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Abstract Microstructural modeling at progressive length

scales can enable the prediction of thermal and mechanical

properties of thermal sprayed coatings with hierarchical

features. Object-oriented finite (OOF2) element modeling

conducted using microstructural images, although a pow-

erful technique, has been employed to a limited extent in

thermally sprayed materials. Consequently, there is little

scientific understanding of the efficiency of the OOF2

technique for estimating bulk properties. For the first time,

this study provides a comprehensive analysis of these

factors’ role in the OOF2 technique’s capability to predict

thermal and mechanical properties in ceramic and metallic

coatings manufactured by plasma spray, high-velocity

oxyfuel (HVOF) spray, wire_arc spray, and cold spray. The

prediction efficiency generally increases for larger grain

sizes as overall microstructural features are captured even

at lower magnifications. The same effect is obtained in

microstructures having lower and uniformly shaped pores.

The data on the porosity suggest that OOF2 predictions are

most accurate when conducted on coatings manufactured

using sintered feedstock because of the dense powder. In

contrast, OOF2 predictions are the least accurate when

hollow spherical (HOSP) feedstock having empty cores is

used. These multiscale facets of microstructure, porosity,

etc., thus, highlight the importance of the selection of the

representative volume element for accurate analysis in

OOF2, which, depending upon the process, is captured at

3009 - 5009 for HVOF and wire-arc spray, and

10009 - 15,0009 magnifications for plasma and cold

spray. This overall assessment charts the relative impor-

tance of variables such as grain size, porosity, and feed-

stock as compared to that of the process and anisotropy in

the prediction of properties in thermally sprayed coatings.

While these conclusions are based on the limited literature

of 37 articles, this study makes a bold attempt towards a

guidebook for future thermal spray researchers in con-

ducting more accurate OOF2 analysis.

Keywords microstructure � OOF2 � porosity � property
prediction � thermal spray

Introduction

Thermal spraying is a manufacturing technique to deposit

metal and ceramic coatings to protect surfaces against

thermal, mechanical, and chemical damage. These coatings

find extensive applications in aerospace, automotive, and

marine components such as turbines, engines, and ballast

tanks. Thermal spray is broadly classified into four cate-

gories: plasma spray, high-velocity oxyfuel (HVOF) spray,

wire_arc spray, and cold spray. In each process, feedstock

powder is heated and accelerated onto a substrate, thereby

depositing a single building block. A conglomerate of these

building blocks, deposited layer by layer, makes up the

coating’s entirety or ‘bulk’. The thermal and mechanical

properties of the coatings are prime performance metrics

for several applications. However, the experimental mea-

surement of thermal and mechanical properties is chal-

lenging due to the difficulty in machining specimens

conforming to ASTM size specifications, cost, and time

(Ref 1). On the other hand, analytical methods often yield

erroneous results due to idealized assumptions, the inability
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to capture microstructural features, and the lack of feature-

specific properties. Computational prediction is an alter-

native that enables a faster design and optimization of the

thermal spraying process. Three-dimensional (3D) finite

element modeling (FEM) has been used to predict thermal

and mechanical properties. In 3D FEM, the modeled bulk

included the property of the overall material instead of

individual phases. Those predictions treat thermal sprayed

coating as a monolithic material and fail to incorporate

hierarchical microstructural features such as splat, oxide,

unmelted particles, and porosity. Thus, 3D FEM is more

suitable for individual particle analysis and less suitable for

the bulk of the coating (Ref 1-3).

Object-oriented finite element analysis (OOF2) is an

image-based modeling tool developed by the National

Institute of Standards and Technology (NIST) to evaluate

heterogeneous materials’ overall thermal and mechanical

properties. The advantages of OOF2 simulations over

conventional techniques are manifold. First, this technique

incorporates actual microstructure features into the FEM

model (Ref 4). Each microstructural feature’s thermal and

mechanical properties are assigned to the model from

experimentally measured values. Finally, it can conduct the

simulations over a large range of length scale of 3 orders of

magnitude from a few lm to a few mm, thus providing a

comprehensive understanding of multiscale coating prop-

erties from local to bulk. Thus, although the analysis begins

with 2D images, the relative ease of acquiring

microstructures in 3 dimensions and OOFs above capa-

bilities renders it advantageous compared to other FEM

techniques. The computed properties are validated with

experimental measurements or from values available in the

literature. It is noteworthy that experimental validation is

required only during the initial protocol development and,

once standardized, can drastically reduce experimental

iterations.

Due to these advantages, there has been a steady

increase in the number of scientific articles published on

evaluating thermal sprayed coatings’ thermal and

mechanical properties, as presented in Fig. 1(a). The

complete cluster of these articles was curated from a bib-

liographic search of Scopus, Google Scholar, and Web of

Knowledge databases using keyword criteria of ‘Plasma’,

‘High-velocity oxyfuel’, ‘Wire arc spray’, ‘Cold spray’,

‘OOF’, and ‘OOF2’. The current literature in this field,

from 1999 to the present, comprises 37 articles, in which

74% focuses solely on plasma-sprayed coatings and the

rest, 26%, reports on HVOF, wire arc, and cold spray

(Fig. 1b). Individually, these articles do not enable a

complete understanding of the role of microstructure fea-

tures and local properties on the ability of OOF2 to yield

accurate results. This review is thus a bold first attempt to

compare all 37 articles under a single aegis of

microstructure_modeling_property correlations, thus pro-

viding a potential roadmap for future researchers and cre-

ating a broader landscape of the thermal spray industry.

The OOF2 evaluation of thermally sprayed coatings

begins with an image representing the microstructural

features of that coating. These microstructural features are

unique to the respective coating technique due to the pro-

cess variables such as temperature and velocity (Fig. 2)

(Ref 2, 3). The spraying temperature is high, above the

melting point of feedstock in the case of plasma spray,

HVOF spray, and wire arc spray, while it is below the

melting point of feedstock for cold spray. Similarly, the

velocity for cold spray and HVOF spray is high

([1000 ms-1), while it is low for plasma spray and wire arc

spray (Ref 5-13). The variable temperatures and velocities

result in unique geometry and sizes of splats, inter-splat

boundaries, and volume fraction of porosities in each of the

four thermal spray processes, as presented in Fig. 3. In

OOF2, these variations translate to significant differences

in the calculated bulk thermal and mechanical properties.

For example, the thin molten splats in plasma spray result

in larger local heterogeneities in stress (Ref 5-9). In con-

trast, the deformed unmolten splats in cold spray create a

more spherical stress distribution (Ref 14-16). OOF2 thus

calculates significantly different bulk elastic moduli for the

two sprayed coatings. Similarly, the volume of oxides and

porosity is relatively low in the case of cold spray, whereas

it is relatively higher in wire arc and plasma spray (Ref 5-

7, 11-13). These porosities and thermally insulating oxides

behave as scattering centers for heat flow; consequently,

OOF2 calculates a lower thermal conductivity for the latter

processes. Thus, the unique microstructural features of

each thermally sprayed coating make a significant impact

on the properties calculated by OOF2.

The second input utilized by OOF2 is the local thermal

or elastic property of individual features, which is also

different in each thermal sprayed process. For example, in

plasma, HVOF, and wire arc spray, where the feedstock is

melted and resolidified, the local mechanical properties are

more akin to cast materials. In contrast, in cold spray,

where the feedstock undergoes heavy plastic deformation

in the solid state, the local mechanical properties are closer

to cold-worked materials. This also holds for thermal

properties since melted particles contain a lower concen-

tration of thermal scattering centers such as dislocations. In

contrast, cold-sprayed coatings carry a higher density of

dislocations (Ref 14-16). OOF2 creates the microstructure-

based model that accounts for the phenomenon of heat flux

and these defects’ scattering in heat flow and consequently

calculates lower overall thermal conductivity. Thus, over-

all, OOF2 models identify individual microstructure fea-

tures, boundaries between adjacent features, and the

corresponding input material properties that are unique to
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the feature. The input material property data of these dif-

ferent heterogeneous groups for the OOF2 analysis are

user-defined and are obtained from literature sources and/

or experimental techniques, as shown in Fig. 4. The sources

for values from the previous research literature include

published research articles from platforms such as Scopus,

Google Scholar, and Science Direct. Additionally, material

repositories such as ASM standard property handbooks are

also valuable resources for feature-specific property inputs.

On the other hand, user-defined inputs from experimental

techniques include elastic modulus and thermal diffusivity.

Elastic modulus is obtained from instrumented indentation,

bending tests, tensile testing, and shear testing, while

thermal conductivity is obtained from the laser flash

diffusivity technique. Out of 21 reports on experimental

measurement of elastic modulus, a majority of 16 have

utilized instrumented indentation techniques. For example,

nanoindentation operates on the principles of load–dis-

placement measurements to characterize mechanical

properties at nanometer_length scales. Controlled inden-

tation is executed with precise loading and unloading

cycles, enabling the acquisition of force–displacement

curves. Analysis of these curves yields essential mechani-

cal parameters such as hardness, elastic modulus, and

indentation depth. This measured elastic modulus is uti-

lized for OOF2 simulations. With respect to thermal

sprayed coatings, nanoindentation provides phase-specific

elastic modulus such as that in the interior of splats, inter-

Fig. 1 Current landscape of the scientific literature on properties

prediction of thermal sprayed coatings by OOF2. (a) Only 37 articles

have been published, growing slowly but steadily from 1999.

(b) Among these, 74% of the articles are focused on plasma-sprayed

coatings, while the rest, 26%, are on HVOF, wire-arc-sparayed and

cold-sprayed coatings

Fig. 2 Variation of process parameters such as temperature (T) and
velocity (v) in each thermal spray process. Process temperature is

high, above the melting point, for plasma, HVOF, and wire arc spray

and below for cold spray. Similarly, process velocity is high for

HVOF and cold spray and low for plasma and wire arc spray. These

variations, unique to the spraying process, play a significant role in

determining the microstructural features of the coating and, hence, in

OOF2 calculations
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splat jetting regions, grain boundaries, and secondary pre-

cipitates. Similarly, for experimental measurement of

thermal properties, all 11 reports have utilized flash dif-

fusivity analysis to determine thermal diffusivity in mate-

rials. It involves subjecting a thin sample to an intense,

short-duration heat pulse generated by a xenon flash lamp.

The resulting transient temperature rise is measured at

various points along the sample surface using high-speed

infrared detectors which are governed by the thermal dif-

fusivity of the material, along with its thermal conductivity

and specific heat capacity. Nanoindentation and flash dif-

fusivity analysis represent advanced experimental tech-

niques that provide invaluable insights into the mechanical

and thermal properties of materials at the desired length

scales for OOF2 simulations.

Finally, OOF2 evaluates overall thermal and mechanical

properties as a function of the length scale. This means that a

mechanical property such as elastic modulus, calculated by

OOF2 based on a microstructural image at a 1_millimeter

length scale, will be significantly different from that calcu-

lated at a 1_micrometer scale. This stems from the influence

of microstructural features, such as porosity and cracks, on

thematerial properties of thermal sprayed coatings at various

locations and different length scales. However, these dif-

ferences average out in larger bulk scales ([ 10 mm), and

OOF2 calculates similar property values to the experimental

values.Moreover, the bonding between adjacent layers in the

spraying direction differs from that between adjacent splats

in the transverse direction. OOF2 creates a model that can

incorporate this anisotropy of the material from

microstructural images acquired from cross_sections. Thus,

OOF2 can solve for the material properties at a wide range of

length scales and in different directions of the coating.

The efficiency of OOF2 calculated properties heavily

depends on microstructure image quality. These include but

are not limited to the unique features of the coatings, such as

splats, grain size, oxides, porosity, their individual local

properties, and the length scale of evaluation (Ref 17-26).

Thus, it is important to identify the critical parameters that

influence the microstructure’s quality that influences the

prediction efficiency of OOF2. OOF2 validation efficiency

refers to ‘the degree to which the result of a calculation con-

forms to the correct value or a standard’. The experimentally

measured value of a property of thermally sprayed coating,

such as its elastic modulus or thermal conductivity, is correct

or standard. This is due to the fact that prior to conducting an

experimental measurement, the instrument is calibrated by

testing on standard samples with known properties. Thus,

OOF2 validation efficiency is essentially the ratio of the value

of a mechanical or thermal property obtained by OOF2 cal-

culations and its corresponding value obtained from experi-

mental techniques, expressed as a percentage.

OOF2 Validation Efficiency ¼ Predicted Property value

Standard property value
� 100

These properties, such as thermal conductivity, heat flux,

stress distribution, and elastic modulus, are critical to the

performance of thermally sprayed coatings across a broad

Fig. 3 Schematic of representative microstructure observed in

thermally sprayed coatings. The coating, built up as layers on top

of the substrate, constitutes unique microstructural features such as

splats, inter-splat boundaries, unmolten particles, and porosity. Red

arrows mark the spraying direction and transverse directions

Fig. 4 Classification of material properties database and its sources

for user input in OOF2 analysis
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spectrum of industries and applications. Thus, it is necessary

to establish the correlations between OOF2 calculated

properties and their efficiencies with the characteristics

above to understand the simulation process scientifically.

The present article, an analytical review of OOF2, is thus the

first report to bridge this gap in the scientific literature.

Methodology of Finite Element Modeling by OOF2

Acquisition of Microstructure

The most crucial part of conducting a FEM by OOF2 is the

acquisition of the microstructure of a thermal sprayed

coating at systematically progressing length scales. This

can be done by two approaches: experimental and com-

putational. In the first approach, experimental microstruc-

tural images are acquired by an optical and/or electron

microscope. The images are recorded at multiple magnifi-

cations and locations to capture the features of the coating

at different length scales. In these multi-length-scale ima-

ges, OOF2 maintains the original pixel size and quantity in

the microstructure, determined by input height and width

dimensions at the acquired length scale. Additionally,

OOF2 enables the selection and grouping of these pixels

corresponding to the diverse phases found in the

microstructure. Analysis performed on low-magnification

images provides the overview of global material properties,

whereas the higher-magnification image analysis provides

the data on single particle/splat microstructural features.

The multiscale study also reveals the influence of a single

splat on the neighboring elements in the microstructure,

thereby correlating the microstructure’s local property to

the global properties of the coating. Out of 37 articles on

OOF2 modeling thermal sprayed coatings, 33 have utilized

experimentally acquired microstructures (Ref 26-37).

In contrast to 33 reports on experimentally acquired

microstructures, only four reports have utilized computa-

tionally generated microstructure images. This involves a

bottom-up approach beginning at a small length scale. At this

scale, individual splats are simulated by a volume of fluid

(VOF) tracking mechanism by varying parameters such as

feedstock material and size, spraying temperature and veloc-

ity, and substrate pre-heating temperature. These individual

splats are arranged over a 2D array to obtain a single coating

layer. In the final step, these layers are stacked on top of one

another to obtain a microstructure of a bulk coating with the

desired thickness, usually in the range of 10-100 lm. This

final computationally generated microstructure is akin to that

of experimental microscopic techniques. A comparison of

computationally generated microstructure with experimen-

tally acquiredone is presented inFig. 5. In this studybyBhusal

et al., an optical microscopy technique was employed to

obtain the experimental microstructure of plasma-sprayed

aluminum_oxide coating shown in Fig. 5(a) (Ref 6, 7). The

first individual splatswere simulatedbySimDrop3.0 software

using computational fluid dynamics algorithms in the com-

putational approach. Disk-shaped fingered and fragmented

Fig. 5 Comparison of computationally generated microstructure with

experimentally acquired one. (a) Experimental microstructure of

plasma-sprayed aluminum oxide coating acquired by optical micro-

scopy technique. (b) Computationally generated microstructure

obtained by SimDrop 3.0 software using computational fluid dynam-

ics algorithms to generate individual splats stacked together using

stochastic models [6). Reprinted from Surface and Coatings Tech-

nology, Vol. 374, Sadhana Bhusal, Cheng Zhang, Jenniffer Bustillos,

Pranjal Nautiyal, Benjamin Boesl, ArvindAgarwal, A computational

approach for predicting microstructure and mechanical properties of

plasma sprayed ceramic coatings from powder to bulk, p. 1-11,

Copyright 2019, with permission from Elsevier
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splats were simulated using Navier–Stokes equations. These

splatswere then stacked using a stochasticmodel to generate a

bulk 3D microstructure (Fig. 5b) that shows good agreement

with the experimental one (Fig. 5a).

Similarly, Wang et al. generated computed microstruc-

tures of plasma-sprayed yttria-stabilized zirconia (YSZ)

coatings using small-angle neutron scattering (SANS)

information. The microstructure, pores, voids, and cracks

were synthetically constructed and perfected using volu-

metrically averaged information obtained from SANS (Ref

24). Among the other 2 studies, Ghafouri-Azar et al. have

used a 3D stochastic model to generate HVOF-sprayed

stainless steel and tungsten carbide coatings (Ref 8). Gupta

et al. have used Tbctool software to generate HVOF-

sprayed YSZ coatings (Ref 34).

Analytical Workflow

The methodology for OOF2 begins with the microstructure

of the thermally sprayed coatings, progresses through the

assignment of properties of individual features, and finally,

the solution of relevant equations to obtain the bulk prop-

erties. A flowchart and schematic example present the

workflow in estimating the coating properties and experi-

mental validation in Fig. 6. First, the coating micrographs

are converted into binary images through image analysis

software such as ImageJ. This software pixelates individual

phases of the heterogeneous microstructure into specific

binary colors based on user-defined inputs. OOF2 groups

together these pixels for a named selection of the phases or

features, followed by a materials property file assigned to

the respective phase/feature. The assigned values for the

thermal or mechanical property are user-defined inputs

from experimental techniques such as nanoindentation,

laser flash diffusivity analysis, published literature, and

standard material property handbooks. Next, OOF2 gen-

erates a framework of the microstructural image to facili-

tate meshing. It employs adaptive mesh refinement

techniques, including annealing, snapping nodes, swapping

edges, and refining. Snapping nodes involves aligning the

nodes with the pixel boundaries, ensuring a precise repre-

sentation of the microstructure. After snapping, annealing

adjusts the mesh by relocating nodes that do not meet the

user-defined acceptance criterion, termed ‘alpha’. Alpha, a

measure that determines the pixel group that a particular

pixel in the image is classified into, ranges from 0 to 1.0. It

sets the threshold for distinguishing objects from the

background based on the grayscale intensity of the pixel.

For instance, an alpha of 0.8 categorizes pixels with

intensity below 80% of the max as background and above

as object. Next, the mesh is further refined by subdividing

the elements at the boundary of the individual phases. The

internal boundaries of the individual element and the

neighboring elements are moved to merge as one boundary,

thus reducing the total number of phases in the elements, as

shown in Fig. 7.

The swapping edges technique involves iteratively exam-

ining the edges of an element within the mesh and swapping

Fig. 6 Analytical workflow and experimental validation process followed by OOF2 for calculating properties of thermally sprayed coatings

shown by an (a) flowchart and (b) schematic
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them to improve the quality of the mesh. The criteria for

swapping edges can include considerations such as minimiz-

ing element distortion and or reducing the number of phases

within an element to one. This defines the homogeneity of the

simulation, which is the deciding factor for the quality of the

mesh of elements. While a homogeneity index of 1 is ideal,

those in the range of 0.95 to 0.99 yield good results (Ref 4, 6).

As mentioned earlier, the homogeneity index measures the

number of phases in one element contributing to the

microstructure’s generated mesh. Thus, the microstructures

with complex geometries, a dominance above 95% of one

phase in the element, create an accurate mesh to yield results

closest to experimental data (Ref 6-9). A homogeneity index

of 0.99 is preferred for greater prediction efficiency.However,

it is not recommended to create an extremely finemeshwhere

the element size equals pixel size in the microstructure as it

can capture features such as noise that are not part of the

coatings.After themesh is generated, boundary conditions are

applied to the microstructure to evaluate the material prop-

erties. OOF2 solves user-defined fields and equations for

boundary conditions such as displacement, temperature,

voltage, heat equation, plane heat flux, force balance, and

plane stress (Ref 4). The most common bulk coating proper-

ties evaluated are effective thermal conductivity and elastic

modulus. The computed values can be validated against

experimental results from nanoindentation, uniaxial tensile

testing, and laser flash diffusivity analysis to validate pre-

dicted OOF2 results.

Data Extraction Strategy for this Analytical
Review

This analytical review focuses on the efficiency of OOF2

calculations concerning the different microstructural

aspects, such as grain size and porosity. Since this

information is not directly reported, exhaustive data mining

was conducted on all 37 published articles to extract the

relevant information below (Data files are attached as

supplementary files.) However, it is important to note that

the total number of published articles is not directly asso-

ciated with the total number of data points in the plots

discussed in the results and discussion section. The pub-

lished articles may contain more than one data point

depending on the number of materials and properties being

analyzed. For example, an article with two materials ana-

lyzed to predict thermal and mechanical properties will

have 4 data points for 1 published article.

Grain Size Measurement

The grain size of thermal sprayed coatings was calculated

using micrographs by image analysis. As shown in Fig. 8,

the grain, length, and width measurements were recorded

manually using ImageJ. (The data files for microstructure

images are available on GitHub.) To enable accurate

measurements, the contrast of images was enhanced, and

ImageJ was used to segment them into regions demarcating

grains and their boundaries/interface regions. The arith-

metic mean of length and width was recorded for 5-7 grains

for each microstructure. The average of these 5 to 7 mea-

surements is the calculated average grain size of the

microstructure (L ? W)/2. It is noteworthy here that a

thermally sprayed splat is usually constituted on multiple

grains. Since the calculation of grain size is a two-dimen-

sional image-based analysis, the flattening of the splat is

not included in the measurement of the average grain size.

OOF2 Validation Efficiency Calculation

The ‘validation efficiency’ of OOF2 simulations is pre-

sented as the parameter calculated from each of the 37

Fig. 7 Significance of Mesh

Refinement and Homogeneity

Index in OOF2 Analysis
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articles. It is defined as the percentage ratio of the value

calculated by OOF2 concerning that measured by the

experiment. This value in percentage is plotted on the Y-

axis (ordinate). An identical match of the predicted value

with an experimentally measured one yields a validation

efficiency of 100%. An overestimation or underestimation

yields values higher or lower value than 100%, respec-

tively. A more significant deviation from 100%, lower or

higher, represents an inefficiency of OOF2 predictions.

Microstructural data such as porosity percent and aver-

age grain size were plotted on the horizontal X-axis, while

OOF2 validation efficiencies were plotted on the vertical Y-

axis. The porosity values were taken as reported in the

literature. Validation efficiencies from OOF2 thermal

analysis were plotted against the grain size and porosity of

ceramics and metallic coatings. Those obtained for the

mechanical properties’ estimation were plotted only

against grain size. This is because the data on porosity

content in the microstructure are only reported for 9 studies

out of 23 data points available in the literature, thus

restricting the analysis. The number of articles mined for

constructing these relationships is presented in the

flowchart in Fig. 9. Here in the flowchart below, ‘n’ rep-

resents the total number of data points of porosity and grain

size plotted against OOF validation for each material as

discussed in results and discussion section.

Results and Discussion

This section establishes the correlations between the effi-

ciency of OOF2 property predictions concerning

microstructural features, grain size, and porosity. These

outcomes are broadly divided into two significant investi-

gations: thermal and mechanical analyses. Since the type of

the material controls the results and their dependence on

coating features, each is further subdivided into ceramic

and metallic coatings.

OOF Prediction of Thermal Properties in Ceramic

Coatings

Thermal conductivity is the most assessed thermal property

of plasma-sprayed ceramic coatings by OOF2. Thermal

conductivity is inversely affected by interfacial thermal

resistance, known as Kapitza, contact, and air resistance

(Ref 6). Thermal resistance at the boundary of two splats

measures resistance to heat flow through them. This

resistance plays a significant role in transferring heat flux

through the system. Additionally, contact resistance

between the splats results from heat flux scattering at the

immediate interface, whereas air resistance is observed due

to the absence of material resulting in pores. Interfaces

such as splat_splat and splat_coatings, and the remaining

data points porosity affect the overall thermal resistance of

the material more significantly at the microscale due to the

collective effect of the resistance at the given magnifica-

tion. Thus, to accurately capture the effect of these resis-

tances on the overall conductivity of the coating, it is

essential to select a representative microstructure that

retains all the features, such as porosity, interfacial regions,

and grain sizes at different lengths scales.

It is noted that 97% of the thermal analysis of ceramic

deposits studies is on ZrO2 (zirconia) coatings, and the

remaining data points are for alumina coatings (Al2O3)

(Ref 5, 6, 17-42). The data points on OOF2 predictions of

thermal sprayed ceramic coatings from the literature were

plotted against the average grain size of the microstructure,

as shown in Fig. 10. Upon assessment of this figure, it was

observed that for larger grain sizes of 8-50 lm, OOF2

validation was better (70-110%) than that for smaller grain

sizes of 2-4 lm (underestimation of 39% and overestima-

tion of 160%). This is because the OOF2 analysis is a

microstructure-based tool, and its efficiency depends on the

ability to distinguish and identify between different

heterogeneous phases. The heterogeneous phases of large

grain sizes are easy to distinguish. In contrast, the resolu-

tion of microstructure with smaller grain sizes is compar-

atively lower, thus yielding lower OOF2 validation

efficiency. However, it could be improved if higher-mag-

nification images with better resolution could be used as

input. The microstructures corresponding to the 33 data

points mentioned above are obtained through the air

plasma spray (APS), suspension plasma spray (SPS),

solution precursor plasma spraying (SPPS), and axial sus-

pension plasma spray (ASPS). Microstructures obtained

through each variant of the plasma spray process are dif-

ferent. Air plasma spray (APS) results in a traditional splat-

Fig. 8 Method employed in this study for extracting information on

the grain size of thermally sprayed coatings from all of the 37

research articles published to date. To obtain a size representative of

the entire coating, 5-7 length and width measurements were recorded

per microstructure. The average of these is used to plot the X-axis of

the following graphs

J Therm Spray Tech

123



like microstructure. In contrast, suspension and solution

precursor plasma (SPS and SPPS) lead to a much finer,

segmented, and denser microstructure due to the vapor-

ization and deposition of liquid precursor passing through

the plume.

OOF2 prediction of thermal conductivity of ceramics

showed significant dependency on the porosity content. To

explore this relationship, the OOF2 predictions of thermal

conductivity are plotted against the porosity content of the

ceramic coatings in Fig. 11(a). The results of solution

precursor plasma coatings (SPPS) were separated from

conventional plasma-sprayed coatings, as shown in

Fig. 11(b), due to the nature of the process. Conventional

plasma spray utilizes solid powder particle feedstock,

resulting in coatings with non-uniform porosity (Ref 5, 6).

On the other hand, solution-based feedstock in SPSS yields

a unique nanometer-sized microstructure with uniform

porosity and cracks without injection feed problems, as the

liquid medium helps reduce friction and avoid clogging

issues.

Fig. 9 Flowchart depicting strategy adopted in this analytical review

to establish the dependence of microstructural features on the

efficiency of calculations conducted by OOF2. Validation efficiencies

of thermal analysis were plotted against grain size and porosity, while

those of mechanical analysis were plotted against grain size.

Exhaustive data extraction was conducted from all the published

research articles mentioned in parentheses

Fig. 10 OOF2 validation efficiency of thermal conductivity plotted

against grain size of ceramic coatings deposited by various thermal

spray techniques with the reference source of data presented in

parentheses. The large range of grain sizes is presented in a

logarithmic scale in the abscissa. The predictions are more accurate

for microstructures with larger grain sizes than those with smaller

ones
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Fig. 11 Experimental data of OOF2 validation efficiency of thermal

analysis plotted against the porosity percentage of ceramic coatings

deposited by different thermal spray techniques with the reference

source of data presented in parentheses. It is observed that OOF2

predictions are more accurate for less porous microstructures in both

conventional plasma spray and solution-based plasma spray.

(a) presents all the data points obtained from the conventional plasma

spraying process. It is observed that coatings with larger grain sizes

and connected and free cracks result in higher efficiency despite

higher porosity content. Similarly, (b) presents the data points from

all the solution-based plasma spraying processes. These coatings

yielded higher efficiency of OOF2 predictions
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As shown in Fig. 11(a), for lower porosity percentages

(5-16%), OOF2 predictions span from 70 to 110% of

efficiency, whereas for large porosity percentages (18-

30%), OOF2 predictions for thermal properties show a

wide range underestimation and overestimation of effi-

ciency from 70 to 160%. OOF2 validations are more

accurate for less porous microstructures. Pores have a

complex three-dimensional shape that cannot always be

captured from a two-dimensional micrograph. As a result,

the two-dimensional numerical analysis by OOF2 assumes

that the pores morphology does not change in the third

dimension. Thus, porosity leads to overestimation or

underestimation in predicting the property value. The

porosity content in the thermal sprayed coating increases

the coating’s interfacial and air gap resistances, affecting

the thermal conductivity output solved by OOF2 analysis.

Interestingly, an outlier was observed in plasma-sprayed

coatings, as highlighted in Fig. 11(a), with a blue bubble

enclosing the plotted data from 15 to 20% porosity. These

coatings with a higher porosity content show 92-99%

efficiency in OOF2 predictions. Despite higher porosity,

higher efficiency is observed because these microstructures

have a larger grain size of 40-50 microns and unique

connected crack and free crack microstructural features

(Ref 25). ‘Free cracks’ are cracks that do not have con-

nected branched crack features in the main stem of the

crack. The presence of these connected and free cracks aids

OOF2 in improving the identification of these heteroge-

neous features in the microstructural image of the coating.

Fine cracks are often not identified by OOF2, resulting in

lower prediction efficiency. However, it is difficult to

conclude this trend since these data points come from the

same article (Ref 25). The comparison needs more exper-

imental data from OOF2 thermal analysis conducted on

ceramic coatings with similar porosity deposited by other

thermal spray processes.

The various kinds of powder feedstock that can be

injected into the plasma plume influence the coating

microstructure and OOF efficiency, as shown in Fig. 11(a).

Powder feedstock can be classified into fused and crushed

(F&C), hollow spherical particle (HOSP), sintered (Sin.)

and solution–gel (sol–gel) based feedstock. In F&C feed-

stock, the material is formed with a fused solid mass, which

is then mechanically crushed to obtain the smaller feed-

stock particle of appropriate size for deposition. The F&C

feedstock is pointed and irregular-shaped sharp particles.

The HOSP feedstock, although spherical in morphology,

produces porous microstructure due to less dense and

absence of material in the core of the particle. Sintered

feedstock has high-density individual particles. The sin-

tering process helps reduce the feedstock’s porosity to

obtain dense deposited coating through plasma spraying.

Sol–gel feedstock consists of feedstock suspended in a

liquid medium, which aids in reduced friction during par-

ticle deposition on a substrate. Sol–gel feedstock can be

adjusted to obtain a variety of microstructures, from highly

porous to less porous, based on the application and

requirement of the coating. OOF2 predictions have 90-97%

efficiency for fused and crushed (F&C) and HOSP feed-

stock, sol–gel, whereas sintered feedstock shows less than

90% prediction efficiency. The higher efficiency can be

linked to F&C feedstock having uniform-size powder

particles (10-60 lm), which aids in the uniform melting of

the feedstock through the plasma plume to produce high-

density coatings. Additionally, sintered feedstock produces

a coating with higher porosity in the study, which results in

low efficiency in OOF2 predictions. However, the sol–gel

feedstock results in interlamellar pores and intra-splat

cracks in the coatings, which are not resolved at captured

magnification. The presence of such cracks and pores

within the bulk, when not represented in the 2D

microstructure, results in less accurate OOF2 predictions

(Ref 24).

While comparing the solution-based plasma spraying

processes in Fig. 11(b), it is noticed that for lower porosity

percentages (14-16%), OOF2 predictions span from 70 to

90% of validation, showing a significant underestimation,

whereas for large porosity percentages (23-30%), OOF2

predictions for thermal properties show a wide range of

validation from 40 to 130%. However, an outlier trend has

also been noticed, highlighted by a blue bubble in

Fig. 11(b) that encloses the experimental data of 25 to 30%

porosity in the coatings. Here, the solution precursor

plasma-sprayed (SPPS) coatings show exceptionally

accurate OOF2 predictions of over 90 percent (Ref 39)

despite higher porosity percentage. Solution-based feed-

stock produces a large variation in hierarchical and mul-

tiscale microstructure depending on the solution

characteristics, plume injection, and subsequent interac-

tion. Thus, solution-based coatings require multiscale

imaging and OOF analysis for a more consistent and

accurate prediction.

OOF Prediction of Thermal Properties in Metallic

Coatings

The experimental data for the thermal properties of thermal

sprayed metallic coatings, which include metals and their

composites, are plotted in Fig. 12. The data consist pri-

marily of aluminum and tungsten-based materials. A mere

5 data points were available for the thermal analysis of

metallic coatings (Ref 21, 27). Vacuum plasma-sprayed

tungsten shows the most accurate OOF2 predictions. The

porosity percentage recorded for the tungsten coating is

7%. This higher efficiency in OOF2 predictions is because

vacuum plasma spray produces the densest coating.
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Furthermore, as highlighted in Fig. 12, a blue bubble at

14 lm grain size showed plasma-sprayed aluminum with

10% dispersed carbon nanotubes (CNTs) in the

microstructure. Despite having a smaller average grain

size, the OOF2 predictions are accurate to the experimental

estimations in the presence of CNTs. CNT reinforcements

in the microstructure become more distinct and easier for

heterogeneous phase identification in the matrix. CNTs are

externally traced on the experimentally obtained

microstructure to improve the detection of distinct

heterogeneous phases (Ref 19). The simplified image with

traced CNTs is used for the OOF analyses in the original

microstructure obtained experimentally. The increased

image resolution is the cause for better and more accurate

predictions by OOF2 despite the smaller grain size of the

microstructure. This also shows that OOF2 is a robust tool

for thermal analysis on metal matrix composite coatings

manufactured by thermal spray.

OOF Prediction of Mechanical Properties

of Ceramic Coatings

Mechanical analysis of thermal sprayed coatings includes

predicting effective elastic modulus and stress distribution

in the microstructure. In OOF, the mechanical properties of

the microstructure are obtained by applying tensile or

compressive strain, lower than the material’s yield point, to

the microstructure’s top boundary. The bottom boundary of

the microstructure is fixed in the horizontal and vertical

directions. The stress contour plot of the microstructure

provides stress accumulation around heterogeneous ele-

ments such as porosity, material jetting, and grain bound-

ary. Additionally, it highlights the regions of localized

higher strength in the microstructure. Figure 13 shows the

percentage of validation of OOF2 predictions of the overall

mechanical property of elastic modulus of thermal sprayed

ceramic coatings against the average grain size of the

microstructure. To present a large range of grain sizes, they

are plotted on a logarithmic scale in the abscissa. Like the

trend observed in the section on thermal analysis of

ceramics, OOF2 predictions have improved efficiency with

an increase in the average grain of the microstructure. For

smaller grain sizes (10-45 lm), OOF2 predictions span

from 95 to 300%, showing a large overestimation bracket,

whereas, for large grain sizes (50-500 lm), OOF2 predic-

tions for mechanical properties show increased efficiency

from 95 to 110%. The resolution of the grain boundary and

mesh is higher at a larger grain size, which increases the

efficiency of the OOF2 predictions.

Thermal-sprayed coatings are anisotropic. Figure 13

also shows that the elastic modulus predictions are more

accurate in the transverse to spray direction (denoted by ‘T’

Fig. 12 Experimental data of OOF2 validation efficiency of thermal

conductivity analysis of metallic thermal sprayed coatings plotted

against average grain size of the microstructure with the reference

source of data presented in parentheses. The metallic coatings in this

plot are sprayed by plasma spray and vacuum plasma spray process.

The OOF2 predictions yield more accurate results with an increase in

the grain size of the microstructure. It is noted that introducing

reinforcements like carbon nanotubes (CNTs) in the metal matrix

increases OOF2 predictions
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beside nomenclature) than those in a longitudinal to spray

direction (denoted by ‘L’ beside nomenclature). In thermal

sprayed coatings, the impacting splats have different

resistance to deformation in the transverse and spray

direction of the coating. A high deformation load is

required to deform the coating in the transverse direction as

it has the adhesion strength of several layers of thermal

spray deposition, and a larger number of splats are being

deformed. However, a lower deformation load is required

to deform or delaminate a coating along the spray direction

because it contains the adhesion strength of only a single

layer in the given direction. A larger number of adhered or

bonded splats thus require a relatively larger amount of

stress to bring about the same elastic strain as compared to

the smaller number of splats. Thus, OOF2 can account for

anisotropy of the microstructure by solving for stresses and

strains in two different directions. These directions are then

identified as longitudinal (xx) and transverse (yy) directions

for the user-defined boundary conditions. To conclude, the

trend of higher efficiency of OOF2 predictions in the

transverse direction than in longitudinal directions needs

additional experimental analysis of coating samples with a

similar composition of materials subjected to the same

boundary and loading conditions.

Figure 13 shows that the efficiency of OOF2 predictions

for SPPS (solution-precursor plasma spray) is unaffected

by the grain size of the microstructure. Even at smaller

grain sizes, the prediction efficiency of modulus by OOF2

is above 97%. Such a trend is attributed to aqueous

precursor feedstock, which yields unique features in

microstructure such as uniform porosity and through-

thickness vertical cracks (Ref 41). The uniformity in the

coating promotes higher efficiency due to the more precise

identification of the different phases in the microstructure.

However, more data points are required from the literature

to study this trend more precisely (Ref 20).

Figure 13 also shows that these ceramic coatings have

been obtained using different powder feedstock such as

sol–gel-based, sintered (Sin.), fused and crushed (F&C),

and hollow sphere-based (HOSP) particles. Wang et al.

predicted the elastic modulus of plasma-sprayed coatings

using four zirconia types: fused & crushed, sol–gel, HOSP

(hollow sphere), and sintered. OOF2 predictions were most

accurate for sintered zirconia feedstock and least accurate,

with a high overestimation of 200-300% for HOSP feed-

stock (Ref 24). This divergence is because HOSP feedstock

contains hollow spherical particles, which results in the

unusually large porosity of splat boundaries upon thermal

spraying, which was not included in the modeling. In

contrast, sintered feedstock shows higher efficiency in

OOF2 predictions because the porosity in the feedstock is

reduced, resulting in a dense microstructure. Interestingly,

the relative effect of porosity on thermal conductivity and

elastic modulus of the bulk is not equivalent. Thermal

conductivity is more sensitive to porosity percentage owing

to the Kapitza effect. Thus, a bulk deposit with identical

porosity will have a higher OOF2 prediction efficiency for

mechanical properties than thermal.

Fig. 13 Experimental data of OOF2 validation efficiency of mechanical analysis of ceramic plasma-sprayed coatings with the reference source

of data presented in parentheses
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OOF Prediction of Mechanical Properties

of Metallic Coatings

OOF predictions of the mechanical properties of thermal

sprayed metallic coatings were plotted against the average

grain size of the microstructure in Fig. 14. OOF2 predic-

tions were more accurate for larger grain sizes ([20 lm)

compared to the smaller grain size (\ 20 lm) due to

improved image resolution, a trend like thermal properties

validation.

As observed in Fig. 14, the wire arc-sprayed Inconel

coatings with larger grain size show an overestimation with

125-135% validation with the reported porosity of 6%.

Furthermore, OOF2 predictions for these Inconel coatings

have 5% higher efficiency in the transverse direction than

in the longitudinal direction. These observations are in

good agreement with the trend discussed for thermal

property analysis. The larger grain size and low porosity

yield higher efficiency in the OOF2 predictions. The better

prediction in the transverse direction results from higher

adhesion of coatings in the transverse direction than in the

longitudinal direction (Ref 12). Additionally, it is observed

that OOF2 predictions for the Wire arc-sprayed Zn-Al

metallic coatings with smaller grain size show an under-

estimation in efficiency with 65-75% validation with the

reported porosity of 7.35 ± 0.93% (Ref 11). This could be

due to poor resolution and sharpness of microstructure,

which prevents accurate detection of features like grain

boundaries, cracks, and porosity in the Zn-Al coating for

OOF2 analysis. However, an outlier is detected from the

trend where the Zn-Al coating shows a 10% lower pre-

diction efficiency in the transverse direction than in the

longitudinal direction. Upon examining the microstructure,

it was observed that the porosities and wide grain bound-

aries were concentrated in a vertical plane in the transverse

direction in Zn-Al coatings. These porosities and bound-

aries are more evenly distributed when observed longitu-

dinally. Thus, an accumulation of porosity in the transverse

direction could reasonably impair the OOF2 predictions

compared to that in the longitudinal direction (Ref 9-11).

Following that, the HVOF and plasma spray processes

show the most accurate OOF2 predictions. Plasma-sprayed

Inconel and tungsten carbide-cobalt alloys (WC-Co), as

shown in Fig. 14, have a large grain size greater than

20 lm (Ref 35), resulting in higher efficiency of OOF2

predictions. However, it is noticed that HVOF-sprayed

WC-Co alloy, despite a smaller grain size of 1 lm, shows

the highest prediction efficiency. This can be linked to very

low porosity in bulk, i.e., 2.86%, accounting for a highly

dense microstructure. Lower porosity yields higher effi-

ciency of OOF2 predictions (Ref 8).

It is striking to note that the cold-sprayed tungsten

deposits with 10% and 17% reinforced cobalt yield the

least accurate results, with an overestimated 200-400%

(Ref 15). Such large divergence from experimental vali-

dation could be due to the poor microstructure image

Fig. 14 Experimental data of OOF2 validation efficiency of

mechanical analysis of metallic thermal sprayed coatings plotted

against average grain size of the microstructure with the reference

source of data presented in parentheses. The overall effective modulus

of the coatings is numerically analyzed using OOF2. These coatings

are obtained through Plasma spray, HVOF, wire_arc, and cold spray

processes. The OOF2 predictions yield more accurate results with an

increase in the grain size of the microstructure. It is observed that the

deposition of cold-sprayed coatings with a higher weight percent of

metal matrix composite and HVOF-sprayed coatings results in the

most accurate OOF2 predictions
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selection and the higher porosity content. The data on

microstructural features, such as the porosity content of the

coatings, are not reported consistently in the literature.

There should be more comparable data to make

notable predictions of the trends observed in cold-sprayed

deposits to derive more significant conclusions (Ref 15).

However, for the aluminum cold-sprayed deposits, the

OOF2 prediction is significantly improved to a higher

validation efficiency of 98-101%. This boost in efficiency

results from an increase in zinc content in the aluminum

matrix. Notably, the volume percentage of zinc in alu-

minum coatings is 8-15% more than cobalt in tungsten

coatings (Ref 15). The addition of zinc increases the

heterogeneity of the Al-Zn coating, which improves the

resolution of the microstructure. Additionally, the reported

porosity for the Al-Zn matrix is 1.26 ± 0.18%, producing a

very dense microstructure for OOF2 analysis. Thus, the

increased heterogeneity and low porosity yield higher

efficiency in OOF2 predictions of Al-Zn coatings (Ref 14).

Guidebook on OOF2 Prediction of Properties

in Thermal Sprayed Coatings

It can be understood from the results and discussions that

the agreement (or absence thereof) of OOF2 calculations of

properties of thermal sprayed coatings with those obtained

from experimental measurements is a complex interplay

between structure, processing, and properties of the coat-

ings. In order to simplify this landscape, this section creates

a ‘‘guidebook’’ for new users to employ OOF2 by under-

standing the relative importance of key input features and

the extent to which they play a role in the accuracy of

calculated outputs.

Themagnification at which themicrostructure is captured

plays a crucial role in OOF2 analysis. The OOF2 software

can accommodate input data as experimental acquired or

computationally generated artificial microstructures.

Experimental microstructure images of thermal spray pro-

cess deposition techniques are commonly obtained using

optical or electron microscopy. Typically, as presented in

Fig. 15, magnifications range from 1009 to 10009 for

optical microscopy (OM), 10009 to 20,0009 for scanning

electron microscopy (SEM), and beyond 20,0009 for

transmission electron microscopy (TEM) (Ref 1). For ther-

mal spray applications, OOF2 predictions are most accurate

within the range of 10009 to 20,0009 . The significant

coating features may be under-resolved at lower magnifi-

cations, leading to inaccurate property predictions. Con-

versely, OOF2may over-resolve themicrostructure at higher

magnifications, detecting artificial features due to pixelation

and missing other hierarchical features.

In multiscale analysis, the representative volume element

(RVE) represents a portion of the material system that

accurately reflects its overall behavior. It is a valuable tool

for understanding complex materials systems (Ref 43). The

lobal RVE model focuses on larger areas of the coating,

evaluating inter-splat interactions, while the local RVE

model examines specific features like individual splats and

large porosities to assess their influence on the coating. The

optimal magnification for resolving the microstructure

depends on the process and is determined through RVE

analysis. For example, HVOF and wire arc-sprayed coatings

resolve at magnifications as low as 3009 - 5009 . Plasma-

sprayed and cold-sprayed coatings exhibit precise repre-

sentations at 1000-15,0009 magnifications. It is crucial to

select the appropriate magnification range for accurate

analysis, as lowermagnificationsmay lead to under-resolved

features, while higher magnifications can introduce artifacts.

The multiscale approach using representative volume ele-

ments (RVEs) allows for the evaluation of inter-splat inter-

actions and the influence of individual features on the overall

coating properties. OOF2 increases prediction accuracy with

higher magnifications, facilitating comprehensive assess-

ments of heterogeneous coatings.

Moving on from magnification to structural variables, the

most important ones include grain size and porosity, spray-

ing process and feedstock density, and properties related to

splat anisotropy. The deviation of OOF2 calculations from

experimental measurements is divided into agreement,

underestimation, and overestimation, with a summarized

schematic presented in Fig. 16(a). Since OOF2 is a

microstructure-basedmodeling tool, corresponding features,

such as grain size and porosity, have a relatively larger effect

on its prediction efficiency. The spread of deviation is also

the largest. In comparison, feedstock density and processing

have a lower impact on prediction efficiency. However,

higher-density feedstock particles and higher-velocity

spraying processes fare better. It thus suffices to deduce that

for all spraying techniques, OOF2 accomplishes a reason-

ably agreeable prediction limited only by the quality of

microscopic characterization. Finally, calculations along the

transverse directions are more agreeable than those in the

longitudinal one for reasons explained earlier.

Based on this summary, an index of parameters acquired

as input by the researcher for OOF2 simulation can be

itemized. These are ranked, from high to low, according to

their relative importance for obtaining an accurate validation

efficiency against experimental measurements, as shown in

Fig. 16(b). Grain size captures the top spot, followed closely

by porosity and secondphase content such as precipitates and

reinforcements at 2nd and 3rd, respectively. Of course,

related features such as cracks also play an important role. It

is thus recommended to acquire microstructural images at

multiple scales, with larger scales capturing grains and small

ones capturing intra-granular characteristics. Feedstock

density comes 4th in importance,with the spraying process at
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5th. It is noted that they cannot be isolated as spraying

velocity and feedstock density determine the grain size and

porosity. Finally, in 6th place is the direction of testing ani-

sotropy in transverse or longitudinal. Thus, despite a limited

37 articles in the literature, this summary schematic and

ranking serve as a guideline to researchers for understanding

the relative roles of various parameters in OOF2 calculations

of thermal and mechanical properties on thermal sprayed

coatings. Acquiring the inputs in this order of importance,

integrated with the overall characterization, is expected to

improve the efficiency of OOF2 validation. This schematic

serves as a guideline to researchers for understanding the

relative roles of various parameters in OOF2 calculations of

thermal and mechanical properties on thermal sprayed

coatings.

Conclusion

The analytical critique establishes a landscape of predicting

thermal and mechanical properties of thermally sprayed

coatings by object-oriented finite element modeling using

OOF2. Inferences are drawn from a review and data mining

of 37 research articles published on microstructure-based

Fig. 15 Schematic explanation for microstructure-based analysis using OOF2 software enables comprehensive evaluation of thermal sprayed

coatings at different length scales, incorporating features captured from microscopy techniques or computationally generated structures
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finite element modeling of these coatings. The thermal and

mechanical properties calculated by OOF2 are compared

with experimentally acquired results. The efficiency of

OOF2 in predicting these properties and its dependence on

microstructural features, such as length scale or magnifi-

cation, grain size, porosity, and composition, are presented.

Overall, all observations reinforce that the quality of

microstructural images acquired and the ability to distin-

guish heterogeneities in those images determine the vali-

dation efficiency of OOF2 predictions. Large grain sizes

yield higher efficiency of OOF2 predictions as they exhibit

higher resolution at the same length scale than smaller

grains. The higher resolution results in better local

microstructural features such as grain boundaries, rein-

forcements, cracks, and porosities. The ease of defining

mesh boundaries and assignment of local properties, in

turn, boosts the efficiency of OOF2 predictions. Specifi-

cally, higher porosity leads to lower prediction efficiencies

in the thermal analysis of thermally sprayed coatings.

While porosity is a non-uniform 3D microstructural fea-

ture, OOF2 computes a 2D image. The assumption of the

continuity of this 2D image in the third dimension deviates

from the calculated values from the experimentally

acquired results. It is recommended to report porosity as

key data of the microstructures in all the articles to develop

a comprehensive knowledge of the predictions by OOF2.

Furthermore, it was noted that performing analysis at

multiple length scales instead of a single scale provides the

coating quality information on local and bulk levels

throughout the microstructure.

There are a few exceptions where microstructure

obtained from SPPS sprayed coating has shown more

Fig. 16 (a) Landscape of OOF2 validations on thermal and mechanical properties of thermal sprayed coatings compared to their experimental

measurements. (b) Significance and impact of input acquisition parameters on OOF2 validation ranked in decreasing order of importance
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accurate OOF2 predictions even at smaller grain sizes and

higher porosity content in the microstructure. OOF2 pre-

dictions for mechanical analysis of thermal sprayed coat-

ings show higher efficiency in the transverse direction than

in the spray direction due to the higher coating resistance

against deformation. The data from these articles indicate

that OOF2 predictions were most accurate for plasma-

sprayed coatings. However, it is not trivial to rank the

thermal processes since only three studies focus on wire-

arc-sprayed, HVOF, and cold-sprayed coatings, respec-

tively, and 28 articles were published on plasma-sprayed

deposits. Thus, it is expected that with the growing appli-

cation of the OOF2 technique and thermal spray-based

additive manufacturing approaches, there will be a con-

tinued increase in OOF-based reports. This study demon-

strates the potential of image-based finite element analysis

performed by OOF2 to obtain a high-quality thermal

sprayed coating with optimized parameters, benefiting the

thermal spray community.
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