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Abstract In this study, the effects of salt solution, the

presence of notch on fatigue life scatter, and sample size

selection for estimation of fatigue life under different

probabilities and confidence levels have been investigated.

Comparison has been made with smooth specimen tested in

air medium. It is seen that notches have significantly higher

effect than other factors (salt solutions, smooth geometry,

etc.). The minimum number of specimens required for

fatigue life estimation within tolerable error, Ro, at differ-

ent fatigue testing conditions has also been presented both

for log normal and Weibull distribution models. It has been

found that estimation of fatigue life using Weibull model

needs higher sample size than log normal model. Beyond a

certain sample size, fatigue life estimation is independent

of sample size. The article also presents a method for

minimum sample size selection procedure to estimate

fatigue life or to draw S–N curve.

Keywords Fatigue life scatter � Environment �
Geometry � Sample size � Fatigue life estimation

Introduction

Many researchers have investigated the effects of envi-

ronment, geometry of the specimen, frequency, etc. on

fatigue life or crack growth characteristics of several

material [1–3]. Kondo et al. [4] studied the effects of water

environment on fatigue life of A-302 B steel. It is reported

that fatigue life in water environment is shorter than that in

air environment. Amzallag et al. [2] found no effect of

environment for austenitic and ferritic stainless steel tested

in both air and in 3.5% NaCl solution at about 20 Hz.

Conclusions of Vosikovsky [3] are also similar to Amzallag

et al. [2]. Scott et al. [5] studied the effect of notch on fatigue

crack initiation and propagation in structural steel exposed to

sea water and air. These investigations indicate that fatigue

life is influenced by salt solution, notch, or surface condition

of the specimen.

It is well known that when the identical specimens or

parts are subjected to same fluctuating stress or load levels,

they usually fail at different cycles because of non-homo-

geneity in material properties, variations in the surface

condition, etc. Hence, fatigue life or strength of a material

usually shows large variations even when tested under

same loading conditions. Also, the amount of fatigue life

scatter associated is affected by several other parameters

like environment, specimen geometry, stress level, fre-

quency, etc. The author [6, 7] has developed methods for

estimating error or scatter factor associated with fatigue life

prediction at different probabilities and confidence levels

using log normal and Weibull distribution. The safe life

can be determined by fatigue scatter factor and full scale

fatigue test. The fatigue scatter factor plays a vital role in

life prediction of aircraft structures. However, in the past,

the fatigue scatter factor was general, and the differences of

different stages were not considered.

Recently, the economic life prediction and reliability

assessment of aircraft structures on the basis of scatter

factor have been presented by Chuliang and Kege [8]. Many

other studies related to fatigue life scatter and probability

distribution functions are available in the literature [9–12].

In this article, critical examination of the sample size

selection for estimation of fatigue life under different
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environmental conditions has been presented. Effect of the

presence of notch on the sample size selection has been

studied. Effects of geometry and environment on scatter

factor have also been investigated. On the basis of the

present investigations, minimum number of specimens

required for fatigue testing has been put forward.

Experiment

Material and Specimen

The materials used for the experiments described here are

made of commercial structural carbon steel. The chemical

compositions are 0.26 C, 0.26 Si, 0.44 Mn, 0.02 Ni, 0.02

Cr, and 0.01 P. The yield and ultimate strengths are 330

and 470 MPa, respectively. Smooth (unnotched) and 1 mm

circumferential V-notched specimens were machined to the

dimensions and shapes, as shown in Fig. 1, from

20 mm 9 20 mm bar. The bar was normalized at 450 �C

for 2 h before the preparation of specimen.

Experimental Method

The fatigue testing was conducted on rotating fatigue-

testing machine at room temperature. The tests were

performed in air, 3.5% KCl, and 5.5% KCl salt solutions at

270 and 260 MPa stress amplitudes both for smooth and

1-mm circumferential V notched specimens. Specimens

were exposed to salt solution at room temperature. An

extra attachment was designed to test the specimens in salt

solution. Provision was made to have constant flow rate of

217 cc/h of continuous flow of KCl salt solution from a

plastic reservoir on to the specimen. 25 specimens were

tested at each stated condition. The results are presented in

Table 1. In this analysis some results are also taken from

the author’s previous studies [6, 7] which are not included

in Table 1.

Theory

Estimation of error involved in the fatigue experiments has

been carried out using the equations previously developed

by the author [6]. Only brief review of the equations

developed is presented here.

Weibull Distribution Model

The percent of error involved in the fatigue experiment is

defined as the error made when the sample life is accepted

to be the population life, then the percent of error involved

Fig. 1 Specimen geometry and

dimensions in mm
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in the prediction of fatigue life from the sample data is the

difference between the two expectations, E lxð Þ and lx

expressed as percentage. Thus, the percentage of error can

be expressed as

Error ¼ E lxð Þ � lx

lx

� 100

If the fatigue life, Nf, follows Weibull distribution, then the

percentage of error involved in estimating the fatigue life

from sample size, n, is given by

Rw ¼
�d

lx þ d þ kð Þ�d

� �
tffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2VoCn

v2
Cðn�1Þ½ �

s
ðEq 1Þ

where lx ¼ �xþ d þ kð Þ�d; �d ¼ 1=�b, �b is Weibull slope;

k ¼ log � log 1� a½ �ð Þ, a is the percent probability of

failure; �x ¼ �nþ k�d; and �n ¼ ln �h
� �

; where h is

characteristic fatigue life of the two-parameter Weibull

distribution model. . . .ð Þ indicates that the parameter is

estimated from the sample data. v2 and t are obtained from

the v2 distribution function and t distribution function for

the given probability, confidence level, and sample size.

d ¼ �a12u2 � nkþ ue
n� a22u2

� �

where n is the sample size; e ¼ a2
12 � a11a12

� �
u2 þ na11þ

�
2na12kþ na22k�0:5; u is the normal deviate corresponding

to a percent of probability of failure; a11 ¼ 1:10876; a22 ¼
0:6079; a12 ¼ �0:25702; and C = 0.822; Vo ¼ v22þ
ð2kþ dÞ2v11 þ 2ð2kþ dÞcv12; v11 ¼ var d

d

� 	
; v22 ¼ var f

f

� 	
;

and cv12 ¼ co:var d
d ;

f
f

� 	
:

The scatter factor indicates the variation of a parameter

from its mean value. In term of statistical parameter, the

fatigue scatter factor is defined as the ratio of the standard

deviation to mean life for a specified probability of failure and

confidence level. Thus, the scatter factor shows the variability

in the fatigue life data of a material under given test condi-

tions. On the basis of probability distributional parameters, the

scatter factor for Weibull distribution model is defined as

Table 1 Fatigue life data of 0.26 C carbon steel at different test conditions

Smooth geometry Notched geometry

3.5% KCl 5.5% KCl 3.5% KCl 5.5% KCl

S = 260 270 260 270 260 270 260 270

381000 345000 150000 270000 120000 70000 90000 62000

480000 195000 300000 75000 160000 110000 200000 35000

225000 168000 306000 180000 90000 48000 225000 25000

384000 270000 116000 120000 216000 98000 42000 59000

273000 301200 122000 155000 202000 55000 210000 45000

255000 314500 313000 130000 170000 98700 180000 61000

457000 259000 277000 208000 220000 70000 80000 27000

322000 157000 256000 180000 140000 107000 170000 55000

368000 204500 315000 269000 164000 54000 70000 54500

501000 217000 171000 225000 150000 40000 70000 24000

252000 263000 127000 105000 217000 47000 220000 27000

215000 336500 199000 180000 135000 75000 30000 54000

279000 317000 283000 115000 201000 47100 60000 60000

436000 244500 235000 137000 126000 76000 40000 27000

306000 205000 115000 199000 200000 87000 150000 31000

371000 178000 227000 187000 143000 39000 70000 34000

397000 190000 296000 255000 92000 86000 40000 54500

245000 278000 213000 239800 101000 91000 60000 60000

391000 258000 262000 160000 120000 53000 160000 21900

260000 188000 144000 155000 113000 81200 50000 30000

328000 173000 271000 115000 164000 57400 50000 42000

407000 245000 280000 95000 155000 63000 150000 58000

236000 299000 327000 80000 182000 43000 130000 39000

461000 267000 130000 200000 126000 66000 100000 35600

470000 310000 124000 148000 161000 111000 120000 43000

Results are presented in sequence, Stress, S in MPa
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/W ¼
d

lx þ d þ kf gd
� � ;

which measures the scatter of the fatigue life data.

Log Normal Model

If the fatigue life Nf follows normal distribution, then

x = log (Nf) will follow log normal distribution. Then, the

percentage of error can be estimated from the relation;

Rn ¼
t � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nþ u2 w2 � 1


 �� �q
�xþ u � w � s ðEq 2Þ

where, s standard deviation of log fatigue life; x = sample

mean of log fatigue life; and t student ‘‘t’’ value.

In statistical analysis unbiased estimation of a standard

deviation is required. Hence, a factor which corrects the bias in

the estimation of the sample standard deviation is known as

correction factor for sample standard deviation. This factor

depends on statistical distribution of the random variable. When

the random variable is normally distributed, the correction

factor given byw eliminates the bias. The factorw is obtained as

w ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

2

r
C n�1

2

� �
C n

2

� �
is the correction factor for the sample standard deviation.

C nð Þ is the gamma function.

In this article, the scatter factor for log normal distri-

bution is defined as

/N ¼
s

�xþ u � w � s

At 50% probability, u = 0, and the above equation

degenerates to the well-known relation of coefficient of

variation. Hence, the scatter factor defined here is also

known as the coefficient of variation.

Equation 1 and 2 are solved for different probabilities,

confidence levels, and test conditions. The results are

presented in Figs. 2, 3, 4, 5, 6, 7, and 8. The variation of the

error or gradient of error (GR) shown in different figures

obtained from sample fatigue life for a given stress level

and probability condition varies with sample size.

Results and Discussion

Fatigue Life Scatter and Sample Size

The sample standard deviation or Weibull slope is the

measure of the scatter of the fatigue life data. Hence, the

fatigue life scatter factor expressed as the coefficient of

variation or distribution parameters influences sample size

Fig. 2 Variation of scatter factor at 260 and 270 MPa, 50%

probability, and 5.5% KCl salt solution for notched geometry

Fig. 3 Effect of probability level on scatter factor for 270 MPa, 3.5%

KCl, and smooth geometry

Fig. 4 Effect of environment on error for 270 MPa, 90% probability,

and 95% confidence level (log normal distribution)
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selected for fatigue life estimation. The variation of scatter

factor with sample size is shown in Fig. 2 both for log

normal and Weibull distributions for 260 MPa, notched

specimen, and 5.5% KCl salt solution. It is seen that the

scatter factor is higher for Weibull distribution than that for

log normal distribution. Figure 3 shows the influence of

probability on scatter factor. From Figs. 2 and 3, it can be

inferred that the scatter factor is higher for lower stress

amplitude than for higher stress amplitude. It is found that

for all level of probabilities and confidence levels, the

scatter factor varies from 0.017 to 0.055 for log normal

distribution and from 0.015 to 0.057 for Weibull distribu-

tion at 270 MPa stress amplitude; however, it varies from

0.019 to 0.0671 for log normal distribution and from

0.0162 to 0.069 for Weibull distribution model at 260 MPa

for notched and smooth specimen, when tested under dif-

ferent environmental conditions. The scatter factor is found

to be higher for notched specimen than that for smooth

specimen at 5.5% KCl salt solution and 260 MPa stress

amplitude. This shows that the presence of crack or crack

like defects in metal or structure has influence on the

fatigue life scatter. Hence, sample size selection should be

made more carefully while predicting fatigue life for not-

ched specimen than that for smooth specimen.

Effect of Salt Solution on Sample Size Selection

Salt solution significantly reduces the fatigue life of

specimen. In the present investigation, it has been

observed that scatter factor is also influenced by the salt

solutions. The scatter factor is found to be higher in 5.5%

KCl salt solution than that in 3.5% KCl salt solution for

all levels of test conditions described in the article. These

results reveal that scatter in fatigue life data is more in the

case of higher percentage of salt solutions (higher con-

centration), higher level of probability, higher confidence

Fig. 5 Effect of probability distribution function on error at 50%

probability and 95% confidence level, 5.5% KCl, and smooth

geometry

Fig. 6 Effect of probability distribution function on sample size at

50% probability, 95% confidence level, 5.5% KCl and smooth

geometry

Fig. 7 Effect of notch on error at 260 MPa, 95% probability and

confidence level, and 5.5% KCl salt solution

Fig. 8 Effect of salt concentration on error at 90% probability and

90% confidence level
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level, and lower stress amplitude. Figure 4 shows that

error in estimating fatigue life is highly influenced by

environmental conditions. Table 2 shows that about 3–5

specimens are needed in 3.5% salt solution whereas 4–6

specimens are required in 5.5% salt solution to predict the

fatigue life using log normal distribution at 270 MPa

stress amplitude, smooth geometry, and for all levels of

probability and confidence discussed above with maxi-

mum permissible error of 5%. It is also found that number

of specimens required is higher at 260 MPa and varies

from 3–9 for the above stated conditions. When specimen

requirement was compared with air medium, it is found to

be higher [7].

Probability Distribution Function and Sample Size

The variations of error with sample size at 50% proba-

bility and 95% confidence level for both Weibull and log

normal distributions are shown in Figs. 5 and 6. It is

evident from the figures that error for Weibull model is

higher than that for log normal distribution. It is seen

from Table 2 that as high as 8–9 specimens are required

for estimation of fatigue life at 50% probability using

Weibull distribution model, whereas a maximum number

of six specimens are sufficient to predict the fatigue life

within 5% of permissible error at 260 MPa stress ampli-

tude using log normal distribution model. The K–S

statistics for goodness of fit tests in Table 3 show the

relative goodness-of-fit of fatigue life data for log normal

and Weibull distribution. It is clear from the Table 3 that

fatigue life distribution at 270 and 260 MPa stress

amplitude under smooth and notched conditions tested at

different environmental conditions, fits well with Weibull

distribution. Though log normal distribution is slightly

better for the distribution of fatigue life than Weibull

distribution at 270 MPa, 5.5% KCl salt solution and for

notched specimen geometry, the error is found to be

higher for Weibull distribution model than that for log

normal distribution model. It can be concluded from the

present discussion that sample size requirement to esti-

mate fatigue life using Weibull distribution model within

same percentage of permissible error is higher than that

for log normal distribution irrespective of distribution

function assumed to model the fatigue life data.

Effect of Notch on Sample Size

Presumption of the presence of small defect or some initial

flaws in the structural components is undoubtedly benefi-

cial in the fatigue analysis and reliable estimation of the

fatigue life or strength. This has a great importance because

a small change in the S–N design curves at high cycle lives

can have a large influence in the predicted value. Hence,

the study of the effect of notch on uncertainty of the fatigue

Table 2 Minimum sample sizes required for estimation of fatigue life within 5% acceptable error for probability levels of 50, 90, and 95%

Stress amplitude, MPa Confidence level, % Distribution model

3.5% KCl 5.5% KCl

Smooth Notch Smooth Notch

270 90 Log normal 3–4 3–4 4–5 3–5

Weibull 4–5 4–5 5–6 5–6

270 95 Log normal 4–5 4–5 5–6 4–6

Weibull 4–6 5–6 5–6 5–6

260 90 Log normal 3–4 3–4 3–5 5–7

Weibull 3–4 4–5 5–6 5–6

260 95 Log normal 3–4 3–5 4–7 6–9

Weibull 4–5 5–6 6–7 8–9

Table 3 K.S. statistics

Stress, MPa Environment Sample Size

Smooth specimen Notched specimen

Log-normal Weibull Log-normal Weibull

270 Air 25 0.2413 0.1089 ��� ���
270 3.5% KCl 25 0.1277 0.1282 0.1041 0.1192

270 5.5% KCl 25 0.1151 0.0677 0.0864 0.1377

260 Air 25 0.2363 0.1848 ��� ���
260 3.5% KCl 25 0.1330 0.1326 0.1104 0.1023

260 5.5% KCl 25 0.1742 0.1258 0.1768 0.1500
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life and the selection of sample size under such conditions

carry a great importance.

Figure 7 gives the effect of the presence of notch on

error estimation from a specified sample size. It is seen

that the error is higher for the notched specimen than for

the smooth specimen. Figure 8 shows the effect of notch

on error for different stress amplitudes and salt solutions

at 90% probability and confidence level. It is seen that

5.5% KCl salt solution with the presence of notch at

lower stress amplitude has higher error than at higher

stress level. Table 2 shows that about 8–9 specimens are

required to estimate the fatigue life from notched data at

260 MPa stress amplitude with 5% acceptable error using

Weibull distribution, whereas 6–7 specimens are needed

for smooth specimen at 95% probability and confidence

level. Table 2 shows that higher number of sample size is

required in the case of notched data than that required for

smooth data for the prediction of fatigue life within 5% of

threshold error.

Effect of Stress Amplitude on Error and Sample Size

Figure 9 shows that estimation of error is higher for lower

stress amplitude than that for higher stress amplitude for a

given probability, confidence level, and specified sample

size. It is also seen that the difference in error estimated for

different stress amplitude is negligible beyond certain

sample size. Hence, higher number of specimens should be

taken for lower stress amplitude to predict the fatigue life.

Analysis of Variance (ANOVA)

On the basis of ANOVA procedure [13], the results and

conclusions made from Figs. 2, 3, 4, 5, 6, 7, and 8 are

backed by the statistical test of significance. The ANOVA

results are presented in Table 4. In this case, the probability

of making wrong conclusions is 1% or less.

Parametric Representation of Error and Sample Size

The variations of error with sample size as shown in

Figs. 2, 3, 4, 5, 6, 7, and 8 show that there exists a

threshold error, irrespective of sample size which mainly

depends on confidence level, probability, distribution

function, and the coefficient of variation of the fatigue life

data or scatter factor. A mathematical expression for the

error data has been proposed. The presented mathematical

form for the error data could be useful especially in

determination of sample size for reliable estimation of

fatigue life for engineering purposes.

The proposed equation for error data may be expressed

as

n R� Roð Þm¼ C ðEq 3Þ

where R is the error value, n is the sample size, and m, C,

and Ro are constants required to be optimized.

Fitting of the Eq 3 to experimental data has been done

by correlation coefficient method at each test condition.

Fig. 9 Effect of stress amplitude on error at 50% probability, 90%

confidence level, and 5.5% KCl salt solution

Table 4 ANOVA results

Source of variation Sum of square Degree of freedom Mean square F0 calculated F0:01 table Remarks

Stress, S 50403.6 2 25201.8 26.65 4.98 Significant

Geometry, G 80641.3 1 80641.3 85.28 7.08 Significant

Environment, E 162209.6 2 81104.8 85.77 4.97 Significant

Interactions

SG 27289.1 2 13644.5 14.43 4.98 Significant

SE 61645.3 4 15411.3 16.30 3.65 Significant

GE 102293.0 2 51146.9 54.10 4.98 Significant

SGE 56711.02 4 14177.7 14.99 3.65 Significant

Error 51063.40 54 945.61 ��� ��� ���
Total 592257 71 8341.6 ��� ��� ���

All factors are significant at 1% significant level, replication = 4
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In this method, value of Ro is optimized by a computer-

aided trial-and-error method corresponding to maximum

correlation coefficient of the points. The estimated

parameters are presented in Tables 5 and 6.

Prediction of S–N Curve or Fatigue Life

It is seen that the variation of error or GR has high mag-

nitude up to certain sample size, and beyond certain sample

size, it is negligible for all the combinations of probabili-

ties, confidence levels, etc. Figure 10 shows that the curve

is very steep up to certain sample size, and GR is negligible

when it exceeds the value of �1.0. In other words, beyond

certain sample size, the variation in the GR is very small

and remains constant even if more number of data are

added in the analysis. On the basis of these observations, a

novel method for optimization of sample size and estima-

tion of fatigue life or S–N curve is presented in Fig. 11.

This method is the most suitable for reliable estimation of

fatigue life at any level of probability and confidence.

Hence, its applicability in the field of fatigue life estimation

and reliability assessment of a component is very wide.

The model is of significant scientific value for products to

provide longer economic life, higher reliability, and lower

cost.

Table 5 Regression parameters of Eq 3 at 3.5% KCl salt solution

and notched geometry

Stress,

MPa Distribution

Conf.

level Prob. m C Ro r

270 LN 90 50 1.023 9.498 0.40 0.989

90 0.916 11.833 0.60 0.954

95 0.890 12.996 0.70 0.904

270 WD 90 50 0.704 11.188 0.50 0.992

90 0.693 9.756 1.10 0.954

95 0.484 8.835 1.30 0.902

270 LN 95 50 0.891 11.708 0.60 0.989

90 0.850 14.983 0.80 0.989

95 0.844 16.725 0.90 0.991

270 WD 95 50 0.6872 13.035 0.70 0.990

90 0.617 11.023 1.50 0.953

95 0.463 9.999 1.70 0.905

260 LN 90 50 0.957 7.836 0.30 0.991

90 0.821 9.434 0.50 0.992

95 0.870 11.285 0.50 0.992

260 WD 90 50 0.683 9.192 0.40 0.993

90 0.674 8.660 0.80 0.978

95 0.513 8.731 0.90 0.907

260 LN 95 50 0.794 9.292 0.50 0.992

90 0.741 11.448 0.70 0.993

95 0.731 12.530 0.80 0.994

260 WD 95 50 0.605 10.298 0.60 0.994

90 0.604 9.870 1.10 0.978

95 0.484 9.800 1.20 0.913

LN log normal distribution, WD Weibull distribution, r the correlation

coefficient

Table 6 Regression coefficients of Eq 3 for smooth geometry

at 3.5% KCl salt solution

Stress, MPa Dist

Conf.,

%

Prob.,

% m C Ro r

270 LN 90 50 0.839 6.933 0.30 0.996

90 0.810 9.076 0.40 0.996

95 0.761 9.636 0.50 0.996

270 WD 90 50 0.594 8.309 0.40 0.996

90 0.628 8.273 0.70 0.973

95 0.475 8.402 0.80 0.934

270 LN 95 50 0.784 8.927 0.40 0.996

90 0.708 10.671 0.60 0.996

95 0.756 12.643 0.60 0.996

270 WD 95 50 0.596 10.003 0.50 0.995

90 0.614 9.965 0.90 0.970

95 0.484 9.956 1.00 0.924

260 LN 90 50 0.911 6.983 0.30 0.993

90 0.875 9.337 0.40 0.993

95 0.824 9.976 0.50 0.994

260 WD 90 50 0.648 8.512 0.40 0.994

90 0.602 7.779 0.80 0.965

95 0.534 8.742 0.80 0.899

260 LN 95 50 0.847 9.176 0.40 0.993

90 0.766 11.139 0.60 0.993

95 0.747 12.087 0.70 0.997

260 WD 95 50 0.643 10.397 0.50 0.993

90 0.521 8.717 1.10 0.967

95 0.487 9.596 1.10 0.911

LN log normal distribution, WD Weibull distribution, r the correlation

coefficient

Fig. 10 Variation of GR with sample size at 270 MPa
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Fig. 11 Procedure for determination of minimum sample size and estimation of fatigue life or S–N curve
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The method presented here is based on the selection of

the minimum number of sample size. The minimum sam-

ple size required in predicting the fatigue life is the sample

size when the GR approaches a critical value, GRCRI. This

critical value, GRCRI, may be taken between 0 to �1.0 as

seen in the experimental results. The detailed procedure for

the determination of sample size and S–N curve is shown

in Fig. 11. The proposed method has been verified by

considering the fatigue life data of 0.26 C steel. The results

are presented in Table 7.

Validation

In order to verify the proposed method, standardized

method for judging the equalities of two or more S–N

curves has been applied [14, 15]. This method is based on

the statistical test of significance between the regression

equations fitted to each set of S–N data. Four conditions are

required for the same as follows:

Condition 1 Test of linearity of data

Condition 2 Test of equality of residual squares

between regression equation and data.

Condition 3 Test of equality of slope of the regression

equations.

Condition 4 Test of equality of intercepts of the

regression equations.

Details of the mathematical derivations are available in the

literature [14, 15].

Three independently fitted regression equations, one

with minimum number of sample size, n0 (Eq 1—in the

present case, the minimum sample size determined using

proposed method is 4, 5, and 7 for stress amplitude 300,

290, and 270 MPa, respectively); population sample size,

np (Eq 2—in the present case, it is 30 per stress level);

and the sample size of n0 � jð Þ (Eq 3—where j is the

number of stress amplitude considered for describing the

S–N curve) have been obtained. The regression equations

thus determined are used for significance test. The sum-

mary of the results of the analysis is presented in Table 8.

It is seen that conditions 1–4 are satisfied when Eq 1 is

compared with Eq 2, and all hypotheses are accepted at

95% significance level. When Eq 3 is compared with

Eq 2, it is rejected because the condition 3 is not satisfied

at 95% significance level. This proves the validity of the

proposed model.

The method discussed above can be used for failure

analysis and prediction of fatigue life or fatigue strength.

Table 8 Summary of judgment results

Source of

variation Condition

Degree of

freedom F0 t0

Between regression

Eq 1 and 2

1 15, 89 0.938 ���
2 ��� 0.206 ���
3 102 ��� 1.801

4 102 ��� 0.226

Between regression

Eq 1 and 2

1 12, 89 0.770 ���
2 ��� 0.203 ���
3 99 ��� 2.215a

4 99 ��� 0.262

a Rejected at 95% significance level

Table 7 Minimum sample size determination and S–N curve prediction (Data 0.26 C steel)

Sl no

Stress amplitude, MPa

300 290 270

Life, cycles Gradient Life, cycles Gradient Life, cycles Gradient

1 1.26 9 105 ��� 1.53 9 105 ��� 1.20 9 105 ���
2 1.50 9 105 ��� 2.43 9 105 ��� 4.50 9 105 ���
3 1.70 9 105 �2.819 2.93 9 105 �6.059 4.36 9 105 �22.534

4 1.65 9 105 �0.488 2.81 9 105 �1.039 2.86 9 105 �3.747

5 ��� [�1.0 1.20 9 105 �0.629 2.01 9 106 �2.267

6 ��� ��� ��� [�1.0 7.10 9 105 �1.230

7 ��� ��� ��� ��� 3.40 9 106 �0.927

��� ��� ��� ��� ��� [�1.0

Minimum sample size ��� 4 ��� 5 ��� 7

Regression equation (log–log scale) Slope Intercept Total sample size

Equation 1 �10.421 30.985 16

Equation 2 �15.612 43.654 90

Equation 3 �6.262 20.735 13
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The fatigue failure is a significant problem because it can

occur because of repeated loads below the static yield

strength of the material. It is a progressive localized

damage due to fluctuating stresses and strains on the

material. This can result in an unexpected and catastrophic

failure in use. The main problem areas in preventing fati-

gue failure are prediction of stress levels that causes failure

or estimation of scatter in fatigue life. The present method

which focused on the prediction of amount of scatter in

stresses or fatigue life is an effective technique that can be

used for reliability-based design or prevention of fatigue

failure.

Conclusions

1. For a given material and test conditions, higher sample

size is required for estimation of fatigue life by Weibull

distribution than log normal distribution.

2. Fatigue life scatter or scatter factor depends on

environmental conditions, specimen geometry, proba-

bility, confidence level, and stress amplitude. The lower

the stress amplitude the higher the scatter factor.

3. Higher sample size is required to estimate the fatigue

life at lower stress amplitude than that at higher stress

amplitude at specified probability and confidence

level, or under notched geometry than smooth

geometry.

4. There exists a threshold error, which is independent of

sample size but depends on probability, confidence

level, and test conditions.

5. Salt environment has prominent effect on sample size

selection.

6. The method presented for sample size estimation and

S–N curve or fatigue life estimation can be used for any

loading condition, and it is a suitable, economical

method of reliability assessment of a component.
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