closer to the experimental result at large cohesive strength.

However, computational efficiency becomes slow due to

the increase of convergence difficulty. Thus, there is an

integrated consideration in appropriately selecting the

cohesive strength. (2) Different mesh sizes lead to consis-

tent results. However, a spurious ‘‘solution jump’’ appears

at the unstable delamination stage using the coarse mesh

due to cohesive softening behavior. By comparison, the

fine mesh helps to alleviate this problem. (3) The crack

propagation rate for the specimen with shorter initial

delamination crack length is faster, and a more unsta-

ble delamination process is also experienced. In addition,

the load-bearing ability decreases when the initial delam-

ination crack length increases.
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