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Abstract This study establishes a machine learning (ML)

model utilizing the expectation-maximization approach to

predict maximum residual stresses, encompassing both

tensile and compressive states, in the cold spraying process

across various substrates. The main feature of the ML

algorithm lies in its two-step iterative process, where the

Expectation (E step) refines latent variable estimates, and

the Maximization (M step) optimizes the model’s param-

eters, aligning them with the data. Based on the results,

regression analysis highlighted the predictive capabilities

of the proposed model for tensile and compressive residual

stresses, exhibiting root mean square error values of 8.8

and 3.5%, along with determination coefficient values of

0.915 and 0.968, respectively, indicating higher prediction

performance in the compression mode. This suggests

higher predictability for residual stress within the depth of

material’s body. Moreover, analyzing low residual stress

levels underscored the significant impact of substrate and

particle mechanical strength on prediction performance,

whereas higher residual stress levels highlighted the strong

influence of thermal conductivity. This correlation suggests

that high stresses during the cold spray process generate

more heat, thereby emphasizing the crucial role of thermal

conductivity in predicting resultant residual stresses. Fur-

thermore, a notable trend emerges as tensile stress increa-

ses, spotlighting the augmented influence of processing

parameters in the prediction process. Conversely, at ele-

vated compressive stresses, material properties’ weight

factors assume a vital role in predictions. These findings

offer insights into the intricate interplay between process-

ing parameters and materials properties in determining

resultant residual stresses during cold spraying.
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3 National Amazonian University of Madre de Dios,

Puerto Maldonado, Peru

4 Academic Department of Basic Sciences, National

Amazonian University of Madre de Dios, Puerto Maldonado,

Peru

5 Academic Department of Engineering, National University

Micaela Bastidas of Apurı́mac, Abancay, Peru

123

J Therm Spray Tech (2024) 33:1292–1307

https://doi.org/10.1007/s11666-024-01776-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11666-024-01776-6&amp;domain=pdf
https://doi.org/10.1007/s11666-024-01776-6


Lnew The normalized value of specified

parameter

Introduction

Cold spray is an innovative and versatile coating technique

that has gained increasing attention in various industries,

including aerospace, automotive, and electronics, due to its

ability to deposit high-quality materials onto a wide range

of substrates at low temperatures (Ref 1, 2). Unlike tradi-

tional thermal spraying methods, cold spray utilizes

supersonic gas streams to accelerate fine powder particles

to velocities exceeding their critical bonding speed, leading

to their plastic deformation and cohesive bonding upon

impact with the substrate (Ref 3, 4). This process offers

numerous advantages, such as reduced thermal degradation

of materials, lower energy consumption, and the ability to

coat temperature-sensitive substrates (Ref 5, 6).

Despite the many advantages of cold spray coatings, the

presence of residual stresses within these coatings remains

a critical concern. Residual stresses are inherent in the cold

spray process due to the rapid bonding of particles, as well

as the significant thermal and mechanical gradients

involved (Ref 7, 8). These residual stresses can have a

profound impact on the performance and longevity of cold

spray coatings, affecting factors such as adhesion, wear

resistance, and corrosion susceptibility (Ref 9-12). Hence,

the accurate characterization of residual stress distribution

in cold spray coatings is essential for optimizing coating

performance and ensuring component reliability. Under-

standing the origins and spatial variations of these stresses

is crucial for tailoring coating properties to meet specific

engineering requirements. A multitude of recent studies

have been undertaken to assess residual stresses within cold

spray coatings across a diverse spectrum of materials. For

instance, Loke et al. (Ref 13) explored the behavior of

aluminum 6061 splats during cold spraying at various

angles. Their computational model predicted peak shear

stresses at impact angles between 60 and 65� and maxi-

mum interfacial equivalent plastic strains at 50�. Addi-

tionally, the analysis of residual stress profiles revealed an

increasing negative gradient from the coating surface

towards the substrate interface. Marzbanrad et al. (Ref 14)

identified several factors influencing residual stress for-

mation, with heat input and transfer rate emerging as piv-

otal factors. Their findings illustrated the capacity to

manipulate residual stress patterns, enabling the generation

of both tensile and compressive stresses in distinct coat-

ings. Another study provided essential processing guideli-

nes for managing porosity and mitigating residual stresses,

ensuring the production of durable Ti-6Al-4V coatings via

cold spraying (Ref 15). Boruah et al. (Ref 16) assessed the

impact of geometrical variables and track patterns on

residual stresses. Their research, combining experiments

and analytical modeling, unveiled tensile stresses near the

deposit surface, compressive stresses near the interface,

and variations dependent on layer count, substrate thick-

ness, layer thickness, and track pattern. Dang et al. (Ref 17)

investigated the impact of residual stress in a HiPIMS

titanium nitride thin film on cold-spray titanium coatings.

Their study not only assessed mechanical properties but

also focused on characterizing and understanding residual

stress behavior, shedding light on its influence for aero-

space applications.

Some studies have demonstrated that post-heat treat-

ments effectively alleviate residual stresses, leading to

enhanced interfacial bond strength and improved adhesion

through reduced porosity and better particle bonding with

the substrate (Ref 18, 19). Meng et al. (Ref 20) employed

2D and 3D finite element (FE) simulations along with hole

drilling measurements to investigate cold-sprayed copper

coatings. Their findings revealed that residual stress was

influenced by mesh size, substrate dimension, and simu-

lation duration, whereas material failure had localized

effects. Additionally, the study highlighted the role of

thermal softening, driven by increased temperature and

plastic deformation, in reducing residual stress. Lin et al.

(Ref 21) explored how bonding influenced residual stress

development in cold-sprayed Al-6061 coatings on Al-6061

substrates. They found that bonding affected the local

residual stress near interfaces, with kinetic peening intro-

ducing compressive stress and bonding inducing relax-

ation. The system’s final residual stress depended on the

balance between these effects, dictated by the local bond-

ing environment.

In recent years, machine learning (ML) has made sig-

nificant strides in various coating processes (Ref 22-25).

Despite this progress, the utilization of ML in cold spraying

coatings has been somewhat limited. To gain insights into

the expanding landscape of ML applications in cold

spraying, notable examples from recent research are

explored. Wang et al. (Ref 26) identified the critical

velocity as the focal point in cold spray applications. Their

study demonstrated that ML methods, especially those

integrating feature selection techniques, offer valuable

insights for optimizing the cold spray process. Another

study emphasized the broader scope of ML in transforming

both thermal and cold spray processes, shedding light on

the transformative potential of digital technologies in

coating applications, including cold spraying (Ref 27).

Addressing the prediction aspect, Canales et al. (Ref 28)

focused on ML techniques’ predictive capabilities for

describing the window of deposition and efficiently fore-

casting deposition outcomes in cold spraying. Another

noteworthy contribution was found in an investigation,
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focusing on predicting particle properties specifically in

plasma spraying processes, showcasing the versatility of

ML in different coating techniques (Ref 29). Mauer et al.

(Ref 30) represented a significant effort in advancing ML

applications in thermal spray processes, contributing to the

understanding of process diagnostics and control, demon-

strating ML’s potential in enhancing the efficiency of

thermal spray coating. Lastly, Valente et al. (Ref 31)

focused on the critical aspect of powder flowability in cold

spray additive manufacturing.

Remarkably, there is a significant dearth of research on

characterizing residual stress in this context; therefore, our

study endeavors to rectify this crucial gap. The primary

objective is to develop a robust ML model with the

capacity to accurately predict and characterize residual

stress in cold spray coatings. Specifically, the model is

designed not only to predict the levels of tensile and

compressive stresses but also to discern the impact of

various parameters. This includes an exploration of how

materials properties of substrate/coating and processing

variables influence cold spraying. By doing so, our research

seeks to unravel the intricate correlations between these

parameters, leading to insights into achieving an optimized

state of the cold spray process. Our approach emphasized

the integration of finite element method (FEM) simulations

as a cornerstone for acquiring essential input data crucial

for training ML models. This integration strategically

incorporates a comprehensive array of input features,

including material properties, processing parameters, and

FEM variables. The pivotal significance of this method lies

in its ability to generate rich and diverse datasets through

FEM simulations, providing a robust foundation for ML

training. This dataset not only enhances the accuracy of the

ML model but also contributes significantly to advancing

our understanding and control of residual stress—a key

determinant influencing the performance and integrity of

cold spray coatings in various industrial applications.

Finally, it is worth to mention that the primary objectives

of this work are to enhance materials design for cold

spraying, reduce the need for trial-and-error experiments to

achieve optimum conditions, and improve the inter-

pretability of coating features under various processing

parameters. These objectives are academically and indus-

trially advantageous for both materials science and manu-

facturing processes.

Modeling Principles

Finite Element Modeling

In this initial phase of our ML modeling endeavor, the

foundation of success lies in acquiring high-quality training

data. Consequently, this study conducted extensive FEM

simulations under a wide spectrum of conditions to obtain

the requisite dataset. While the primary focus of this

research centers on ML modeling, this subsection provides

a concise overview of the FEM simulation process and its

fundamental principles. It is crucial to highlight that the

reliability of FEM simulation procedure, essential for our

data collection purposes, has undergone prior validation

through experimental investigations in other studies (Ref

20, 32). The mentioned references specifically focused on

the coating process, encompassing a diverse array of input

features and targeting residual stresses for their results.

Given that our study shares a similar goal of understanding

and analyzing residual stresses within the context of the

coating process, the robustness and applicability of the

mentioned models in those studies affirm their suitability

for our specific research objectives.

To characterize the elastoplastic responses of both the

particle and substrate in cold spray, the Johnson-Cook

plasticity model and isotropic elasticity approach were

utilized. Specifically, the Johnson-Cook model was

employed for presented purpose (Ref 20, 33):

r ¼ Aþ B epl
� �n� �

1þ C ln
_epl

_e0pl

� �� 	
1� T � Tref

Tm � Tref

� �m� 	

ðEq 1Þ

The Johnson-Cook model, widely applied in the explo-

ration of dynamic impact behaviors within cold spray,

effectively amalgamates aspects such as thermal softening,

strain hardening, and strain rate hardening into a compre-

hensive framework (Ref 34). Modeling the progressive

damage and failure of materials during the cold spray

process is achievable through the application of the John-

son-Cook dynamic failure approach, which is precisely

characterized as follows (Ref 20, 35):

epf ¼ d1 þ d2 exp d3
p

q

� �� 	
1þ d4 ln

_epl

_e0pl

� �� 	
1þ d5

T � Tref
Tm � Tref

� �m� 	

ðEq 2Þ

In this study, different materials, including iron, copper,

aluminum, and titanium, were chosen for cold spraying

onto their corresponding substrate counterparts. Moreover,

thermo-mechanical properties influenced by temperature

variations were employed. The material undergoes thermal

softening with elevated temperatures, consequently

impacting the deposition characteristics.

The Abaqus/Explicit software was employed to simulate

the cold spray procedure, incorporating a fully coupled

analysis of thermal stresses. Various models, including

Eulerian 2D single-particle, 3D single-particle, and 3D

multiple-particle configurations, were investigated as part

of the study (Ref 20). In the course of the Eulerian analysis,
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materials were introduced into the particle and substrate

regions, while the surrounding space remained unoccupied.

Notably, the mesh remained unchanged, enabling the

seamless flow of materials throughout the impact process.

The selected element type was the 3D 8-node linear

Eulerian brick element, incorporating hourglass control,

reduced integration, and thermal coupling. Previous studies

suggest that the primary origin of residual stress stems

from significant plastic deformation within the coating

materials. This is particularly observed when both particles

and substrates have identical material compositions, pro-

vided that the deposition temperature remains below

400 �C (Ref 20, 36). Consequently, the simulation frame-

work deliberately omitted considerations related to heat

transfer effects. To investigate residual stresses in the

single-particle model, both 2D and 3D models were uti-

lized. In the 2D model, a single element was employed in

the thickness direction, as Abaqus/Explicit mandates the

use of 3D elements for Eulerian analysis. However, the 2D

model offers a substantial reduction in computational

expenses, making it a pragmatic choice for conducting

parametric investigations.

Figure 1a provides a visual representation of the 2D

single-particle model, comprising three key elements: a

particle with a diameter of 15-45 lm, a square substrate

with dimensions 3 mm in both height and length, and an

all-encompassing Eulerian body. The study further

explored the influence of mesh size on the resultant

residual stress, employing distinct mesh sizes from 0.3 to

1.2 lm. To commence the cold spray impact sequence, an

initial velocity was imparted to the particle. The initial

velocities ranged from 400 to 900 m/s, and temperatures

spanned from 25 �C to 250 �C.
Recent studies have shown that the presence of an oxide

layer had minimal impact on plastic deformation. Conse-

quently, in our modeling approach, we chose not to include

the oxide layer, operating under the assumption that it

would not exert any influence on the resultant residual

stresses. The boundary conditions were applied as follows:

confining the Z direction of the model to approximate the

2D model, constraining the X and Y directions of the bot-

tom and right surfaces, and constraining the X direction of

the left surfaces (See Fig. 1b) (Ref 20). In the context of 3D

simulation, Fig. 1(c) offers a depiction of 3D multiple-

particle models. In this particular model, particles were

situated on the upper surface of the substrate, and the

multiple particles were generated randomly by employing a

random seed. It is important to note that the distance

between colliding particles is less than the time it takes for

an individual particle to complete its deposition. As a

result, the next particle will collide with a depositing par-

ticle upon impact. This scenario aligns with numerous

other studies in the field of cold spray, where the modeling

of multiple particles in close proximity is a common

approach (Ref 37, 38). Therefore, the model is expected to

correspond with experimental results and provide reliable

calculations of residual stress. To prevent the emergence of

artificial stresses caused by the substrate boundaries, non-

reflecting Eulerian boundary conditions were implemented

on the lateral and lower surfaces of the substrate (Ref 20).

This allowed for the modeling of a substrate with charac-

teristics resembling those of a semi-infinite one. The par-

ticle count remained consistent across all samples at 30

particles, while the remaining processing parameters mir-

rored those employed in the 2D simulations. Moreover, due

to computational constraints, the mesh used for the 3D

models did not go finer than 1 lm, resulting in a range

between 1 and 3 lm.

Again it is worth to mention that the FE model’s relia-

bility is highlighted by the consistent use of boundary

conditions that align with previous studies (Ref 20). While

certain materials exhibit significant strain rate sensitivity,

Fig. 1 Examples depicting (a) 2D setup of a single particle model in FE simulation, (b) configuration of the 2D mesh and schematics showcasing

regions monitored for residual stress, and (c) 3D arrangement of multiple particles within the FE simulation
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posing challenges for the Johnson-Cook model, our deci-

sion to employ it finds support in the agreement between

the model and cold spray experiments for iron, copper,

aluminum and titanium observed in past studies. Notably,

this investigation did not consider interface bonding due to

the Eulerian method’s assumption of perfect bonding.

However, this omission introduces certain limitations and

implications. The absence of interface bonding considera-

tion may result in an overestimation of overall bonding

strength, impacting the accuracy of predictions for residual

stresses and mechanical properties. Neglecting variations

in interface bonding quality can also lead to some slight

unrealistic stress distributions, potentially compromising

the realism of coating behavior predictions. It is essential to

emphasize that, despite these potential implications, this

omission does not significantly impact the final results of

our study.

The extraction and evaluation of output results for the

training process were carried out via FEM analysis. In the

subsequent section, a detailed exposition of the input and

output parameters will be provided, facilitating a compre-

hensive understanding of the study.

ML Development Based on Expectation-

Maximization (EM) Learning

In our ML implementation, the critical input and output

parameters associated with the cold spraying process were

identified. The input parameters encompassed a wide range

of material characteristics for aluminum, iron, copper and

titanium, including melting temperature, thermal conduc-

tivity, hardness, specific heat, mechanical strength, as well

as FEM parameters like mesh size (Xs-ranging from 0.3 to

3 lm), processing parameters such as initial velocities (Vi-

ranging from 400 to 900 m/s), temperatures (T-spanning

from 25 �C to 250 �C), and particle size (Sp-ranging from

15 to 45 lm).

On the other hand, the output features were derived from

the residual stress profile of the cold spraying process, as

depicted in Fig. 2(a). Data collection was conducted at a

time point of 1000 ns, ensuring the reliability of the

residual stress profile results. The stress curves depicted in

Fig. 2(a) were derived by selecting a specific line within

the coating, extending from the surface to the depth. This

particular line was intentionally chosen to encompass the

maximum tensile and compression stresses, thereby offer-

ing a comprehensive representation of stress fluctuations

within the coating. Through this deliberate selection, a

subtle insight into the distribution and variation of stresses

across different layers of the coating was achieved. The

stress profile displayed clear stages: Initially, there was a

swift rise in tensile stress, reaching a maximum value; this

was followed by a decline in tensile stress, ultimately

becoming negative and transitioning into the minimum

compressive stress. Finally, the compressive stress mag-

nitude gradually decreased. This stress variation extended

from the surface to the body of the material, as illustrated

in Fig. 2(b). In this work, the maximum peak values of

residual stress in the tensile region (Ut) and compressive

region (Uc) were considered as the output targets. More-

over, 340 sets of data were prepared specifically for the

training process, emphasizing the critical role of these

simulations in providing a comprehensive and diverse

dataset for the machine learning model to learn from.

In this investigation, the proposed approach is

strengthened by the inclusion of a novel mixture of expert’s

framework, based on the principles of expectation-maxi-

mization (EM) learning, schematically presented in Fig. 3.

The principles of EM learning have consistently proven

valuable in addressing complex challenges spanning a wide

range of fields, from statistics to machine learning (Ref

39, 40). This versatile framework depicts the iterative

optimization approach, making it an ideal candidate to

tackle the multifaceted challenge of predicting residual

stress in cold spray coatings. The EM algorithm’s inherent

elegance reside in its two-step iterative process. In the

Expectation (E-step), the algorithm refines its estimates of

latent variables, which are unobserved or hidden aspects of

the system under investigation. Subsequently, the Maxi-

mization (M-step) leverages these revised estimates to

optimize the model’s parameters, ensuring they align with

the data and maximize the likelihood of the observed

information (Ref 41). This cyclic process of refining and

enhancing continues iteratively until a point of conver-

gence, which represents a model well-versed in the intri-

cacies of predicting residual stress in cold spray coatings.

The effectiveness of the EM algorithm lies in its adapt-

ability, particularly its capacity to accommodate incom-

plete or missing data (Ref 39). This adaptability, coupled

with its ability to tackle complex problems, makes EM

learning an attractive option for predicting residual stress in

cold spray coatings.

In the process of establishing the ML model, the col-

lected data firstly undergoes data normalization, which is

applied to both the input and target datasets (See Fig. 4).

Earlier research has underscored the importance of data

normalization during the training phase of artificial intel-

ligence models (Ref 42). The findings indicate that an

effective range for standardization, e.g., [0.2 0.8], can

enhance the ML performance when undergoing the training

phase. In this study, the determination of the most suit-

able normalization interval for our dataset was undertaken.

This pursuit involved systematic experimentation, ulti-

mately identifying the [0.21, 0.79] range as yielding the

most favorable outcomes. This specific range was identi-

fied through methodical exploration, wherein various
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normalization intervals were considered, and the selection

was grounded in the achievement of optimal ML perfor-

mance for the dataset. Performance metrics, such as

accuracy, convergence speed, and overall predictive pre-

cision, were assessed systematically, ensuring stability and

generalization across diverse data points. Hence, the sub-

sequent equations are applied for data normalization:

Lnew ¼ 0:21þ 0:79� 0:21ð ÞðL�min Lð Þ
max Lð Þ �min Lð Þ ðEq 3Þ

In the subsequent phase, the training procedure was

conducted using three DNNs with standardized structures

consistently applied to all AI cores, as visually represented

in Fig. 4. These DNN configurations consisted of four

hidden layers, each distinct in the number of neurons

present within them, specifically [25 25 20 20], [20 20 25

25] and [20 23 23 20], respectively. This particular choice

was made after careful consideration, finding a

compromise between the DNN’s computational efficiency

and the time required for the training process. Within the

DNN architecture, the input layer was equipped with nine

ports designed for receiving input data, while the output

layer featured a single port dedicated to relaying the pre-

dicted value of the target parameter, which, in this context,

was the residual stress.

To facilitate the training process, the widely used

backpropagation algorithm was employed, recognized for

its effective handling of error rates and well-established

convergence characteristics (Ref 43). The training regimen

comprises 1000 iterations, during which the weights

undergo updates. At each iteration, scrutiny is applied to

performance criteria, specifically RMSE and R2. If these

criteria align with performance convergence, indicated by

the gradient in weight updating, the training process con-

cludes, transitioning to the subsequent step—the validation

process. Consequently, the training process persists until

Fig. 2 (a) Various illustrations depicting the distribution of residual stress at different depths of the sample, highlighting temperature effects.

(b) 2D mapping displaying stress distribution across a sample

Fig. 3 A descriptive diagram outlining the Machine Learning

methodology introduced in this research, illustrating its systematic

framework for analyzing residual stresses. DNNs are the deep neural

networks and GNN is the gating neural network for determining the

contribution of each DNN in the target prediction
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either the prescribed number of iterations is completed or

performance effectiveness attains the predetermined

benchmarks, specifically an R2 exceeding 0.9 and an

RMSE below 10%. The focus was on adjusting the weight

and bias parameters of neurons within the hidden layers to

minimize the root mean square error (RMSE), ensuring that

the DNN was appropriately fine-tuned for optimal

performance.

Upon the completion of the training phase, the process

shifted to the application of EM learning. The primary

objective of EM at this stage was to accurately determine

the individual contributions of each AI core to the final

prediction of the target data, specifically the residual stress

within cold spray coatings. A critical departure from tra-

ditional methodologies was undertaken in training the

gating networks (GNN). Gating networks are used to reg-

ulate the flow of information within the network. They do

this by selectively allowing certain information to pass

through while inhibiting or gating other information. This

helps in mitigating the vanishing gradient problem and

capturing long-term dependencies in sequences. In this

work, instead of following the conventional Mixture of

Experts (MoE) approach, a modified gating network was

introduced, defined as follows (Ref 44):

g x; vð Þ ¼ ajpðxjvjÞP
i ajpðxjvjÞ

;
X

i

aj ¼ 1 ðEq 4Þ

where v ¼ aj; vj; j ¼ 1; 2; 3

 �

and the density function

can be written as follows:

p xjvj
� �

¼ aj vj
� ��1

bj xð Þ exp cj vj
� ��T

tj xð Þ
n o

ðEq 5Þ

Accordingly, one can obtain the global description for

MoE as fallows using Eq. (4) and (5) and the Bayes’ rule:

P xjy; hð Þ ¼
X

j

ajp xjvj
� �

P x; vð Þ Pðyjx; hjÞ ðEq 6Þ

where hj comprises the weighting and biasing parameters

for the gating network. The inclusion of these parameters

in the modified gating network holds significant advan-

tages. Unlike conventional MoE methodologies, this

modification brings several significant improvements to the

model (Ref 39). Firstly, by integrating weighting and

biasing coefficients, the modified gating network offers a

more comprehensive optimization process compared to

conventional MoE methodologies. The weighting coeffi-

cients, represented by aj, assign varying levels of impor-

tance to each AI core based on their historical performance

and domain expertise. This allows the AI cores to spe-

cialize in particular aspects of the problem, thereby

enhancing their predictive capabilities. Simultaneously, the

biasing coefficients, represented by hj, address systematic

errors or biases in the outputs, ensuring more accurate and

reliable predictions. By fine-tuning the contributions of

each core, the model can effectively mitigate the impact of

individual core weaknesses while leveraging their

strengths. Incorporating these enhancements into the gating

network not only enhances the model’s adaptability and

optimization but also provides a robust framework for

predicting residual stress in cold spray coatings.

Results and Discussion

Model Validation

Determining the most suitable hyper-parameters for ML

models is a crucial endeavor to ensure the models are both

reliable and precise. Achieving this fine-tuning of model

performance entails a meticulous process involving a mix

of the grid search algorithm and the trial-and-error tech-

niques, all carried out within the context of the cross-val-

idation procedure. To quantitatively evaluate the regression

accuracy of the ML model, we utilized two established

evaluation metrics: RMSE and R2. These metrics provide a

quantitative means to assess the accuracy of the ML model,

offering insightful perspectives on its predictive

Fig. 4 Visualization depicting the standardized structure employed

during the training procedure using DNNs and GNN for specifying

the contribution of each DNN on the target prediction
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capabilities. RMSE, by measuring the average magnitude

of the prediction errors, allows to gauge the accuracy of the

model in predicting residual stress in cold spray coatings.

Lower RMSE values indicate a closer alignment between

predicted and actual values, reflecting higher accuracy. On

the other hand, R2, as a measure of the model’s fit quality,

assesses how well the predicted values capture the vari-

ability in the actual data (Ref 45).

Figure 5 presents the performances of the ML model

with their respective hyper-parameters in the fourfold

cross-validation process, assuring the reliability and

applicability of the results. In the pursuit of a well-balanced

ML model, the strategic selection of optimal smoothing

factors and the determination of the number of hidden

neurons play pivotal roles. This deliberate choice fosters

equilibrium between underfitting and overfitting, culmi-

nating in an augmented ability of the model to generalize

effectively. By considering these parameter values, a har-

monious fit to the training data is achieved, steering clear

of unnecessary complexity. This approach not only ensures

a refined fit to the known data but also fosters heightened

adaptability to previously unseen data, thereby elevating

the overall performance of the model. The incorporation of

evaluation metrics such as RMSE, which emphasizes error

magnitude, and R2, which assesses model fit against a

simple mean, further contributes to the model’s precision,

preventing oversimplification, and gauging its capacity to

capture meaningful variations without succumbing to

noise. As can be seen in the figure, the examination

resulted in the selection of smoothing factors, 0.13 for

predicting maximum compressive residual stress (Uc) and

0.15 for maximum tensile residual stress (Ut), striking a

balance between underfitting and overfitting, thus

improving the model’s generalization capacity. Further-

more, the outcomes indicate the optimal number of hidden

neurons for the model architecture as 20-25 for both Uc and

Ut, enhancing overall performance.

The diligent examination of regression metrics within

the ML model plays a pivotal role in assessing its overall

performance, offering valuable insights into its predictive

precision, and generalization ability, all of which are crit-

ical for ensuring the model’s reliability and effectiveness.

In Fig. 6, the regression plots vividly showcase the trends

in the output targets and the distribution of deviation data,

underscoring the remarkable predictive performance of our

ML model. Notably, the presence of only a few outliers,

which deviate from the primary trend, suggests that their

impact on the overall model performance is likely minimal.

Despite their existence, the majority of the data adheres

closely to the predicted values, affirming the robustness

and effectiveness of the model in capturing the underlying

patterns in the dataset. Furthermore, it is noteworthy that

the model demonstrates higher predictive performance for

Uc compared to Ut, indicating a higher level of pre-

dictability for residual stress within the material’s depth

(body). This observation suggests that characterizing ten-

sile residual stress at the particle-substrate interface

inherently involves greater variability. Several factors

contribute to these variations, including complexities

associated with interfacial bonding, the presence of severe

local temperature gradients, and the involvement of dif-

ferent energy transfer mechanisms (Ref 16, 46). These

intricacies likely lead to sharp fluctuations in stress pat-

terns, making it more challenging to predict surface

residual stress compared to the relatively consistent com-

pressive stress distribution observed within the substrate’s

Fig. 5 Optimizing (a) the number of hidden neurons and (b) the smoothing factor within the ML model
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depth. Nevertheless, the model effectively predicts both

output targets. Additionally, Fig. 6 illustrates minimal and

comparable deviations in both the training and test sets,

indicating the model’s proficiency in predicting mechanical

properties across a wide spectrum of residual stresses. This

success can be attributed to the thorough training and

careful calibration of the ML model, which involves opti-

mizing input data for enhanced performance.

A thorough comparison between the expectation-maxi-

mization ML model and conventional models not only

underscores the high performance of the former but also

sheds light on the shortcomings of some of the latter. As

given in Fig. 7, the comparison of the expectation-maxi-

mization ML model with conventional ML models reveals

significant insights into its reliable predictive capabilities

for Uc and Ut. The results demonstrate that the expectation-

maximization ML model consistently outperforms other

models in predicting these critical output targets. For Uc,

our developed ML model achieved an outstanding R2 value

of 0.968 and a low RMSE of 3.5%, indicating its high

precision and goodness-of-fit. In contrast, the conventional

ML models, such as Random Forest (RF), Gradient

Boosting (GB), Support Vector Regression (SVR), and

Decision Tree Regression (DTR), displayed lower R2 val-

ues and higher RMSE values. Notably, the DTR model

exhibited the lowest performance, with an R2 value of

0.826 and an RMSE of 18.5%. The expectation-maxi-

mization ML model also excelled in predicting Ut,

Fig. 6 Parity plots showcasing predicted versus observed values for (a) compressive residual stresses and (b) tensile residual stresses,

accompanied by their respective data deviations
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achieving an R2 value of 0.915 and an RMSE of 8.8%.

Once again, this performance surpassed that of the con-

ventional ML models. RF, GB, SVR, and DTR exhibited

lower R2 values and higher RMSE values, with RF and

DTR displaying the weakest predictive capabilities. The

notable strength of the EM model resides in its aptitude for

capturing and elucidating intricate relationships between

input parameters and the output target. This capability

underscores the adaptability and fine-tuning features of the

model, as evidenced by its adept handling of the inherent

complexities within the dataset. These attributes collec-

tively contribute to the model’s predictive accuracy for

residual stress, emphasizing its robustness in discerning

patterns and relationships in the data. On the contrary, the

performance of conventional models, specifically DTR for

Uc and RF for predicting Ut, displayed significant short-

comings. These models grappled with the intricate intri-

cacies and interdependencies inherent in the data, leading

to notably diminished R2 values and elevated RMSE val-

ues. The challenges faced by these models could be

attributed to their inherent simplicity and inability to adapt

to complex data patterns. Additionally, the lack of feature

engineering and the limited depth of decision trees in DTR

may have hindered their capacity to discern subtle rela-

tionships in the dataset, resulting in suboptimal predictive

accuracy. Furthermore, the randomization aspect of RF

models, while useful for reducing overfitting, may have

introduced additional variability, leading to a less accurate

representation of the underlying data patterns.

Parametric Scale Characterization of the ML Model

Pearson correlation analysis is an essential tool within ML

models, enabling the discovery of feature interrelation-

ships. Understanding the correlations between input vari-

ables and the target variable is pivotal for feature selection,

model refinement, and enhancing interpretability (Ref

47, 48). Strong positive or negative correlations often

signal redundancy, facilitating the elimination of less

informative variables. Conversely, detecting weak corre-

lations can emphasize the unique contributions of indi-

vidual features.

Using Pearson analysis, the comprehensive characteri-

zation of diverse parameters offered valuable insights into

the intricacies of the cold spraying process. These insights

informed a systematic refinement and optimization of our

ML model. The understanding of each parameter’s impact

allowed for precise adjustments, enhancing the model’s

predictive accuracy. This approach ensured that the model

not only captured complex relationships within the process

but also demonstrated adaptability to variations in input

parameters. While it may have been suitable to present the

scatterplots and Pearson analysis in Sect. ‘‘Modeling

Principles’’, the outcomes are provided here for an in-depth

characterization of input-output relationships, accompanied

by a more detailed discussion.

Figure 8 illustrates scatterplots depicting input–output

relationships alongside their corresponding Pearson coef-

ficient values. Upon initial examination, it becomes

apparent that the correlation coefficient values exhibit a

complexity in the interrelationships between features, nei-

ther very strong nor notably weak. Additionally, it is

noteworthy that the absolute coefficient values pertaining

to tensile residual stresses are comparatively lower. This

phenomenon can be attributed to the heightened impact of

processing parameters and the FEM simulation procedure

on surface residual stresses, where interfacial interactions

are most pronounced and varied. Concerning mesh size, Ut

displays a modest negative correlation with an R value

of - 0.43, while Uc exhibits a stronger negative correla-

tion with Xs, represented by an R value of - 0.64. These

observations indicate that increasing mesh size has a

diminishing effect on both maximum compressive and

tensile residual stresses. The negative correlations can be

ascribed to various factors. Larger mesh sizes allow for less

precise representation of material behavior, resulting in less

accurate simulations of the cold spraying process (Ref 49).

This can disrupt material flow during particle impact,

Fig. 7 Comparative performance analysis of ML models: (a) R2 (Uc), (b) RMSE (Uc), (c) R
2 (Ut), (d) RMSE (Ut)
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diminishing the accumulation of compressive and tensile

stresses. Additionally, larger mesh sizes reduce the simu-

lation’s numerical resolution, potentially overlooking fine-

scale interactions and stress variations. Moreover, accurate

contact modeling is vital for capturing particle-substrate

interactions in cold spray simulations. Larger mesh sizes

can introduce errors into the contact algorithm, impacting

peening and bonding effects during impact, further con-

tributing to the negative correlations.

In the context of temperature, it is noteworthy that both

maximum compressive residual stress (Uc) and tensile

residual stress (Ut) exhibit negative correlations, with

R values of - 0.71 and - 0.54, respectively. These cor-

relations underscore the pivotal role of temperature control

in the effective management of both types of residual

stresses within the cold spray process. The observed neg-

ative relationships between temperature and maximum

residual stresses can be ascribed to several fundamental

mechanisms intrinsic to the cold spray process. Firstly,

elevated temperatures contribute to thermal softening of

materials, consequently diminishing their resistance to

deformation. This phenomenon translates into an increased

propensity for plastic deformation of both particles and

substrates upon impact (Ref 46). Furthermore, higher

temperatures generally result in reduced strain rate sensi-

tivity, mitigating the abrupt rise in flow stress at elevated

strain rates. Consequently, this mitigation effect leads to a

reduction in both tensile and compressive stresses, as the

material exhibits greater resistance to deformation (Ref

50). Another influential factor associated with elevated

temperatures is the facilitation of more substantial plastic

deformation of the particles upon impact. This effect serves

to ameliorate the development of tensile stresses. In

essence, these mechanisms collectively elucidate the

importance of precise temperature control as a means to

minimize both compressive and tensile residual stresses,

thereby optimizing the overall cold spray process.

Regarding initial velocity, both maximum compressive

residual stress (Uc) and tensile residual stress (Ut) display

robust positive correlations, with R values of 0.65 and 0.61,

respectively. These correlations underscore the

notable impact of initial velocity on augmenting both types

of residual stresses within the cold spray process. The

observed positive relationships between initial velocity and

maximum residual stresses can be attributed to several

underlying factors. Firstly, higher initial velocities result in

increased kinetic energy of the impacting particles, trans-

lating into more substantial plastic deformation upon

impact. This, in turn, leads to the build-up of higher tensile

and compressive stresses within the material (Ref 51, 52).

Additionally, elevated initial velocities can contribute to

greater particle-substrate interactions, resulting in

enhanced peening and bonding effects. These effects fur-

ther promote the development of both tensile and com-

pressive residual stresses.

Concerning particle size, both Uc and Ut display mod-

erate positive correlations, with R values of 0.49 and 0.38,

respectively. These correlations suggest that larger particle

sizes contribute to higher levels of both types of residual

stresses in the cold spray process. Several factors can

Fig. 8 Scatterplots illustrating the relationship between input and output parameters, alongside Pearson coefficient values
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explain these positive relationships. Firstly, larger particles

typically possess greater kinetic energy upon impact due to

their increased mass. This results in more substantial

plastic deformation and energy transfer during impact,

leading to the development of higher tensile and com-

pressive stresses within the material (Ref 53). Additionally,

larger particles may have a greater contact area with the

substrate, enhancing bonding and peening effects during

impact. This can further contribute to the build-up of both

tensile and compressive residual stresses.

In addition to processing parameters, it is essential to

investigate the influence of material properties on ML

model performance. Table 1 presents four distinct material

types characterized by their physical and mechanical

properties, which were integrated into the training process.

This enables to assess the relative importance of material

properties in shaping residual stress variations during the

cold spraying process. Figure 9 presents parallel plots that

offer insights into the trends related to material property

weight factors in this context. It is crucial to emphasize that

the concept of a weight factor is distinct from the exact

parameter values; instead, it signifies the importance of

each parameter in predicting the output target. The fig-

ure reveals that at low residual stress levels, mechanical

strength plays the most pivotal role, while an increase in

residual stress corresponds to a heightened influence of

thermal conductivity. This could be because higher stresses

generate more heat during the cold spray process, making

thermal conductivity a critical factor in predicting the

resulting residual stresses (Ref 54). Furthermore, melting

temperature and specific heat serve as moderate and con-

sistent parameters in predicting residual stress across a

wide range. This stability suggests that these properties

play a consistent role in predicting residual stress, regard-

less of stress magnitude. Nevertheless, it is evident that

thermal conductivity and mechanical strength surpass

others in terms of importance. The dominance of thermal

conductivity and mechanical strength in predicting residual

stresses could be attributed to the complex interplay of

these properties in materials deformation.

In the final analysis, we focus on the prediction per-

formance of the expectation-maximization ML model,

considering the integrated weight factors of material

properties, processing parameters, and FEM variables—

specifically, mesh size (as illustrated in Fig. 10). As the Ut

value increases, a notable trend emerges, highlighting the

enhanced influence of processing parameters, while the

impact of weight factors linked to material properties and

FEM variables shows a moderate and diminishing influ-

ence. This observation suggests that, in the context of

maximum tensile residual stress, variations in processing

parameters play a pivotal role in shaping the outcome,

potentially overshadowing the intrinsic characteristics of

materials and the effects of FEM variable (mesh size).

Conversely, as the Uc value increases, the weight factors

associated with material properties take center stage,

experiencing a pronounced amplification. Throughout this

transition, the weight factors attributed to processing

parameters and FEM variables display a moderate and

declining impact. This shift emphasizes the growing sig-

nificance of material properties, particularly in the predic-

tion of maximum compressive residual stress. It is worth

noting that mesh size (FEM variable) is a critical factor

influencing overall prediction efficiency, contributing to

model accuracy by representing the granularity of the

simulated material. An optimized mesh size allows for a

more detailed and precise characterization of material

interactions, providing higher resolution for the ML algo-

rithm to discern subtle variations in cold spraying

dynamics. However, in comparison to processing parame-

ters and material properties, mesh size holds a relatively

lesser importance in the ML model.

In comparing the maximum predictions of stresses, it is

observed that the differential significance of material

properties and processing parameters can be ascribed to the

tensile and compressive stress modes. Acknowledging the

importance of all processing parameters and material fea-

tures in cold spraying, it is discerned that when predicting

Ut, the focus of weight factors shifts to processing

parameters at high tensile stress values, connected to the

material’s ability to withstand stretching or pulling forces.

The role of processing parameters, specifically initial

velocity and temperature, appears more significant, with

heightened velocities influencing the behavior of defor-

mation and temperature affecting the softening or harden-

ing of materials. This becomes crucial in effectively

countering tensile stresses at high levels. Consequently,

processing parameters become crucial factors in shaping

Table 1 materials properties of examined metals

Material Melting temperature, �C Thermal conductivity, W/m K Specific heat, J/g K Tensile strength, MPa

Aluminum (Al) 660 237 0.897 90

Copper (Cu) 1085 400 0.39 210

Titanium (Ti) 1668 17 0.528 240

Iron (Fe) 1538 85 0.450 540
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tensile residual stresses, especially under intensified con-

ditions (Ref 55). Conversely, Uc is linked to the material’s

resistance to forces that squeeze or compact it. Material

properties, particularly those related to hardness and

mechanical strength, assume greater significance in deter-

mining the material’s effectiveness in resisting

compression (Ref 54, 56). Although processing parameters

retain significance, their weight factors for Uc might

demonstrate greater stability, given that the principal

challenge resides in the inherent material response to

compression, as opposed to external factors such as

velocity or temperature. In summary, the conclusion

Fig. 9 Weight factor variations

of key material properties

(mechanical strength (MS),

thermal conductivity (TC),

melting temperature (MT),

specific heat (SH)) in relation to

residual stress variations for

optimizing ML performance.

The plots depict the influence of

residual stress (sum of tensile

and compressive stresses) on

weight factors, indicated by line

thickness and color intensity

Fig. 10 Weight factors of main input categories upon the increase in values of (a) tensile stress, (b) compressive stress
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highlights the possibility of achieving desired properties

for coated samples by striking a balance between pro-

cessing parameters and alloy type (material properties).

This approach not only minimizes the need for extensive

trial and error but also reduces the time and costs associ-

ated with numerical simulations or real experiments.

The preceding results also underscore the intricate nat-

ure of predicting residual stress in the cold spraying pro-

cess, highlighting the indispensable role of machine

learning algorithms in deciphering this complexity.

Utilizing the developed model offers the capability to

finely adjust processing parameters and select optimal

materials, encompassing both substrate and coating, to

achieve optimized residual stress in the coating. The sta-

tistical space defined by the ML model enables precise

modifications in temperature, particle size, and velocity

under real-world laboratory conditions to attain desired

mechanical features. Furthermore, the comprehensive

inclusion of various materials in the coating process, such

as aluminum, iron, copper, and titanium, extends the pre-

dictive capabilities of the model across a spectrum of

alloys. For instance, the model’s adaptability allows for the

anticipation of residual stress in aluminum coatings with

mechanical properties akin to those studied. This versatility

proves invaluable when considering specific material

requirements for diverse industrial applications, guiding

material selection with precision. In this study, our ML

model has proven effective in accurately predicting resid-

ual stress. However, it is essential to highlight areas for

improvement in future investigations to mitigate limita-

tions in this model. For instance, expanding the number of

processing parameters as input features may address defi-

ciencies in predicting tensile stress. By incorporating

additional factors such as particle morphology, substrate

surface conditions, or spray distance, the model might

capture more intricacies of the cold spray process. These

factors contribute to a more comprehensive representation

of the cold spray process, capturing intricacies that might

significantly influence residual stress outcomes. Particle

morphology influences the impact and bonding mecha-

nisms, substrate surface conditions affect adhesion, and

spray distance can impact the deposition process. Addi-

tionally, enhancing the variety of materials (substrate and

coating) used in FEM simulation could further enhance the

applicability of the ML model. Integrating experimental

data from real-world conditions and adapting the ML

algorithm accordingly can significantly enhance the pre-

diction efficiency and reliability of the model. As the field

advances, incorporating these evolving features into our

predictive model holds the promise of refining our ability

to anticipate and optimize residual stress outcomes in cold

spraying applications.

Conclusions

Utilizing an ML model based on the expectation-maxi-

mization approach, this study predicts maximum residual

stresses, encompassing tensile and compressive states, in

the cold spraying process on varied substrates. The

required data were acquired through FEM simulations. The

key findings of this investigation are summarized below:

• Regression analysis of the EM model underscored its

remarkable predictive capacity for residual stress,

particularly demonstrating higher efficacy in compres-

sion mode compared to tensile mode. The strength of

the EM model is attributed to its adeptness in capturing

intricate relationships between input parameters and

residual stress outcomes in the cold spray process.

However, it is essential to note potential limitations,

such as adaptability to real-world scenarios and the

range of materials it can predict.

• The investigation at lower residual stress levels

revealed the critical importance of substrate and

particle mechanical strength in predictive accuracy. In

contrast, with increased residual stress levels, the

substantial influence of thermal conductivity became

more pronounced. This relationship indicates that

heightened stress levels during the cold spray process

generated additional heat, thereby magnifying the

importance of thermal conductivity in predicting

resulting residual stresses.

• As tensile stress levels rise, a discernible trend emerges,

shedding light on the amplified influence of processing

parameters in shaping the prediction process. In

contrast, as compressive stresses escalate, the predic-

tion process becomes notably reliant on material

properties’ weight factors to a considerable extent.

• Acknowledging the need for further exploration, future

research could focus on expanding processing parameters,

incorporating diverse material types, and exploring alter-

native ML approaches. These improvements aim to

enhance the model’s applicability in industrial settings,

minimizing the need for numerous trial-and-error experi-

ments and providing more efficient predictive capabilities.
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