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Abstract Effective degradation indicator and robust

prediction model are very important for residual life pre-

diction. Thus a new residual life prediction based on

Markov indicator and support vector is proposed. Since the

Markov model is good at dealing with stochastic charac-

teristics in time domain, Markov model is joined with

multiple fault features for the construction of an effective

degradation indicator of rolling element bearings. The

support vector regression is used to construct an adaptive

prediction model composed of two prediction models that

are, respectively, based on historical data and online data.

Thus the ultimate prediction result is obtained by taking a

weighted average of the two prediction results captured by

the two prediction models, and the weights are adjusted by

the LMS to enhance the prediction accuracy. The experi-

mental results show that the Markov indicator is more

sensitive than the common features, and the proposed

prediction method is more effective in comparison to other

methods.
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Introduction

Rolling element bearings that suffer from the harsh work-

ing condition are the most important components of the

rotating machine. Thus a precision residual life prediction

is required, so that the fatal damage can be prevented and

the personal safety can be guaranteed. Therefore, it

deserves much to do some research on the improvement of

the residual life prediction accuracy for rolling element

bearings.

Residual life prediction is the important part of the PHM

(prognostics and health management). And two key

important elements that are degradation indicator and

prediction model consist in residual life prediction. A

sensitive degradation indicator can be helpful to timely

detection of the incipient fault and the determination of the

incipient threshold, while a reasonable prediction model

can improve the prediction accuracy. Therefore, the key to

improve the prediction accuracy is to select the sensitive

degradation indicator and build the prediction model rea-

sonably. In general, some fault features, such as kurtosis,

RMS, peak-to-peak value, etc., are always used to evaluate

the degradation performance. But these features are only

effective for certain defect at certain stage. Furthermore,

for the highly stochastic degradation these features can

neither be sensitive to the incipient faults nor make good

trend of the degradation performance. To address these

problems, many methods have been developed. Qiu

developed a new degradation indicator based on self-or-

ganizing map neural network, while Jihong Yan used a BP

neural network-based indicator to evaluate the degradation

performance [1, 2]. Yu developed some new indicators

based on generative topographic mapping (GTM), Gaus-

sian mixture model (GMM), and Bayes [3, 4]. Liao used

genetic programing to improve the degradation perfor-

mance [5]. The above methods can show some sensitive to

incipient fault than the general fault features, but they do

not consider the stochastic characteristics which can
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exhibit a great effect on the degradation performance in

time domain. In addition to the development of the

degradation indicator, lots of prediction models have also

been proposed for residual life prediction. In [6–8], the

authors proposed a new prediction method based on neural

network which improved the long-term prediction accuracy

slightly. However, the neural network has some limita-

tions: (1) difficulty of determining the network structure

and the number of nodes and (2) slow convergence of the

training process. In [9, 10], the authors proposed some

prognostic approach based on Bayesian theory, which can

predict the probability distribution of the residual life.

Meanwhile, in [11] the authors also proposed a new

method that can obtain the residual life by computing

Phase-Type (PH) distribution. But the shortcoming of this

method is also very obvious. It needs a large number of

accurate data of prior probability distribution. Unfortu-

nately, it is difficult to meet in actual application. Marcos

E. proposed a fault prediction method based on particle

filtering [12]. In [13, 14], the authors also used particle

filtering to predict residual life and obtained good results.

However, the previous prediction models that seldom

compromised the information of the real-time data were

mostly built by historical data. But the real-time data can

directly reflect the current development trend of the bear-

ings’ residual life, while the historical data contain the

empirical information of the bearings’ residual life. To this

point, using both historical data and real-time data can

exhibit some advantages theoretically in terms of efficiency

and accuracy.

CHMM (Continuous Hidden Markov Model) that has

been widely used in many fields can deal with stochastic

characteristics very well and exhibit great effectiveness in

comparison to the above-mentioned methods. In [15, 16],

the authors used CHMM for fault diagnostic. Moreover,

SVR (Support Vector Regression) as a prediction model

has also been used in RUL prediction. In [17, 18], SVR was

used for fault prognostic.

Therefore, an adaptive method based on Markov indi-

cator and support vector is proposed. The CHMM is used

for the construction of the degradation indicator for its

ability of dealing with stochastic characteristics in time

domain. SVR that can handle the small sample well is

used to build the prediction model which is composed of

two models, respectively, based on historical data and

online data. At last, the ultimate prediction result is cal-

culated by taking a weighted average of the two

prediction results captured by these two prediction mod-

els, and the weights are adjusted by the LMS (Least Mean

Square algorithm) to enhance the prediction accuracy.

The predicted results indicate that the proposed method is

more effective in comparison to other common prediction

methods.

The Principle of the Adaptive Prediction Method

The prediction method is first used to find an effective

indicator for degradation performance. Then the prediction

model is used to predict the trend of the indicator. At last,

the predicted result can be obtained according to the pre-

determined threshold. In this paper, we use CHMM and

SVR to build, respectively, the degradation indicator and

the prediction model.

The Principle of the Degradation Indicator Based

on CHMM

A sensitive indicator with significant trend is needed for

monitoring. Then the failure threshold can be determined

so that a severity fault can be prevented at incipient stage.

For the low effectiveness of the general fault features,

CHMM is used for the construction of the indicator so that

the stochastic problem in time domain can be solved.

Hidden Markov Model (HMM) is a powerful statisti-

cal tool and has been applied in many areas. The essential

construction of HMM is given as follows. We denote that S

is the state alphabet set and O is the observation alphabet

set:

S ¼ ðs1; s2; . . .sNÞ; O ¼ ðo1; o2; . . .oMÞ; ðEq 1Þ

where N and M; respectively, denote the total number of

the states and the observations. Then, the transition matrix

A is given as follows:

A ¼

a11 a12 . . . a1N

a21 a22 . . . a2N

..

. ..
. . .

. ..
.

aN1 aN2 � � � aNN

2
6664

3
7775:

Thus

aij ¼ Pðqtþ1 ¼ sjjqt ¼ siÞ; 1� i; j�N; ðEq 2Þ

where qt denotes the state at time t; while qtþ1 denotes the

state at time t þ 1, and the formula denotes the probability

that the state si at time t transmits to sj at time t þ 1. Then

we denote the observation matrix B as follows:

B ¼

b11 b12 . . . b1M

b21 b22 . . . b2M

..

. ..
. . .

. ..
.

bN1 bN2 � � � bNM

2
6664

3
7775: ðEq 3Þ

Thus bik ¼ Pðht ¼ okjqt ¼ siÞ; 1� i�N; 1� k�M; which

denotes the existence probability of the ok in state Si. p is

the initial probability array given as follows:

p ¼ ðp1; p2; . . . ; pNÞ

and
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pi ¼ Pðq0 ¼ siÞ; 1� i�N: ðEq 4Þ

As the summary of the above discussion, the HMM can be

given by k ¼ ðp;A;BÞ. Then CHMM is given by the HMM

with continuous observation matrix, B ¼ fbjog, which are

denoted by Gaussian mixture model as follows:

bjo ¼
XM
k¼1

cjkNðo; ljk;UjkÞ

¼
XM
k¼1

cjk

ð2pÞD=2
Ujk

�� ��1=2
exp �

ðo� ljkÞðo� ljkÞT

2Ujk

" #

j ¼ 1; 2; . . .;N

:

ðEq 5Þ

Of which, the definitions of the variables are as follows: M:

the number of the Gaussian function; cjm: the weights of

the mth Gaussian function in state Sj, which satisfy

cjm � 0
PM

m¼1 cjm ¼ 1; j ¼ 1; 2; . . .;N; N: Gaussian

probability density function; o: the observation sequences

with the size D� T , where D denotes dimension and T

denotes the length of the sequences; ljm: the mean value

vector of the mth Gaussian probability density function in

state Sj; and Ujm: the mean value vector of the mth Gaus-

sian probability density function in state Sj.

Hence, CHMM can be denoted by k ¼ ðp;A;C; l;UÞ.
For the purpose of constructing the degradation indica-

tor, we introduce the evaluation problem of HMM. Given a

HMM and a sequence of observations, the likelihood

probability of the observation sequence can be computed.

This problem could be viewed if a given observation

sequence is generated by the given model. Thus we can use

the above probability to solve the problem, which is given

by

PðOjkÞ ¼
X
Q

PðOjQ; kÞPðQjkÞ

¼
X
q1...qT

pq1
bq1

ðo1Þaq1q2
bq2

ðo2Þ. . .aqT�1qT bqT ðoTÞ
:

ðEq 6Þ

The computation of the above equation can be solved by

the forward algorithm which is fully presented in [19]. As

we use the health data to train the model, the likelihood

probability can express how much the given sequence

deviated from the health condition. To that end, likelihood

probability can be used for degradation indicator. Since the

extracted data are continuous and multidimensional,

Gaussian mixture model of the continuous observation

matrix in CHMM can be used to describe the distribution

of these complicated data. Thus the CHMM-based

indicator can not only capture the characteristics of the

multiple features but also decrease the stochastic influence

in time domain. In general, log likelihood probability

(LLP) values are smaller than zero. In order to improve its

intelligibility, negative LLP (NLLP) is used as a health

quantization indication in this study.

The Principle of the SVR-Based Prediction

Support vector machine (SVM) that is used for classifica-

tion and regression analysis is a supervised learning model

with associated learning algorithms. A version of SVM

for regression is called support vector regression. The

model produced by support vector classification (as

described above) depends only on a subset of the training

data, because the cost function for building the model does

not care about training points that lie beyond the margin.

Analogously, the model produced by SVR depends only on

a subset of the training data, because the cost function for

building the model ignores any training data which are

close to the model prediction. Thus the basic function for

SVR is given by

y ¼ f ðxÞ ¼ x/ðxÞ þ b; ðEq 7Þ

where x and b are the coefficients with target value y, and

the /ðxÞ is a non-linear mapping function that can map the

input vector x into high-dimension space for linear

regression so that the non-linear SVR can be achieved.

The estimation of these coefficients means solving

minimize 1
2

xk k2

subject to
yi � x; xih i � b� e

x; xih i þ b� yi � e

(
; ðEq 8Þ

where e is a free parameter that serves as a threshold; all

predictions have to be within an e range of the true pre-

dictions. Slack variables are usually added into the above

model to allow for errors and approximation in the case

that the above problem is infeasible. More details about the

estimation of the coefficients can be found in Ref. [20].

The main principle of SVR-based prediction is the

iterated multi-step life prediction strategy. When n� point

time series X ¼ fx1; x2. . .xng is given, we can obtain a

training group expressed by Y ¼ fy1; y2. . .ymg, where

ym ¼ fðxm; x1þm. . .xlþmÞ; xlþmþ1g, ðxm; x1þm. . .xlþmÞ is the

input, and xlþmþ1 is the output. When the SVR trained by

the training group is ready, the prediction can be imple-

mented using formula (7). The basic idea of iterated

prediction is to use the last predicted result as the com-

ponent of the input vector for the next prediction so that the

future indicator can be captured. Then the remaining life

can be computed according to the predicted steps and

failure threshold.
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The Principle of the Prediction Model

The historical data-based model can get the whole trend

information of the full life cycle but less real-time per-

formance. Even though the online data can obtain the trend

information of real-time data, the long-term prediction

accuracy is low. Therefore, a robust prediction model

should contain the information of historical data and online

data. For that purpose, two SVR prediction models based

on online data and historical data, respectively, are used for

residual life prediction, and two predicted results are

obtained. Then the ultimate prediction result is captured by

taking a weighted average of the two results. The formula

of the residual life prediction is as follows:

RUL ¼ b � l1 þ ð1 � bÞ � l2; ðEq 9Þ

where b is the weight of the SVR model based on historical

data with b 2 ½0; 1�, l1 denotes the remaining life predicted

by the historical data-based SVR model, and l2 stands for

the remaining life predicted by the online data-based SVR

model.

If b is directly used for prediction, the real-time per-

formance of prediction is very poor for the reason that b is

constant. In addition, the accuracy of the two SVR pre-

diction models is different in different degradation states.

Then LMS is used for the adjustment of the weight b
according to the predicted value and the real value, so that

the prediction accuracy can be improved by the dynamic

weights. LMS is a self-adaptive filtering algorithm. The

formula of weight adjustment is given by

bt ¼ bt�1 þ lt � et � xt; ðEq 10Þ

where bt is the weight at moment t, xt is the indicator value

at moment t, lt is the step length with 0\lt\1=xt, and et
is the relative prediction error of the two models. The

estimation of et is achieved by the predicted indicator value

and the actual value. Assume that k1
t and k2

t are,

respectively, the predicted indicator value of the two

SVR models at moment t, and kt is the actual value at

moment t. Thus the computation of et is given by

et ¼ 0:1 �
k1
t � kt

�� ��
k2
t � kt

�� ��� 1

 !
: ðEq 11Þ

Here, �j j denotes the Euclid distance calculation.

The principle of the adaptive prediction is first to extract

the general features from the vibration signal and construct

the CHMM-based indicator with health data of these fea-

tures. Then the SVR models based on online data and

historical data can be built. When the incipient fault

occurred, the residual life prediction is implemented. Thus

the ultimate prediction result is computed according to

formula (9). The prediction flow chart is shown in Fig. 1.

Experimental Verification

The whole life cycle data of rolling element bearings are

from NASA website. The experimental bearing type is

Rexnord ZA-2115. The experimental rotating speed is

2000 rm/min, and the sampling frequency is 20 kHz. Every

sampling length of the data segment is 1 s, and the interval

of the data segment is 10 min. Five groups of data are used

in this paper: four of them treated as historical data are

used to train the SVR model, while the last group is used

for residual life prediction. The formula of the predicted

error is given by

e ¼ 1

n

Xn
r¼1

xr � drj j
dr

� 100%; ðEq 12Þ

where xr stands for the predicted value at moment r and dr
stands for the actual value at moment r. Four kinds of

general fault features are used for condition monitoring,

namely kurtosis, root mean square value, peak-peak value,

and peak value. The whole life cycle maps of the five

groups of data are shown in Figs. 2, 3, 4, and 5.

The Construction of CHMM-Based NLLP Indicator

We firstly use the health data to train CHMM. As shown

from Figs. 2, 3, 4, and 5, the health data can be determined

from first data point to the 1000th data point. Then the

CHMM-based NLLP indicator which is shown in Figs. 6,

7, 8, 9, 10, 11, 12, 13, 14, and 15 can be obtained. As can

be seen from Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15, the

trend of the first 1000th data point is not easy to judge.

However, the trend of CHMM-based NLLP indicator from

1500th data point to the end is obvious. Moreover, this

significant performance can also be seen in Figs. 7, 9, 11,

Fig. 1 The flow chart of the adaptive prediction method
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Fig. 7 Partial enlarged detail map of the NLLP indicator using the

first group of data

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

time/10min

ku
rt

os
is

first group data

second group data

third group data
fourth group data

fifth group data

Fig. 2 The kurtosis map of the full life
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Fig. 4 The peak-to-peak map of the full life
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Fig. 3 The RMS map of the full life
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Fig. 5 The peak map of the full life
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Fig. 6 The NLLP indicator of the first group of data
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Fig. 13 Partial enlarged detail map of the NLLP indicator using the

fourth group of data

1500 1550 1600 1650 1700 1750 1800 1850

300

350

400

450

500

550

600

650

700

750

time/10min

N
LL

P

Fig. 11 Partial enlarged detail map of the NLLP indicator using the

third group of data
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Fig. 8 The NLLP indicator of the second group of data
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Fig. 10 The NLLP indicator of the third group of data
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Fig. 12 The NLLP indicator of the fourth group of data
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Fig. 9 Partial enlarged detail map of the NLLP indicator using the

second group of data
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Fig. 15 Partial enlarged detail map of the NLLP indicator using the

fifth group of data

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

time/10 min

N
LL

P

Fig. 17 The prediction map of the historical data-based SVR

prediction method
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Fig. 18 The prediction map of the online data-based SVR prediction

method
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Fig. 16 The prediction map of the proposed prediction method
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Fig. 14 The NLLP indicator of the fifth group of data
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Fig. 19 The prediction map of the method in [2]
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13, and 15. But in Figs. 3, 4, 5, and 6, a sudden increase in

trend shows up instead of significant degradation trend.

Otherwise, the trend of the proposed indicator is smoother

and shows less outlier. In these figures of CHMM-based

NLLP indicator, we can also choose the incipient fault

threshold according to the red line. Therefore, the predic-

tion can be implemented when NLLP indicator reaches the

incipient fault threshold of about 300.

The Adaptive Prediction

In order to verify the validation of the proposed method,

three other methods that are historical data-based SVR

prediction method, online data-based SVR prediction

method, and prediction method of [2] are used for com-

parison. Four groups of data treated as the historical data

are used for the training of the historical data-based SVR

model, while the last group of data treated as the online

data is used for the training of the online data-based SVR

model and monitoring. Figures 16, 17, 18, and 19,

respectively, show the adaptive prediction map, the pre-

diction map of the prediction model based on historical

data, the prediction map of the prediction model based on

real-time data, and the prediction map of the algorithm of

Ref. [2], and the predicted errors are 0.251, 0.371, 0.382,

and 0.384. In these figures, we can see that the predicted

map of the proposed method is nearest to the real-life curve

in comparison to other curves. Therefore, the experimental

results show that the proposed method is effective.

Conclusion

In order to improve the prediction accuracy, a new method

is proposed. Firstly, the CHMM is used for the construction

of the degradation indicator that can show the significant

incipient fault and the trend of the degradation. Then SVR

and LMS are used for the construction of the adaptive

prediction model that is composed of the historical data-

based SVR model and the online data-based SVR model.

The experimental results show that the historical data-

based model or the online data-based model cannot provide

high accuracy, while the proposed model based on the

historical and online data can show great precision in

comparison to other methods.
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