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Abstract The multiclass fault taxonomy of rolling bear-

ings based on vibrations through the support vector

machine (SVM) learning technique has been presented in

this paper. The main focus of this article is the prediction

and taxonomy of bearing faults at the angular speed of

measurement as well as innovatively at the interpolated and

extrapolated angular speeds. Five different bearing fault

conditions, i.e., the inner race fault, outer race fault,

bearing element fault, combination of all faults, and a

healthy bearing have been considered. Three different

statistical feature parameters, namely, the standard devia-

tion, the skewness, and the kurtosis have been obtained

from time domain vibration data for bearing fault predic-

tions. The Gaussian RBF kernel and one-against-one

multiclass fault classification technique has been used for

the taxonomy of bearing fault by the SVM. Also the study

of the selection of SVM parameters, like gamma (RBF

kernel parameter), best datasets, and the best training and

testing percentages have been presented in this paper. The

present work observes a near perfect prediction accuracy of

the SVM prediction performance when the training and

testing are done at a higher rotational speed. It shows a

better fault prediction accuracy at the same rotational speed

than that of measurement as compared to the interpolated

and extrapolated rotational speeds. Also the SVM capa-

bility of fault taxonomy decreases with increase in the

range of interpolation and extrapolation speeds.

Keywords Rolling bearing � Support vector

machine (SVM) � Multi-fault classification � RBF kernel �
Interpolation and extrapolation

Introduction

Rolling bearings are crucial machine elements present in a

wide field of rotating machine applications. Bearing fail-

ures is one of the main causes of breakdowns in such

machinery. There have been huge production losses and

human casualties due to unexpected bearing failures. The

early detection of bearing defects, therefore, is crucial to

prevent the system from malfunctions that could cause

damages and halt of the entire system. Hence, the fault

detection and its taxonomy in rolling bearings is very

important [4].

Vibration analysis is one of the most effective methods

for the bearing fault diagnosis. Many vibration approaches

for the fault diagnosis of rolling bearings have been

developed in time, frequency, time-frequency domains

with the help of artificial intelligence (AI) methods. In time

domain, various statistical parameters, such as the peak,

mean, root-mean-square, crest factor, standard deviation,

variance, kurtosis, and skewness have been used. In fre-

quency domain, various statistical parameters such as

average, center, root-mean-square, and standard deviation

of frequency spectrum have been utilized that are obtained

from the fast Fourier transform (FFT). Frequency-time

domain methods include the short time Fourier transform

(STFT), the Wigner–Ville distribution, and the wavelet

packet transform [12, 14, 15, 17].

For the automated bearing fault diagnosis, AI methods

such as artificial neural network (ANN), immune genetic

algorithm (GA), and fuzzy logic have been applied
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extensively [8, 19]. These methods are based on the

empirical risk minimization (ERM) principle, and there are

some common shortcomings, such as relapsing into local

minimum easily and slow convergence velocity and over-

fitting. Especially, the generalization ability is very low for

a limited number of samples. In comparison with these

methods, the support vector machine (SVM) can perform

significantly well even for a limited number of samples

[11].

The SVM has been introduced into rolling bearing fault

diagnosis due the fact that it is difficult to obtain enough

fault samples in practice and the excellent fault prediction

performance of it. Meng et al. [13] introduced the com-

parison between the RBF neural network and the SVM for

cases where only limited training samples were available

for the fault diagnosis. The result showed that the SVM had

better performance than the RBF neural network both in

the training time and the prediction accuracy. The binary-

class and multiclass classifier performances of the SVM

were discussed, and the diagnosis precision was less

dependent on the kernel function and its parameter. Rojas

and Nandi [16] proposed the development of SVM for the

detection and classification of rolling bearing faults. The

training of SVM was done using sequential minimal opti-

mization algorithm, and a mechanism for selecting

adequate training parameter was also proposed. Li et al.

[11] proposed rolling element bearing fault detection using

the SVM with an improved ant colony optimization

(IACO). It was used to select a suitable parameter for the

SVM. They compared it with the cross-validation and GA

methods. Experimental results indicated that the IACO was

feasible to optimize parameters for the SVM, and the

improved algorithm was effective with the high classifi-

cation accuracy and in less time.

Sui and Zhang [22] illustrated rolling element bearings

fault classification based on the feature evaluation with the

SVM. The feature evaluation based on the class separa-

bility criterion was discussed in this work. Jack and Nandi

[9] illustrated the fault detection of roller bearings using the

SVM and the ANN. They defined and estimated statistical

features based on moments and cumulants, and selected the

optimal features using the GA. In the classification process,

they employed the SVM using the RBF kernel with a

constant kernel parameter. Zheng and Zhou [26] illustrated

the rolling element bearing fault diagnosis based on the

SVM. In this paper, firstly, the wavelet packet analysis was

utilized to extract the features from the vibration signal and

the principal component analysis was performed for fea-

tures reduction. Secondly, the multiclass SVM as a

classifier was employed to diagnose bearing faults. A grid

search method in combination with 10-fold cross-valida-

tion was applied to find optimal parameters for the

multiclass SVM model.

Sugumaran and Ramachandran [21] illustrated the effect

of a number of features on the classification of roller bearing

faults using the SVM and the proximal support vector

machine (PSVM). A set of statistical features and histogram

features were extracted from time domain signals and the

order of importance was found using a decision tree. It

showed the classification efficiency of features, and histo-

gram features were found to be better as compared to

statistical features. And the PSVM with the histogram per-

formed marginal better than the SVM. Yang et al.

[25] illustrated a fault diagnosis approach for roller bearing

based on the intrinsic mode function (IMF) envelope spec-

trum and the SVM. Liu et al. [10] illustrated the multi-fault

classification based on the wavelet SVM (WSVM) with the

particle swarm optimization (PSO) algorithm to analyze

vibration signals from rolling element bearings. And they

showed that the WSVM can achieve a greater accuracy than

the SVM. Zhu and Song [27] illustrated the roller bearing

fault diagnosis method based on the hierarchical entropy and

the SVM with the PSO algorithm.

In this paper, firstly the selection of optimum parameters

such as the RBF kernel parameter (Gamma), the optimum

number of datasets, and the optimum percentage of data for

the training and the testing have been obtained. After

selecting the optimum parameter, i.e., which is very

effective for fault classification, it is further used for the

multiclass classification of rolling element fault at the same

speed, the interpolated speed, and the extrapolated speed as

that of measurement based on time domain features by the

SVM algorithm using the RBF kernel. Conclusions are

drawn from the fault prediction accuracies so obtained.

Support Vector Machine Algorithm

The original SVM algorithm was developed by Vapnik in

[24]. The SVM is a machine learning algorithm that ana-

lyzes data and recognizes patterns. Initially, it was used for

the classification problem but recently they have been

extended to the domain of regression analyses [2, 5, 7]. The

basic SVM deals with the binary classification. The SVM

constructs a hyperplane or a set of hyperplanes in a high or

infinite dimensional space, which could be used for the

classification and the regression analysis. A good separa-

tion is achieved by a hyperplane that has a largest distance

to the nearest training datasets of any class. Noticeably, the

larger the margin, lower the generalization error of the

classifier. Now a set of training data are given to the SVM

each marked as belonging to one of two classes, an SVM

training algorithm builds a model that predicts whether

new data falls into one class or the other.

The SVM is a relatively new machine learning technique

based on the structural risk minimization (SRM) principle,
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which is used to solve classification problems by maximiz-

ing the margin between two different classes. It can solve the

problem of over-fitting, nonlinear, model selection, the curse

of dimensionality, and the local minimum in a significant

way [23]. It embodies the SRM principle that has achieved

higher generalization performance with a small number of

samples and is shown superior to the ERM that neural net-

works use [4, 24]. The SRM minimizes an upper bound on

the expected risk, as opposed to ERM that minimizes the

error on the training data. This is the reason SVM has greater

ability to generalize, which is the aim in statistical learning

[13, 17, 18, 20]. The introduction of kernel function is a

major advantage of the SVM. It endows with the SVM the

ability to deal with nonlinear classification problems by

mapping the nonlinear feature space to a high dimensional

feature space to solve finally the linear problem. The training

of SVM is a convex optimization problem and can always be

used to find a global minimum [4].

For finding out the optimal margin classifier, the follow-

ing optimization problem is defined [1]. The minimization of

s wð Þ ¼ 1

2
jjwjj2 ðEq 1Þ

subject to

y ið Þ wTx ið Þ þ b
� �

� 1; i ¼ 1; 2; . . .; m; wT 2 RN ;

b 2 R;

ðEq 2Þ

where the vector wT (a normal vector to the hyperplane)

defines the boundary, x is the input vector of dimension, N

and b are scalar thresholds. The constraint could be written

as

gi wð Þ ¼ �y ið Þ wTx ið Þ þ b
� �

þ 1� 0: ðEq 3Þ

This optimization problem is a convex quadratic objective

function problem with only linear constraints. In Fig. 1,

three dark points lie on the dashed lines parallel to the

decision boundary (or the hyperplane). These typical three

points are called support vectors. When the Lagrangian is

constructed for the optimization problem then the

following expression is obtained

L w; b; að Þ ¼ 1

2
jjwjj2 �

Xm

i¼1

ai y ið Þ wT x ið Þ þ b
� �

� 1
h i

:

ðEq 4Þ

Now the dual optimization problem is defined as

max
a

W að Þ ¼
Xm

i¼1

ai �
1

2

Xm

i; j¼1

y ið Þy jð Þaiaj x ið Þx jð Þ
D E

ðEq 5Þ

subject to

ai� 0; i ¼ 1; . . .;m ðEq 6Þ

and

Xm

i¼1

aiy
ið Þ ¼ 0: ðEq 7Þ

For solving the nonlinear case, SVMs map the N-

dimensional input vector into a higher or Q-dimensional

feature space, by choosing a nonlinear mapping function /
(x), the SVM can construct an optimal hyperplane in new

feature space. k(x, xi) is an inner product kernel performing

the nonlinear mapping into feature space and is expressed

as

k x; xið Þ ¼ k xi; xð Þ ¼ / xð Þ/ xið Þ: ðEq 8Þ

The radial basis function is a Gaussian kernel and is

expressed as

k x; xið Þ ¼ exp �cjjx� xijj2
� �

; c ¼ 1

2r2
[ 0; ðEq 9Þ

where r denotes the width of RBF kernel. After solving the

optimization problem, the SVM classifier is as follows:

f xð Þ ¼ sign
Xm

i¼1

yiaik xi; xð Þ þ b

( )
: ðEq 10Þ

The SVM classifiers described above are binary classifiers,

and by combining it, it is possible to handle multiclass

case. The multiclass SVM classifiers are described below.

Multiclass SVM Classifiers

In the binary classification only two class labels are pres-

ent, i.e., ?1 and �1. But in the real world machinery

situation more than two class labels are found, such as the

misalignment, mechanical unbalances, shaft cracks, bear-

ing faults, and gear faults. In the bearing fault also several

faults appear like the inner race fault, outer race fault, ball

element fault, and a combination of these entire faults. For
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Fig. 1 Data classification by SVM
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solving the multiclass problem, methods like one-against-

all (OAA), one-against-one (OAO), and direct-acyclic-

graph (DAG) are addressed [6]. The earliest used imple-

mentation for the SVM multiclass classification is OAA

methods. It constructs k SVM models, where k is the

number of classes. In OAO methods, if k is the number of

classes then k(k � 1)/2 classifiers are constructed and each

one trains data from two classes. In this method, the

training process is similar to the OAO strategy by solving

k(k � 1)/2 binary SVM. However, in the testing process, it

uses a rooted binary DAG, which has k(k � 1)/2 internal

nodes and k leaves. Hsu and Lin [6] showed a comparison

of different multiclass SVM methods and concluded that

‘one-against-one’ is a competitive method for the multi-

class classification. Here LIBSVM [3] software has been

used for multiclass classification bearing with OAO

approach.

Now in the next section, experimental setup and data

acquisition are described.

Experimental Setup

Experiments were performed on Machinery Fault Simula-

tor (MFSTM), which was capable of simulating a range of

machine faults such as in the gear box, rolling bearings,

motors, shaft resonances, and shaft misalignments. The

schematic diagram of MFS is shown in Fig. 2. In the MFS

experimental setup, a three-phase induction motor was

connected to the shaft through a flexible coupling with a

healthy bearing near the motor end and a faulty (test)

bearing at the other end of the shaft as shown in Fig. 3.

This setup allowed the study of bearing defects by intro-

ducing faulty bearings in the machine and then studying its

vibrational signature. In the study of faults in bearings, five

different types of bearing fault condition were considered

as shown in Fig. 4 (i) no defect bearing (ND), (ii) inner

race fault bearing (IRF), (iii) outer race fault bearing

(ORF), (iv) bearing element fault (BEF), and (v) combi-

nation fault bearing (CFB). Bearings were fully covered

and shielded so close-view of faults could not be shown,

separately.

A tri-axial accelerometer (sensitivity: x-axis 100.3 mV/

g, y-axis 100.7 mV/g, and z-axis 101.4 mV/g) was moun-

ted on the top surface of the bearing housing, which could

record accelerations in time domain in three orthogonal x,

y, and z directions. Vibrations were monitored on a Br}uel

and Kjǽr FFT analyzer and vibration simulations were

processed on the Pulse Lab Shop ver. 7.0.1.298. Datasets

were taken for the rotational speed of 10–42.5 Hz in the

interval of 2.5 Hz for each of five fault conditions. For each

dataset, 320 cycles of data with 2000 samples each were

taken. Total 2000 9 320 data points were collected in each

of the three directions x, y, and z.

Statistical Feature Selection

In the present study, statistical moments like the standard

deviation, the skewness, and the kurtosis are selected for

the effective identification of the bearing fault. These sta-

tistical features are briefly explained below.

Rolling
BearingCoupling

Electrical
Motor

Shaft

Test
bearing 

Fig. 2 A schematic line diagram of the MFS Fig. 3 Machine fault simulator

ND IRF ORF

BEF CFB

Fig. 4 Rolling bearings with five individual fault conditions
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Standard Deviation (r)

It is a measure of the energy content in the vibration signal.

The standard deviation is the second standardized moment

of the data and is expressed as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

xi � lð Þ2

n� 1

vuuut
; ðEq 11Þ

where {x1, x2, …, xn} are the observed values of the sample

items and l is the mean value of these observations, while

n stands for the size of the sample.

Skewness (v)

It is a measure of the asymmetry of the probability distri-

bution of a real-valued random variable about its mean.

The skewness value can be positive or negative, or even

undefined. It is the third standardized moment of the data

and is expressed as

v ¼ n

n� 1ð Þ n� 2ð Þ
Xn

i¼1

xi � l
r

� �3

: ðEq 12Þ

Kurtosis (j)

It is a measure of the peakedness of the probability dis-

tribution of a real-valued random variable. It is the fourth

standardized moment of data and is expressed as

j ¼ n nþ 1ð Þ
n� 1ð Þ n� 2ð Þ n� 3ð Þ

Xn

i¼1

xi � l
r

� �4

( )

� 3 n� 1ð Þ2

n� 2ð Þ n� 3ð Þ : ðEq 13Þ

These three statistical features were calculated from 2000

data points in a sample. Finally, 320 samples were col-

lected in three orthogonal directions for above three

features (i.e., total 9 combinations), which means 9 9 320

feature points were available for each faults. For five dif-

ferent faults (i.e., IRF, ORF, BEF, CFB, and ND) there

were total 9 9 5 9 320 feature points available. These

total feature points were divided and used for the training,

testing of optimizing the parameters, and for the final

testing in the simulation.

Results and Discussions

The vibration data were obtained from the machine fault

simulator in time domain. After collecting the vibration

data, three statistical parameters: the standard deviation,

the skewness, and the kurtosis have been extracted in the x,

y, and z directions using the MATLAB
TM

. Figure 5 shows

time domain features of acquired signals for the BEF at

10 Hz rotating speed. For the multiclass classification of

bearing faults namely, ND, IRF, ORF, BEF, and CFB, the

SVM software first needs to be trained with the data

comprising these bearing faults, individually. The SVM

software consists of various training functions based on

different types of kernels. Here, we have used the Gaussian

RBF kernel so for this kernel a parameter gamma (c) is a

very important input parameter to be chosen optimally.

The flowchart shown in Fig. 6 summarizes the overall

procedure of execution of the training and testing of the

SVM algorithm. Now a study on the optimum selection of

various SVM and kernel parameters would be performed.

Selection of the Optimum RBF Kernel Parameter

Firstly, we need to select the optimum RBF kernel

parameter (c) for the best prediction accuracy, so arbi-

trarily we choose rotational speed of 25 Hz, 260 feature

datasets, and percentage of training and testing feature

data as 80% and 20%, respectively. Later in this work, we

will check the optimality of these two parameters also,

i.e., the number of feature datasets, and the percentages of

the training and testing feature data. Prediction capability

performance results are summarized in Table 1 and are

shown Fig. 7. The Gaussian RBF kernel parameter

(gamma) value of 0.03 gives the highest prediction

accuracy at the rotational speed 25 Hz as compared to the

other values. For both very less and very higher values of

gamma, it gives less prediction accuracy, so for further

classification of bearing faults at the same speed, inter-

polated speed, and extrapolated speed also the value of

gamma is chosen as 0.03.

Selection of the Optimum Percentage of Training and

Testing Data

Here, we examine which set of the training and testing

percentage is the best one for the prediction accuracy. We

used the optimum gamma value of 0.03, rotational speed of

25 Hz, and 260 feature datasets. In Figs. 1, 8 represents the

training dataset of 65% and the testing dataset of 35%, 2

represents the training dataset of 70% and the testing dataset

of 30%, 3 represents the training dataset of 75% and the

testing dataset of 25%, 4 represents the training dataset of

80% and the testing dataset of 20%, and 5 represents the

training dataset of 85% and the testing dataset of 15%.

Prediction performance results are summarized in Table 2

and shown in Fig. 8. It is evident that the training dataset of

80% and the testing dataset of 20%, and also the training

dataset of 85% and the testing dataset of 15% give 100%

fault prediction accuracy at the rotational speed 25 Hz, so

for further classification of bearing fault at same speed, at
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interpolated speed, and at extrapolated speed, the training

dataset of 80% and testing dataset of 20% have been used.

Selection of the Optimum Number of DataSets

Total 320 datasets were measured for all types of faulty

bearing conditions from the MFS. Here the optimum number

of datasets has been chosen for the fault prediction accuracy

by giving optimum input gamma value of 0.03 as obtained in

the above step and for 80% training data and 20% testing

data, and also for 75% training data and 25% testing data at a

rotational speed of 25 Hz. These prediction results are

summarized in Table 3 and are shown in Figs. 9 and 10. The

best prediction accuracy occurred for 260 datasets at the

rotational speed of 25 Hz than any other number of datasets.

Hence, for the further classification of bearing faults at the

same speed, the interpolated speed and the extrapolated

speed, 260 datasets have been used. The above selection of

parameters is presented for a particular speed, however,

similar trends are observed at other speeds also.

Now fault prediction accuracies are obtained for the

training and the testing at the same speed, interpolated

speed, and extrapolated speed using the optimized

parameters obtained above.

Training and Testing at the Same Rotational Speed

For obtaining the prediction accuracy, the training and

testing of the SVM is done at the same rotational speed

(individually), i.e., 10–40 Hz at the interval of 5 Hz. Table 4

and Fig. 11 show the fault prediction accuracy for the same

speed case. It is observed that the percentage of fault
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Fig. 5 Time domain features of acquired signals for BEF at 10 Hz rotating speed
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prediction at 10 Hz rotational speed varies from 76.92% for

BEF to 100% for ND and ORF, at 15 Hz rotational speed it

varies from 65.38% for BEF to 98.08% for ND and ORF, at

20 Hz rotational speed it varies from 69.23% for CFB to

100% for ND, IRF, and ORF, at 25 Hz rotational speed it

comes 100% for all, at 30 Hz rotational speed it comes

92.31% for CFB and 100% for all other faults and at 35,

40 Hz rotational speed it comes 100% for all faults.

Conditioned 
signal

Extracted 
feature

(data set)

Parameter estimation 
data set

Training data set Testing data set

Building 
SVM

Trained SVM

Output

Fig. 6 Flow chart of multiclass fault diagnosis system
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Fig. 8 The selection of the optimum percentages of the training and

testing data (1–65%, 35%; 2–70%, 30%; 3–75%, 25%; 4–80%, 20%;

5–85%, 15%)

Table 2 The selection of optimum percentage of the training and

testing data

Training % - Testing % ND IRF ORF BEF CFB

65%-35% 100 100 100 98.9 95.6

70%-30% 100 100 100 100 94.87

75%-25% 100 100 100 100 93.85

80%-20% 100 100 100 100 100

85%-15% 100 100 100 100 100

These bold numbers signifiy the best prediction accuracy in an indi-

vidual fault category

Table 3 The selection of optimum number of feature datasets

Datasets ND IRF ORF BEF CFB

Case A: For 75%–25% and for best gamma value 0.03

100 100 100 100 96 88

120 100 100 100 94.29 85.71

180 100 100 100 93.33 100

220 100 100 100 98.18 94.55

260 100 100 100 100 93.94

320 100 100 100 83.75 97.5

Case B: For 80%–20% and for best gamma value 0.03

100 100 100 100 100 90

140 100 100 100 96.43 96.43

180 100 100 100 100 100

220 100 100 100 100 90.91

260 100 100 100 100 100

320 100 100 100 79.69 96.88

These bold numbers signifiy the best prediction accuracy in an indi-

vidual fault category

Table 1 The optimum selection of the SVM (RBF kernel) parameter

gamma

Gamma ND IRF ORF BEF CFB

0.003 100 100 100 98.08 100

0.03 100 100 100 100 100

0.3 98.08 98.08 100 98.08 98.08

3 90.38 96.15 90.38 59.62 100

30 98.08 38.46 28.85 0 0

300 0 100 0 0 0

3000 0 100 0 0 0

These bold numbers signifiy the best prediction accuracy in an indi-

vidual fault category
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It is observed a near perfect prediction accuracy at a

higher speed beyond 25 Hz since at the higher rotational

speed the signal-to-noise ratio is better. This is due to better

manifestation of faults at higher speeds. The prediction

accuracy of BEF and CBF are lesser than other faults and the

healthy bearing. For BEF, this is because it is not necessary

that the BEF hit the outer race or inner race in every rotation

because of spinning of rolling elements along with the roll-

ing. And this may change the characteristics of vibration

signature quite often. The prediction accuracy is very good

for the ND and the ORF for higher speeds as well as lower

speeds because the vibration signature that comes from no

defect bearing is always good. Similarly, rolling elements are

always going to hit ORF at every ball pass and it would

provide better characteristics in the vibration signature and

results in better prediction for the ORF. Similarly, for IRF

beyond 10 Hz gives higher prediction accuracy.

Training Done at Two Different Speeds and Testing at

an Intermediate Speed

For obtaining the fault prediction accuracy, the training of

SVM is done at two different speeds and the testing is done
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Fig. 9 The selection of the optimum number of feature datasets (for

80% and 20% of the training and testing feature data, respectively)
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Fig. 10 The selection of the optimum number of feature datasets (for

75% and 25% of the training and testing feature data, respectively)

Table 4 The percentage prediction accuracy for the same speed as

measured data

Training

speed (Hz)

Testing

speed (Hz) ND IRF ORF BEF CFB

10 10 100 86.54 100 76.92 78.85

15 15 98.08 92.31 98.08 65.38 94.23

20 20 100 100 100 96.15 69.23

25 25 100 100 100 100 100

30 30 100 100 100 100 92.31

35 35 100 100 100 100 100

40 40 100 100 100 100 100
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Fig. 11 The fault prediction accuracy at same speed as

measurements

Table 5 Interpolation speed ranges

No. Training speed (Hz) Testing speed (Hz)

Range 5 Hz

1 10–15 12.5

2 15–20 17.5

3 20–25 22.5

4 25–30 27.5

5 30–35 32.5

6 35–40 37.5

Range 10 Hz

1 10–20 15

2 15–25 20

3 20–30 25

4 25–35 30

5 30–40 35

Range 15 Hz

1 10–25 17.5

2 15–30 22.5

3 20–35 27.5

4 25–40 32.7

Range 20 Hz

1 10–30 20

2 15–35 25

3 20–40 30
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Table 6 The fault prediction accuracy for different interpolated

speeds

Training

speeds (Hz)

Testing

speed (Hz) ND IRF ORF BEF CFB

Range 5 Hz

10, 15 12.5 23.08 51.92 92.31 50 92.31

15, 20 17.5 65.38 100 100 63.46 65.38

20, 25 22.5 96.15 88.46 100 98.08 98.08

25, 30 27.5 100 100 100 84.62 92.31

30, 35 32.5 96.15 71.15 100 100 92.31

35, 40 37.5 98.08 100 100 100 100

Range 10 Hz

10, 20 15 1.92 3.85 96.15 75 40.38

15, 25 20 94.23 7.69 100 5.77 88.46

20, 30 25 61.54 21.15 100 98.08 75

25, 35 30 61.54 73.08 100 78.85 94.23

30, 40 35 98.08 100 100 100 100

Range 15 Hz

10, 25 17.5 13.46 0 69.23 0 25

15, 30 22.5 0 0 90.38 57.69 1.92

20, 35 27.5 1.92 0 100 94.23 94.23

25, 40 32.7 84.62 0 100 57.69 96.15

Range 20 Hz

10, 30 20 0 0 0 90.38 0

15, 35 25 0 0 100 9.62 90.38

20, 40 30 0 0 100 94.23 57.69
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Fig. 12 The fault prediction

accuracy for different

interpolated speeds (for 1, 2, …,

in abscissa refer to Table 5)

Table 7 Extrapolation speed ranges

No. Training speed (Hz) Testing speed (Hz)

Range 5 Hz

1 10–12.5 15

2 15–17.5 20

3 20–22.5 25

4 25–27.5 30

5 30–32.5 35

6 35–37.5 40

Range 10 Hz

1 10–15 20

2 15–20 25

3 20–25 30

4 25–30 35

5 30–35 40

Range 15 Hz

1 10–17.5 25

2 15–22.5 30

3 20–27.5 35

4 25–32.5 40

Range 20 Hz

1 10–20 30

2 15–25 35

3 20–30 40
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at an intermediate speed for which training of SVM was

not done, this is known as the frequency interpolation.

Here, four different interpolation ranges are considered,

i.e., 5, 10, 15, and 20 Hz which is shown in Table 5. In

Table 6 and Fig. 12a–d, the fault prediction accuracy is

obtained using the frequency interpolation for four differ-

ent ranges. It is observed that for 5 Hz interpolated speed

range, the percentage prediction accuracy varies from

23.08% to 100%, for 10 Hz it varies from 1.92% to 100%,

and for 15 and 20 Hz it varies from 0% to 100%. For 5 Hz

range the lowest prediction accuracy is 23.08% for the ND,

for 10 Hz range the lowest prediction accuracy is 1.92%

for the ND, for 15 and 20 Hz range the lowest prediction

accuracy is 0% for the ND, IRF, and BEF.

It is examined that the SVM capability of the fault

classification decreases with increasing the range of inter-

polation. It results in very less prediction accuracy beyond

10 Hz interpolation speed range, so the fault prediction is

not very useful for the interpolated speed range beyond

10 Hz.

Training Done at Two Different Speeds and Testing

Done at an Extrapolated Speed

For obtaining the prediction accuracy, the training of SVM

is done at two different speeds and the testing is done at an

extrapolated speed for which training of SVM was not

Table 8 The fault prediction accuracy for different extrapolated

speeds

Training

speeds (Hz)

Testing

speed (Hz) ND IRF ORF BEF CFB

Range 5 Hz

10, 12.5 15 5.77 5.77 84.62 65.38 96.15

15, 17.5 20 1.92 1.92 100 63.46 98.08

20, 22.5 25 57.69 23.08 100 65.38 96.15

25, 27.5 30 0 0 100 21.15 100

30, 32.5 35 0 96.15 100 98.08 100

35, 37.5 40 100 98.08 96.15 100 100

Range 10 Hz

10, 15 20 1.92 3.85 100 1.92 98.08

15, 20 25 61.54 92.31 98.08 5.77 98.08

20, 25 30 0 0 94.23 28.83 100

25, 30 35 0 98.08 100 94.23 100

30, 35 40 53.85 73.08 94.23 100 98.08

Range 15 Hz

10, 17.5 25 7.69 0 100 0 100

15, 22.5 30 0 0 0 0 100

20, 27.5 35 0 0 67.31 0 100

25, 32.5 40 84.62 0 100 57.69 96.15

Range 20 Hz

10, 20 30 0 0 0 9.62 25

15, 25 35 0 0 100 9.62 90.38

20, 30 40 0 0 100 94.23 57.69

Range 5 Hz Range 10 Hz
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Fig. 13 The fault prediction

accuracy for different

extrapolated speeds (for 1, 2, …,

in abscissa refer to Table 7)
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done, this is known as the frequency extrapolation. Here,

four different extrapolation ranges are considered, i.e., 5,

10, 15, and 20 Hz, and are shown in Table 7. In Table 8

and Fig. 13e–h, the fault prediction accuracy is obtained

using the frequency extrapolation for four different fre-

quency ranges. For the extrapolation, the fault prediction

accuracy varies from 0% to 100% for all speed ranges. The

lowest prediction accuracy comes 0% for ND and IRF for

5 Hz as well as 10 Hz speed range. The lowest prediction

accuracy comes 0% for all other faults except CFB for

15 Hz speed range. The lowest prediction accuracy comes

0% for ND, IRF, and ORF for 20 Hz speed range. It is

observed that the SVM capability of fault classification

decreases with increasing the range of extrapolation fre-

quency. It results in very less prediction accuracy beyond

10 Hz extrapolation speed range and the fault prediction is

not very useful for extrapolated speed beyond 10 Hz.

The prediction accuracy increases with the rotational

speed, i.e., at a higher speed beyond 25 Hz the classifica-

tion of faults are better at the same speed, the interpolated

speed, and the extrapolated speed. The worst prediction

accuracy 65.38% for the BEF at 15 Hz and 69.23% for the

CFB at 20 Hz comes for the same speed case. The inter-

polation and extrapolation techniques for the multiclass

classification of bearing fault are very useful when vibra-

tion data are not available for particular speeds but beyond

the 10 Hz range interpolation as well as extrapolation

techniques are not useful for fault predictions. By this

exercise, it is concluded that nearly 100% classification of

fault can be achieved by the same speed prediction case,

somewhat good for the interpolated speed case and mar-

ginal for extrapolated speed case. It is observed that fault

classifications by the interpolation technique are better than

the extrapolation technique for the same range of speed and

at a higher speed as well as lower speed of operation.

Conclusions

In this paper, the fault diagnosis of rolling bearings using

the SVM is presented. First, we extracted features from the

vibration signal in time domain and then applied one-ver-

sus-one technique for the multiclass fault classification of

rolling bearings. The selection of optimum SVM parame-

ters, such as gamma value (RBF kernel parameter), the

percentage of training and testing data, and the number of

datasets for further fault classification of bearing faults

have been illustrated. Finally, the capability of SVM to

classify bearing faults at the same rotational speed, at the

interpolated speed, and at the extrapolated speed has been

presented. In the present paper, it has been observed that

the SVM prediction performance when the training and

testing is done at a higher rotational speed a near perfect

prediction accuracy is found. This is because at the higher

rotational speed the noise does not affect so much due to

better signal-to-noise ratio in the measurement data. And it

shows that a better prediction accuracy for the same rota-

tional speed as compared to the frequency interpolation and

the frequency extrapolation. Also the SVM capability of

fault classification decreases with increase in the range of

interpolation and extrapolation frequencies. The interpo-

lation and extrapolation techniques could be applied to

measurement data in the frequency and time-frequency

(wavelet) domains.
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