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Abstract Present study describes the approach of

applying response surface methodology (RSM) with a

Pareto-based multi-objective genetic algorithm to assist

engineers in optimization of sheet metal forming. In many

studies, finite element analysis and optimization technique

have been integrated to solve the optimal process param-

eters of sheet metal forming by transforming multi-

objective problem into a single-objective problem. This

paper aims to minimize objective functions of fracture and

wrinkle simultaneously. Design variables are blank-hold-

ing force and draw-bead geometrical parameters (length

and diameter). RSM has been used for design of experi-

ment and finding relationship between variables and

objective functions. Forming limit diagram has been used

to define objective functions. Finite element analysis

applied for simulating the process. Proposed approach has

been investigated on a fuel tank drawing part and it has

been observed that it is more effective and accurate than

traditional finite element analysis method and the ‘‘trial and

error’’ procedure.

Keywords Multi-objective optimization �
Sheet metal forming � Response surface model �
Pareto front � Genetic algorithm � Forming limit diagram

Introduction

In recent years, numerical simulation of sheet metal

forming has become an important tool to check the man-

ufacture feasibility of the deep drawing process and the

preliminary design of new stamped parts with more and

more complex 3D geometry. Finite element modeling

(FEM) has the advantage to reduce the production cost by

predicting the defects in the part such us: spring-back,

rupture, wrinkling, buckling, shape errors, and optimizing

the process parameters.

However, in order to achieve good product quality and

process reliability, the procedure of Finite Element Analysis

(FEA) has to be performed ‘‘by hand’’ many times with

different combinations of process parameters. Meanwhile, it

is very difficult for engineers to consider so many parameters

for a complex problem, since FEA procedure is very time-

consuming and relies much on the users’ experience. So,

under the needs of reduction on design time, reduction on

development cost, and reduction on parts weight, there is an

urgent need for more efficient and accurate method in order

to improve the current design situation.

In this respect, Makinouchi [1] used FEM to predict the

defects of fracture, wrinkling, and springback of the sheet

successfully. Many researchers have used numerical sim-

ulation with optimization methods to optimize the sheet

metal forming. Ohata et al. [2] optimized process condition

by integrating the sweeping simplex method and finite

element analysis to achieve a uniform thickness distribu-

tion. Guo et al. [3] combined the inverse approach (IA) and

a sequential quadratic programming method to optimize

the blank shape. Naceur et al. [4] also used the IA to

optimize drawbead restraining forces in order to improve

the sheet metal formability in deep drawing process.

Kayabasi and Ekici [5] integrated finite element analysis,
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response surface methodology (RSM), and genetic algo-

rithm (GA) to improve formability of an automobile side

panel. Chen et al. [6] investigated the influence of different

blank holder gaps and shell element types on formability of

a washing-trough and optimized the process. Azaouzi et al.

[7] developed an automatic numerical procedure based on

commercial FEM code and heuristic optimization algo-

rithms for the blank shape design of high precision metallic

parts. Khalili et al. [8] combined reduced basis technique

and RSM to optimize initial blank shape. Huang et al. [9]

used combination of FEM and the RSM to optimize the

intermedial tool surfaces and therefore minimize the

thickness variation in multi-step sheet metal stamping.

Ohata et al. [10] used RSM to find the annealing conditions

suitable for a sheet forming condition. Hu et al. [11] used

adaptive response surface (RS) based on intelligent sam-

pling method for optimization of initial blank shape and

blank hold force in sheet forming process.

Most problems in nature have several (possibly con-

flicting) objectives to be satisfied. Many of these problems

are frequently treated as single-objective optimization

problems by transforming all but one objective into

constraints.

It is obvious that the sheet metal forming is a multi-

objective problem with conflicting relationships between

multiple objective functions which many researches have

been done in this area. Jansson and Nilsson [12] used RSM

and space mapping technique to optimize draw-in for an

automotive sheet metal part. Later Janssen et al. [13] used a

design hierarchy and RSM to avoid failure in the material

and at the same time reach an acceptable through thickness

strain. Guangyong et al. [14] optimize restraining forces

and geometric parameters of drawbead by integrating the

six sigma principle, dual RSM and a multiobjective particle

swarm optimization.

Previous studies solved the multi-objective optimization

problem (MOOP) of sheet metal forming by transforming

the problem into a single-objective optimization problem,

such as the weight coefficients approach which combined

multiple objective functions into one. Unfortunately, it is a

big trouble for users to determine the value of these coef-

ficients, although these coefficients are crucial for the

results of optimization. Another problem is that each set of

coefficient combination can only acquire one optimal

solution, and it is hard to make sure whether the solution

achieved is an optimal one or not.

However, in engineering design domains, more and

more attentions have been drawn to multi-objective genetic

algorithm (MOGA), which mimics the natural selection

process in which a superior creature evolves while inferior

creatures fade out from their population as generations go

by [15–17].

Many advantages of MOGA are very attractive [18],

such as the capability of exploring a large design space and

the merit of none gradients information is needed. But, the

most important one is MOGA that can compute multiple

independent objective functions simultaneously in one

optimization run without converting multiple objective

functions into a single objective by weighted linear com-

bination. For these reasons, MOGA can be used for higher

non-linear MOOPs such as sheet metal forming.

Some researches have been conducted, using MOGA

with good results like Liu and Yang [19], although they

replaced the geometry of drawing beads with restraining

forces, which is not practical in most of the experimental

works.

In this paper, ‘‘Multi-objective Optimization Model’’

section will study the design of multi-objective optimiza-

tion model, ‘‘Multi-objective Optimization Algorithm’’

section will focus on the procedure of MOGA, ‘‘Case

Study’’ section will discuss on case study, and ‘‘Results’’

and ‘‘Conclusion’’ sections will investigate the results and

conclusion of this methodology.

Multi-objective Optimization Model

The aim of the optimization is to get the best combination

of process parameters or geometry design variables which

will lead to a desired sheet metal part without any defects

due to fractures and wrinkles. The optimization process of

sheet metal forming can be formulated as:

Minimize FðXÞ ¼ ðf1ðx1Þ; f2ðx2Þ; . . .; fjðxiÞÞ;
j ¼ 1; 2; . . .;m

ðEq 1Þ

Subject to blower
i � xi� b

upper
i ; i ¼ 1; 2; . . .; n

gkðxiÞ� 0; k ¼ 1; 2; . . .; p
ðEq 2Þ

where xi is the ith design variable, blower
i and b

upper
i repre-

sent the lower and upper boundary of xi, fj(xi) is the jth

objective function of xi and gk(xi) is the kth constraint

function of xi [19].

Design Variables

For sheet metal forming, blank-holding force (BHF) and

draw-bead geometrical parameters [radii (DBR123 and

DBR456) and lengths (DBL1 and DBL23)] are very

effective in formability, because the use of BHF and draw-

beads on blank-holder can provide uniform pressure to

restrain the blank flow into the die. Therefore, BHF,

DBR123, DBR456, DBL1, and DBL23 will be considered

as design variables in this study.
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Objective Functions

In order to avoid the occurrence of forming defects, criteria on

these forming defects were defined to judge the formability of

sheet metal parts. In this study, the objective functions were

calculated based on the value of these criteria for the opti-

mization. According to the results of FEA, the strain values of

elements on the drawing part were used to calculate the value

of these criteria, as explained in the following.

Fracture

When the major strains of some elements lie above the

forming limit curve (FLC, line uðe2Þ), fracture may occur

in this area of the part, and a higher value of the distance

indicates a higher fracture tendency (Fig. 1). In this work,

the squares of the distances for all elements were added to

be the objective function of fracture, just as shown in the

following equation:

Objf ¼
Pn

i¼1 ðdi
fÞ

2 ¼
Pn

i¼1 ðei
1 � uðei

2ÞÞ
2 ei

1 [ uðei
2Þ

0 ei
1�uðei

2Þ

�

:

ðEq 3Þ

In this research, FLC has been obtained by experimental

tests on sheet.

Wrinkle

Similarly, when the major strains of some elements lie below

the wrinkle limit curve (WLC, line w(e2)), wrinkle may occur

in this area of the part, and a higher value of the distance

indicates a higher wrinkle tendency. So, wrinkle criteria were

defined by the distance from the major strain of each element

to their WLC. The squares of the distances for all elements

were added to be the objective function of wrinkle, just as

shown in the following equation:

Objw ¼
Pn

i¼1 ðdi
wÞ

2 ¼
Pn

i¼1 ðei
1 � wðei

2ÞÞ
2 ei

1 [ wðei
2Þ

0 ei
1�wðei

2Þ
:

�

ðEq 4Þ

Multi-objective Optimization Algorithm

Sheet metal forming is a multi-objective problem. In these

cases, it is difficult to minimize or maximize all the objective

functions simultaneously when objective functions are in

trade-off relationship. In this paper, RSM has been used for

the design of experiment (DOE), and GA and Pareto front

have been combined to perform the optimization.

In normal GA, we take a population of genomes (indi-

viduals) randomly scattered across state space and evaluate

the fitness of the results. The bests are then retained (selec-

tion), and a new population is created (reproduction),

incorporating mutation and crossover operations to gain a

different set of possibilities (variation). Over many genera-

tions, the population will search the state space and hopefully

converge on the best solution, that is the global optimum.

In MOGA, we do much the same, except that in this

case, we are trying to optimize not for one fitness param-

eter but against a collection of them. To achieve this, we

must generate an understanding of the overall fitness of the

set of objectives, so that we can compare solutions, and

there are many ways of doing this. For that purpose, Pareto

optimal solution has been used.

For minimum problem, a feasible solution x* is a Pareto

optimal solution if and only if, there is no other feasible

solution x like that

fiðxÞ� fiðx�Þ i ¼ 1; 2; . . .; n: ðEq 5Þ

And for at least one j, 1 B j B n, satisfying

fjðxÞ\fiðx�Þ: ðEq 6Þ

For Example, as shown in Fig. 2, The boxed points

represent feasible choices, and smaller values are preferred

to larger ones. Point C is not on the Pareto solution because it

is dominated by both point A and point B. Points A and B are

not strictly dominated by the other one, and hence do lie on

the frontier.

Procedure of Optimization

The procedure of the MOGA can be described as follows:

Step 1: Select an exchange strategy, initialize popula-

tion, clear the Pareto set, make i = 0, and set the

parameters;Fig. 1 Schematic diagram of objective functions definition [19]
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Step 2: Combine the current population with the parent

population, and sort the combined population by using

no dominated sorting method;

Step 3: Update the Pareto set;

Step 4: Calculate the fitness values of the individuals

according to the sorting result;

Step 5: Judge whether the termination criterion is

satisfied.

Response Surface Model

RSM are primarily relevant when the decision-maker

desires: (1) to create a relatively accurate prediction of

engineered system input and output relationships and (2) to

‘‘tune’’ or optimize thoroughly of the system being

designed. Since these methods require more runs for a

given number of factors than screening using fractional

factorials, they are generally reserved for cases in which

the importance of all factors is assumed, perhaps because

of previous experimentation. In many RSM applications,

either linear or quadratic polynomials are assumed to

accurately model the observed response values. Although

this is certainly not true for all cases, RSM becomes pro-

hibitively expensive when cubic and higher-order

polynomials are chosen for experiments involving several

variables. In addition, cubic and higher-order polynomial

models may contain one or more inflection points. In

gradient-based numerical optimization schemes, the opti-

mizer may converge to an inflection point rather than to a

local or global optimum.

If ns analyses are conducted and p ¼ 1; 2; . . .; ns, then a

quadratic RS model has the form:

yðpÞ ¼ co þ
X

1� j� nv

cjx
ðpÞ
j þ

X

1� j� k� nv

cðnv�1þjþkÞx
ðpÞ
j X

ðpÞ
k ;

ðEq 7Þ

where y(p) is the response; x
ðpÞ
j and X

ðpÞ
k are the nv

design variables; and co; cj; and cðnv�1þjþkÞ are the

unknown polynomial coefficients. Note that there are

nt ¼ nv þ 1ð Þ nv þ 2ð Þ ¼ 2 coefficients (i.e., model terms)

in the quadratic polynomial.

However, the buildings of these surrogate models need

some samples in order to construct RS to fit the true

drawing process, and these samples could be produced by

the DOE methods, such as space filling design (i.e., Halton

sequence, latin hypercube design, Taguchi methods),

classical design (i.e., Box-Behnken, full factorial), and

optimal design (i.e., D-optimal, V-optimal and A-optimal

designs). DOE has been a very useful tool to design and

analyze complicated industrial design problems and can be

helpful to understand process characteristics and investi-

gate how inputs affects responses based on statistical

backgrounds. In addition, it can be used to systematically

determine the optimal process parameters with fewer test-

ing trails.

In this study, the V-optimal design (which minimizes

the average variance of the parameters and reduces the

asphericity of the confidence ellipsoid) has been used for

DOE and a quadratic model has been used for building

RSM model.

Case Study

FEA Model

In order to improve the reliability of optimization, incre-

mental-based dynamic explicit finite element code was

selected to simulate sheet metal forming process. In this

study, a fuel tank part was studied to be a case, and the

FEA model is presented in Fig. 3. The material of sheet

was taken Steel ST14. Plastic behavior and strain harden-

ing have been determined by Tensile Testing which true

stress–strain curve is shown in Fig. 4. Specifications of the

investigated blank are presented in Table 1.

FLC for fracture criteria has been determined by

experimental out-of-plane tests. For that purpose, a grid of

circles has been printed photographically on a sheet.

Usually, the circles are 5 mm in diameter. The specimens

have been stretched over a hemispherical dome until a

local neck is first observed. To achieve various strain paths,

the lubrication and specimen width have been varied and

eight specimens have been stretched. Full-width specimens

deforming balanced biaxial tension and very narrow strips

Fig. 2 Pareto optimal solution [17]
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are almost in uniaxial tension [20]. Sketch of the hemi-

spherical punch and used die are shown in Fig. 5.

Totally, 36705 linear triangular shell elements have

been used to simulate the forming process. The tools were

considered as rigid objects without any elastic deformation.

The holder moved from up to the die with speed 7 m/s and

stopped, then the punch began to move down with speed

4 m/s. ABAQUS/CAE code has been used for analysis.

Optimization Model

In order to optimize the formability of the deep drawing

process, BHF and draw-bead geometrical parameters were

selected to be design variables, as shown in Fig. 6. The

optimization problem can be formulated as a non-linear

model in the following form:

Minimize F xð Þ ¼ Objw;Objfð Þ ðEq 8Þ

Subject to:

2000�BHF� 3000 kNð Þ
15�DBR123� 25 mmð Þ
15�DBR456� 25 mmð Þ
100�DBL1� 150 mmð Þ
270�DBL23� 330 mmð Þ

ðEq 9Þ

Optimization procedure

Figure 7 shows the flow diagram of optimization procedure

which was divided into five steps:

Step 1: Initializing model: the FEM and optimization

model were both setup for their initial conditions, and

following parameters were set to the MOGA model. (1)

Fig. 3 FEA model of fuel tank part

Fig. 4 True stress–strain of ST14

Table 1 Material properties of ST14

Young’s modulus, GPa 200

Poisson’s ratio 0.3

Yield strength, MPa 185

UTS, MPa 327

Fig. 5 Hemispherical punch and out-of-plane test die

Fig. 6 Draw-bead’s geometrical parameters

J Fail. Anal. and Preven. (2013) 13:771–778 775

123



Population size P = 75; (2) crossover probability

Pc = 0.8; (3) mutation probability Pm = 0.01; (4)

migration fracture Pg = 0.2; (5) Pareto front popula-

tion fraction Pp = 0.35 (6) termination generation

T = 600.

Step 2: Performing DOE: for the construction of second-

order RSM, based on DOE matrix and finite element

code, each combination of design variables will be used

Fig. 7 Flow diagram of optimization procedure

Fig. 8 Pareto optimal solutions

Table 2 DOE matrix and results of FEA

# BHF, kN DBR(123), mm DBR(456), mm DBL(1), mm DBL(23), mm Objf Objw

1 2000 23.667 20.333 120 330 56.182 55.696

2 2733.33 23.667 21.667 120.334 270 33.230 53.048

3 2933.333 19 25 110 270 16.908 52.215

4 2066.667 17 15 116.667 270 0.9214 57.368

5 2133.333 23 19. 667 100 330 45.668 56.719

6 2533.333 21.667 21 116.667 302 15.754 51.795

7 2400 19 23.667 150 302 2.0168 55.074

8 2933. 333 15.667 23.667 146.667 330 2.9349 48.243

9 2200 18.333 21.667 126.667 302 0.8452 56.574

10 2666.667 17.667 23 150 270 36.812 56.243

11 2333.333 15.6667 22.333 123.333 302 1.4734 51.543

12 2600 24.333 21 110 298 52.337 48.504

13 2266.667 15.667 19.667 140 330 13.410 62.905

Table 3 Values of all design variables and objective functions

Variables RSM (Pareto) FEA (Pareto)

BHF, kN 2512.6348 2512.6348

DBR(123), mm 15.060442 15.060442

DBR(456), mm 15.483406 15.483406

DBR(123), mm 103.21274 103.21274

DBL(23), mm 298.14925 298.14925

Objf �7.8680 0

Objw 47.539265 53.406506
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for the running of FEA, and the objective functions will

be evaluated for each point of DOE matrix. The DOE

matrix and results of FEA were shown in Table 2.

Step 3: Constructing RSM: according to Eq 9, the

following RS functions can be constructed based on the

DOE results:

Objw ¼ 539:333þ 0:2139773 � BHF þ 9:324826

� DBR123� 4:228896� DBR456þ 1:434112

� DBL1� 5:932694 � DBL23� 4:510165

� 10�5 � BHF2 � 0:2378853� DBR1232

þ 0:1133753� DBR4562 � 0:005676007

� DBL12 þ 0:00999398� DBL232

ðEq 10Þ

Objf ¼ 1573:3047� 0:45329011� BHF� 36:204657

� DBR123þ 52:3198� DBR456� 8:9301621

� DBL1� 3:8243541� DBL23þ 8:7876935

� 10�5 � BHF2 þ 0:99746368� DBR1232

� 1:2683234� DBR4562 þ 0:03537017� DBL12

þ 0:0056372823� DBL232:

ðEq 11Þ

Step 4: Running MOGA: once the RS is constructed, the

MOGA optimization technique can be used to search for

the Pareto optimal solutions. The optimization procedure

in this case does not have to run FEA, but uses the RSM

to replace the long-time computation to evaluate the

objective functions value.

Step 5: Checking termination condition: if the number of

termination generation is satisfied, the optimization

procedure will be terminated. If not, the process returns

to Step 4.

Results

After 13 times of DOE iterations and MOGA iteration

based on RSM, the Pareto optimal solutions for objectives

were plotted and shown in Fig. 8, in which each point

represents a Pareto optimal solution. The optimum values

between objectives are conflicting with each other and

there is no any point which can meet the minimized need of

the two objectives simultaneously. For this study, any point

may be an optimum solution, and the point shown in Fig. 8

was used as optimal solution.

Table 3 summarizes the values of all design variables

and objective functions and FEA optimal values for thisFig. 9 FLD of fuel tank part

Fig. 10 Plot counter on deformed shape of fuel tank part
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optimization process. From the forming limit diagram

(FLD) in Fig. 9, we can find all the inside part of the die

opening located in the safety region. After optimization,

the value of objective function Objf has become zero,

which means that no fractures occurred on the drawing

part. Although the value of objective function Objw has not

become zero, no wrinkles occurred inside the die opening.

The cause of this matter is our definition of objective

function Objw.

As can be seen in Fig. 10, according to optimized

parameters, the fuel tank part was drawn successfully,

which indicates objective functions have been reduced

significantly by this optimization method.

Conclusion

Fracture and wrinkling are predominant defects in sheet

metal forming process. The existence of these defects may

damage surface quality, reduce dimensional precision,

cause local crack of component, and lead directly to waster.

In order to improve product quality and reduce cost, vari-

ous optimization techniques have been successfully applied

to sheet metal forming process. It has been observed that

there are always conflicting relations between these

objective functions, the solutions that minimize all objec-

tive are almost impossible.

It has been shown that MOGA can find all the Pareto

optimal solutions by only one-time global search procedure

without combining all the objectives into a single objec-

tive. So through the investigation, the proposed

methodology by FEA coupled with DOE, RSM, and Pa-

reto-based MOGA are found to be very effective in the

deep drawing .The methodology shown in this paper pro-

vides the designer with more short analysis cycle time and

more accurate design results than in traditional optimiza-

tion methods.

The present work is all about simulation so the experi-

ments can be done to obtain the desired product from the

optimal solutions obtained by the proposed method. The

present method can be further applied to design other

practical drawing applications.
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