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Abstract Based on machine learning algorithms, a method

is proposed for quality diagnosis of atmospheric plasma

spraying (APS) processes used in thermal barrier coatings

with determined coating materials and processes, aiming to

swiftly evaluate the quality of APS coatings. First, the

three-dimensional morphology of the coating is recon-

structed through surface interpolation fitting, employing

one-dimensional morphology standards and abnormal

training set samples of the plasma-sprayed thermal barrier

coating. This algorithm enables the extraction of cross

section data of the coating at any angle. The mapping

relationship between the characteristic parameters of the

Gaussian peak and the process and coating characteristics

is thoroughly analyzed, and the 12-dimensional character-

istic parameters are utilized to effectively represent the

one-dimensional morphology samples. Subsequently,

principal component analysis (PCA) and K-nearest neigh-

bor (KNN) algorithms are employed for accurate predic-

tion and classification of the process quality of coating

samples. Additionally, an exploratory factor analysis

(EFA) model is established to comprehensively depict the

relationship between plasma spraying process parameters,

the process, and the three-dimensional morphology of the

coating. The experimental results show that the machine

learning algorithm has high accuracy in quality diagnosis,

and its robustness is further verified by K-fold cross-vali-

dation. When combined with the EFA model, the proposed

method facilitates rapid feedback on process quality,

enabling real-time evaluation. Overall, this innovative

approach presents a novel solution for the quality diagnosis

of atmospheric plasma spraying processes. The incorpora-

tion of machine learning techniques and the establishment

of the EFA model contribute to enhanced efficiency and

accuracy in the evaluation process, paving the way for

advancements in thermal barrier coating applications.

Keywords APS � Gaussian peak � machine learning �
quality diagnosis � thermal barrier coatings

Introduction

There are higher demands on aero engines’ service life and

thermal efficiency in the new aircraft specifications (Ref

1, 2). The high-pressure turbine blade is one of the core

components of an aero engine (Ref 3), and it works in

environments of high temperature and high pressure, high

stress load, and strong airflow erosion. Through practice, it

has been proved that thermal barrier coating technology is

currently the most effective way to significantly increase

the service temperature and life of high-temperature alloys

(Ref 4-7), and the quality of coatings is one of the critical

factors influencing performance of high-pressure turbine

blade. Atmospheric plasma spraying (APS) is used widely

to produce thermal barrier coatings, there are more than 50

process parameters that influence the coupling between

plasma and powder by influencing particle temperature,

velocity, molten state and particle distribution, which
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finally determine a coating’s microstructure and perfor-

mance (Ref 8, 9).

In order to guide the regulation of the APS process,

some researchers established online monitoring means,

such as online particle temperature, velocity monitoring

and online performance (thickness, residual stress and

mechanical properties) evaluation (Ref 10-13). Zhang et al.

(Ref 14) explored the temperature and velocity trends of

particles in the APS spraying process, as well as their

connection with the coating morphology, and designed a

comprehensive computational scheme for the integral

solution of the control equations of the whole process of

spraying, which achieved the characterization of the energy

changes of their spraying process by a mathematical model.

Ye et al. (Ref 15) used Spray Watch 2i (Oseir Ltd., Tam-

pere, Finland) to monitor the process of supersonic plasma

spraying, and investigated the relationship between the

temperature of the particles in the spraying process and the

variation of the spraying distance, which provided some

theoretical references for the control of the spraying pro-

cess parameters.

The protective ability of the thermal barrier coating to

the sprayed substrate is determined by the microstructure

of the coating, the macroscopic coating distribution and the

interface morphology of the coating coverage area. In

reference to Lorenzo-Bañuelos et al. (Ref 16), it is sug-

gested that in order to optimize the three-dimensional

morphological characteristics of coatings and their basic

performance, it is important to establish a correlation

between the standard process parameters of spraying and

the morphological characteristics of coatings in practical

spraying operations. In the realm of microscale morphol-

ogy in coatings, the Gaussian distribution model has been

widely applied for simulating coating profiles and pre-

dicting thickness (Ref 17-19). Furthermore, Wu et al. (Ref

20) have underscored the relationship between Gaussian

function parameters and factors such as the actual feed-

stock flow rate, spray angle, and spraying distance. Trifa

et al. (Ref 21) investigated the thickness distribution and

interfacial morphology of APS coating profiles on a sub-

strate. They made measurements of the coating profiles

using two inspection devices: a coordinate measuring

machine and a laser profiler. Additionally, the coating

profile was fitted using a Gaussian function, and key

parameters such as the maximum height, width at half-

maximum height, area of deposit, and horizontal offset of

the deposit peak relative to the reference line were

extracted. These parameters were employed to define the

geometric shape of the deposition model. A mathematical

model was then established to elucidate the relationship

between process parameters and the impact on the coating.

Subsequently, Trifa et al. (Ref 22) analyzed the coating

profile topography using this model and suggested the use

of a set of parameters to comprehensively describe the

essential features of the coating topography. This approach

offers valuable insights for the process quality diagnosis of

APS coatings. Although Trifa et al.’s research on coating

profiles is primarily based on one-dimensional morphology

(fixed-point deposition), it is essential to note that param-

eters such as the maximum height, full width at half

maximum, and area of the one-dimensional Gaussian fit-

ting curve directly impact the thickness of the final thermal

barrier coating. The horizontal offset of the peak reflects

the actual plasma jet center’s deviation and the tilt degree

of the molten particles, both of which directly influence the

porosity of the final coating. Therefore, the study of coating

profiles plays a crucial role in controlling the thermal

insulation performance of the coating.

Machine learning lies at the core of the fourth industrial

revolution, commonly referred to as Industry 4.0. In the

realm of spraying research, Mauer et al. (Ref 23) shed light

on the substantial advantages and heightened reliability

stemming from the integration of machine learning tools in

the current diagnosis and control of thermal spraying pro-

cesses. Bobzin et al. (Ref 24) utilized Residual Neural

Network (ResNet) and Support Vector Machine (SVM) for

the efficient estimation of in-flight particle properties in

APS. Zhu et al. (Ref 25) applied Convolutional Neural

Network (CNN) to optimize APS process parameters,

particularly beneficial for newcomers to the field. Liu et al.

(Ref 26, 27) employed Artificial Neural Network (ANN) to

predict High Velocity Oxygen Fuel (HVOF) sprayed

coatings and developed two ANN models for improved

process control. Kolluru et al. (Ref 28) utilized ANN to

predict shear strength in spark plasma sintering (SPS),

while Zhao et al. (Ref 29) used statistical tools to analyze

the impact of process parameters on the porosity of YSZ

coatings. In cold spray research, Wang et al. (Ref 30)

employed feature selection and ANN to predict critical

velocity. Canales et al. (Ref 31) utilized machine learning

to describe the deposition window and predict efficiency in

cold spraying, suggesting optimization of material prop-

erties. In Electrostatic Spray Deposition (ESD) research,

Paturi et al. (Ref 32) used ANN and SVM to predict

coating thickness, and a genetic algorithm (GA) to opti-

mize ESD deposition parameters. The aforementioned

studies offer valuable methods for controlling the spraying

process and establishing a mapping model between process

parameters and coating performance. However, these

studies were unable to simultaneously establish a connec-

tion between these three components. Furthermore, model

training requires a larger sample dataset to ensure its

accuracy.

This paper employs laser three-dimensional scanning

technology to achieve rapid detection of the one-dimen-

sional morphology of plasma-sprayed thermal barrier
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coatings. It conducts a digital analysis of the one-dimen-

sional morphology, extracting Gaussian peak features from

the coating cross section. Based on PCA-KNN and EFA

models, the paper accomplishes swift diagnosis of coating

quality and establishes the intrinsic correlation among

coating process parameters, spraying processes, and coat-

ing quality. This provides a novel approach for diagnosing

the process quality of thermal barrier coatings.

Experimental Procedures

Sample Preparation

Compared with the whole spraying process of industrial

production, one-dimensional morphology coating is

formed by fixed-point spraying, and two-dimensional

morphology coating is formed by reciprocating linear

motion spraying in the horizontal direction of the spray

gun. At this time, the vertical feed motion is superimposed

to form three-dimensional morphology coating. Macro-

scopically, it is similar to the process of point moving into

line, line moving into surface and surface moving into

body. The two-dimensional and three-dimensional mor-

phology cannot directly reflect the coupling and migration

of plasma jet and particles in all directions due to the

stacking of molten particles. The one-dimensional mor-

phology formed by fixed-point spraying provides a new

perspective to directly study the influence of process

parameters on quality, which lays a foundation for the

subsequent study of two-dimensional morphology and

three-dimensional morphology.

The one-dimensional morphology coating was prepared

by using nano-agglomerated 8YSZ powder (38-61 lm,

Beijing Jinlunkuntian Special Machine Co., Ltd., Beijing,

China), was sprayed by 9 MB torch (Beijing Zhenbang

Aerospace Precision Machinery Co., Ltd., Beijing, China),

and the spraying power was 45 kW. The physical center of

the anode outlet of the spray gun is perpendicular to the

physical center of the sample. The spraying time of each

sample was 10 s. Since in the plasma spraying process, the

deviation variable generally consists of plasma gun power

(affected by current, voltage and H2 flow), powder feeding

parameters, main gas flow (Ar flow) and nozzle usage time,

the experimental parameters of the anomalous samples

under the deviation process were selected based on these

four perspectives. Concerning powder injection parame-

ters, although the powder injection angle affects particle

temperature and velocity, and the injection distance influ-

ences particle divergence width, research indicates that

their impact on coating performance is significantly less

than that of the carrier gas flow rate (Ref 33). In industrial

batch production, once process parameters are established,

they are less susceptible to influences from the working

environment and nozzle manufacturing errors. Therefore,

this paper does not consider the injection angle and injec-

tion distance as deviation variables but focuses solely on

the carrier gas flow rate as the variable for deviation.

Table 1 presents the detailed parameters of the APS

(atmospheric plasma spraying) process in the experiment.

Fig. 1 displays samples from the one-dimensional mor-

phology training set. As the spraying state may undergo

slight changes with an increase in nozzle working time

during spraying, standard process parameters are consis-

tently employed in the creation of standard samples. A new

nozzle is utilized to consecutively spray S-1 to S-20, cap-

turing not only the subtle variations in the spraying state

but also enhancing the diversity of standard samples. In the

preparation of abnormal samples, the impact of nozzle

working time growth is considerably less significant than

the influence of nozzle health status and process parameters

on the coating. Therefore, four nozzles with varying

degrees of burnout are used for the preparation of UB-1 to

UB-4, and four nozzles exceeding their service life are

employed in the creation of UO-1 to UO-4. For other types

of samples that deviate from the standard process param-

eters, because the range of process parameters can be set is

wider than the health status of the nozzle, new nozzles are

used in the preparation, and 3 parameters are set up above

and below the standard value, and 6 samples are prepared

for each type. Finally, a total of 46 training set samples

were obtained.

The coating morphology of the one-dimensional stan-

dard samples of fixed-point spraying under the standard

process is almond-shaped, and the microscopic profile of

the coating morphology under other deviation processes is

greatly different from the profile under the standard pro-

cess, so it is feasible to diagnose the spraying process by

the microscopic profile characteristics of the coating.

Digital Representation

Due to the small quantity of the training set samples, it was

difficult to extract image features in order to conduct pro-

cess diagnosis by using image processing models com-

monly used in deep learning (such as convolutional neural

networks, recurrent neural networks, etc.), so this design

attempted to extract the features from the three-dimen-

sional morphology of the coating, and to analyze the

dataset by using machine learning algorithms applicable to

small sample sizes.

There is a coupling between plasma and powder during

the forming process of APS thermal barrier coatings, which

leads to a Gaussian distribution on the bonding surface of

the coating. Therefore, the analysis of Gaussian curves on
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Table 1 APS process parameters of training set samples

Training

samples

Powder feeding rate,

g/min

Powder carrier gas

flow, L/min

Main gas (Ar) flow

rate, L/min

Arc

current, A

Voltage,

V

Spray

distance, mm

Spray

angle, �

S-1-S-20 22.5 7 28 600 75 85 90

UB-1-UB-4 22.5 7 28 600 75 85 90

UO-1-UO-4 22.5 7 28 600 75 85 90

UF-1 22.5 2 28 600 75 85 90

UF-2 22.5 3 28 600 75 85 90

UF-3 22.5 4 28 600 75 85 90

UF-4 22.5 10 28 600 75 85 90

UF-5 22.5 11 28 600 75 85 90

UF-6 22.5 12 28 600 75 85 90

UP-1 22.5 7 28 460 75 85 90

UP-2 22.5 7 28 480 75 85 90

UP-3 22.5 7 28 500 75 85 90

UP-4 22.5 7 28 700 75 85 90

UP-5 22.5 7 28 720 75 85 90

UP-6 22.5 7 28 740 75 85 90

UA-1 22.5 7 18 600 75 85 90

UA-2 22.5 7 20 600 75 85 90

UA-3 22.5 7 22 600 75 85 90

UA-4 22.5 7 32 600 75 85 90

UA-5 22.5 7 34 600 75 85 90

UA-6 22.5 7 36 600 75 85 90

Fig. 1 One-dimensional morphology samples of the training set
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the coating is essential for research on coating perfor-

mance. The Gaussian function is as follows:

f xð Þ ¼ Ae�
x�Xcð Þ2

2x2 ðEq 1Þ

A, Xc and x are all real numbers, and, A[ 0. where A is

the peak value of Gaussian curve, Xc is the corresponding

horizontal coordinates, and x is the standard deviation.

Fig. 2 is a Gaussian curve parametric plot. In the plot, full

width at half maximum FWHM numerically equal to

2.354 * x, the Gaussian peak area is the area bounded by

the curve and the horizontal line.

In order to show the differences of the plasma spray

process under different process parameters through one-

dimensional morphology of the coatings, the Gaussian

peak characteristic parameters were associated with the

plasma spraying process to construct a characterization

relationship, as shown in Table 2.

The laser 3D profilometer DS1050 (Cognex Corpora-

tion, Natick, Massachusetts, America) was used to scan the

one-dimensional morphology samples to obtain (X, Y,

Z) 3D point cloud data, with each sample consisting of

approximately 4500 coordinate points (Fig. 3a). In order to

extract more precise 3D morphological data of the coating,

surface interpolation was used to reconstruct the original

surface in 3D. Based on the initial point cloud space of the

samples, a meshed plane of dimensions 150 9 150 was

regenerated, and the interpolated meshed surface data were

obtained using the cubic interpolation technique in the 3D

space (Fig. 3).

In order to obtain the main feature information of the

coating, a new algorithm was designed, which takes the

vertical line from the highest point in the coating profile to

the sample base plane as the axis, and extracts the data of

the cross section curve of the profile at any angle based on

this axis. Fig. 4(a) and (b) show the schematic diagram of

extracting the cross section data at any angle, and the

flowchart of the algorithm, respectively. The principle of

the algorithm is shown in Fig. 4. The main idea is to screen

the actual three-dimensional shape data points whose dis-

tance from the section is less than the given error, and

project them onto the section to obtain the two-dimensional

data of the section.

Figure 5 shows the parameter information of peak height

(A), offset (Xc), full width at half maximum (FWHM) and

Gaussian peak area (Area) after Gaussian fitting of standard

samples and each type of abnormal samples at 0�-180�
cross section. It is evident that samples produced by the

burnout nozzle and old nozzle exhibit lower A values

compared to the standard sample. Furthermore, other

parameters for both nozzles show non-smooth transitions

across different cross sections, displaying some irregulari-

ties. Samples manufactured with deviations in the powder

gas flow rate parameter have a significant impact on both

A values and FWHM values, thereby influencing the

melting state of particles. Deviations in the main gas flow

rate parameter and spray power parameter have a pro-

nounced effect on the Xc value, indicating a substantial

displacement between the morphological center and the

spray center. In contrast, the standard sample maintains

consistently high levels for A, FWHM, and Area, with a

smaller Xc. The transitions across different cross sections

are smoother in the standard sample. Consequently, the

coating profile of the standard sample is notably superior to

that of the abnormal samples.

Figure 6 shows the Gaussian fitting curve of the coating

cross section of sample number ‘‘S-7’’ and the original

curve. The 0�, 45� and 90� cross section curves indirectly

reflect the coupling effect of plasma and powder in the

horizontal, vertical and inclined directions, showing the

combination of molten particles and the surface, which is

highly representative in the coating forming. In order to

simplify the characterization parameters of the coating, the

A, Xc, FWHM and Area of the three typical sections are

used as the 12-dimensional features of the coating after

digitization.

Method of Analysis

Principal Component Analysis (PCA) and K-Fold

Due to the limited size of the training dataset and the high

dimensionality of the data, employing certain machine

learning classification algorithms may lead to overfitting,

potentially encountering the ‘‘curse of dimensionality’’

(Ref 34). In such cases, the application of techniques such

as Principal Component Analysis (PCA) and K-fold cross-Fig. 2 Gaussian curve characteristic parametric plot
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validation becomes crucial for mitigating overfitting and

ensuring the model generalizes well across different data-

sets (Ref 35, 36). PCA is a method that transforms the

original data into a set of principal components, repre-

senting the most significant structures and variations within

the data. This transformation effectively reduces the

dimensionality of the data by eliminating redundant or

uncorrelated features, thereby enhancing the model’s per-

formance (Ref 37-39). Assuming the input data matrix is

represented by X,

X ¼

x11 x12 � � � x1m
x21 x22 � � � x2m
..
. ..

. . .
. ..

.

xn1 xn2 � � � xnm

2
6664

3
7775 ðEq 2Þ

Normalize the matrix X to obtain the normalized matrix

Xs:

Xs ¼ X � 1; 1; . . .; 1ð ÞTxav
h i

� diag 1

s1
;
1

s2
; . . .;

1

sm

� �

ðEq 3Þ

In (3), xav ¼ xav;1; xav;2; . . .; xav;m
� �

, and sj is the corre-

sponding standard deviation.

Table 2 Characterization relationship between Gaussian peak characteristic parameters and the plasma spraying process

Gaussian peak characteristic

parameters

Plasma spraying process

A (peak value of Gaussian

curve)

The degree of aggregation and particle flux in the high-temperature zone of the plasma jet

(near the center of flame flow). The higher the value of A, the higher the degree of coupling of the powder

particles to the high-temperature plasma.

Xc (horizontal coordinate of

peak value)

Represents the offset of the physical center X0 relative to the position of the nozzle outlet

center where the gun is vertically aligned, and Xc represents the offset of the high-temperature and high-particle

flux deposition position relative to the physical center when Xc = 0.

FWHM (Full width at half

maximum)

Represents the degree of aggregation of powder in the high-temperature zone of plasma. The

larger the value of FWHM, the flatter the coating profile, the lower the degree of aggregation of powder

particles in the plasma high-temperature zone, and the larger the degree of dispersion of the delivered powder.

Area (Gaussian peak area) To some extent, it can characterize the deposition efficiency of powder particles under the

same spraying process and powder feeding conditions

Fig. 3 The process of coating data extraction
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The coefficient matrix R is calculated as:

R ¼ 1

m
XT
s Xs ðEq 4Þ

Find the m eigenvalues of X and arrange the eigenvalues

from largest to smallest as k1; k2; . . .; kn to obtain the

arranged eigenvalue Mr matrix as:

Mr ¼ diag k1; k2; . . .; knð Þ ðEq 5Þ

The associated eigenvectors can be determined from the

eigenvalues. In practical scenarios, the selection of prin-

cipal component scores is guided by the cumulative con-

tribution to the variance.

The decomposition of Xs yields:

Xs ¼ T � PT þ Es; T ¼ X � P ðEq 6Þ

In Eq 6, P is the principal molecular space loading

matrix, T is the score matrix, Es is the residual matrix.

K-fold cross-validation is another essential strategy to

address overfitting. It involves dividing the dataset into K

subsets, training the model on K-1 subsets, and validating it

on the remaining subset. This process is repeated K times,

with each subset serving as the validation set exactly once

(Ref 36). The overall performance is then averaged, pro-

viding a more robust evaluation of the model’s ability to

generalize to diverse data.

K-Nearest Neighbor (KNN)

Due to an imbalance in the number of standard and

anomalous samples within the training dataset, the appli-

cation of classification algorithms such as Support Vector

Machine (SVM), Decision Tree (DT), and K-means may

encounter challenges. However, the K-Nearest Neighbor

(KNN) algorithm, being proximity-based, exhibits relative

robustness in the context of imbalanced datasets. This

resilience stems from its reliance on the distances between

samples for classification (Ref 40, 41).

In the classification process, KNN computes the Eucli-

dean distance between a new instance and instances in the

training dataset. Given two n-dimensional samples: xi ¼
x1i ; x

2
i ; . . .; x

n
i

� �
and xj ¼ x1j ; x

2
j ; . . .; x

n
j

h i
, the Euclidean

distance dij is defined as follows:

Fig. 4 Principle of the algorithm for extracting cross section data at any angle ((a) Schematic diagram for extracting cross section data at any

angle, (b) the algorithm flowchart for extracting cross section data at any angle)
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Fig. 5 The subgraphs (a)-

(h) are the peak height (A),

offset (Xc), full width at half

maximum (FWHM) and

Gaussian peak area (Area) of

the 0�-180 � section of the

coating profile of the standard

sample and various abnormal

samples, respectively. Among

them, the process parameter

deviations of abnormal samples

in subgraphs (a), (c), (e) and

(g) are set below the standard

range, and subgraphs (b), (d),

(f) and (h) are set above the

standard range.
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dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðxki � xkj Þ
2

s
ðEq 7Þ

Subsequently, it selects the closest k instances as

neighbors and predicts the class based on their classifica-

tions (Ref 42). Given that KNN employs Euclidean dis-

tance as the distance metric, the data used for classification

can either be the original 12-dimensional dataset or the

2-dimensional dataset resulting from PCA dimensionality

reduction.

Exploratory Factor Analysis (EFA)

In order to analyze characteristic dimensions that deviate

significantly between the anomalous samples and the

standard samples on the coating morphology, Exploratory

Factor Analysis (EFA) was applied. EFA is a multivariate

statistical method aimed at expressing the complex

relationships between combinations of underlying factors

by decomposing the covariance matrix between variables

(Ref 43, 44). The matrix form is given by:

X ¼ AF þ e ðEq 8Þ

In (Eq 8),

X ¼

x1
x2
..
.

xp

2
6664

3
7775;A ¼

a11 a12 � � � a1m
a21 a22 � � � a2m
..
. ..

. . .
. ..

.

ap1 ap2 � � � apm

2
6664

3
7775;F ¼

F1

F2

..

.

Fm

2
6664

3
7775; e

¼

e1
e2
..
.

ep

2
6664

3
7775

ðEq 9Þ

We denote F as the common factors or latent factors of

X, A as the factor loading matrix, and e as the unique

Fig. 6 No. ‘‘S-7’’ sample coating cross section Gaussian fitting curve and the original curve
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factors of X. A = aij, where aij represents the factor load-

ing. Mathematically, it can be proven that the factor

loading aij is the correlation coefficient between the i-th

variable and the j-th factor, reflecting the importance of the

i-th variable on the j-th factor.

In the algorithmic principle of the method, the eigen-

values of the correlation matrix correspond to the ideally

chosen coordinate axes, while the eigenvectors represent

the orientation of the data in the rotated coordinate system.

The eigenvalues reflect the variance of the data in the

corresponding dimension, while larger eigenvalues imply

that the corresponding eigenvector direction contains more

information. By analyzing the factor loadings of factors

with large eigenvalues, it is possible to calculate the extent

to which the original data contributes to the underlying

factors, thus better describing the variability in the data

(Ref 45, 46). By combining the Gaussian feature covariate

characterization relationship with the factor loadings gen-

erated by the EFA model, the factor analysis can be per-

formed by combining data from different sample sets, e.g.,

standard samples and anomalous samples under a certain

deviation process, to find out the feature dimensions of the

deviation process that have the greatest potential impact on

the original data, and then to derive the dimension that has

the greatest potential impact of each deviation process on

the physical changes of the process, and thus to build a

model of the relationship among the parameters of the

plasma spraying process, the process, and the coating’s

three-dimensional topographic characteristics (shown in

Fig. 7) in order to predict and optimize the coating’s

morphological characteristics, as well as to achieve better

process control and quality improvement.

Results and Discussion

The Preparation of the Testing Sample Set

In order to use fewer test samples to reflect the morpho-

logical characteristics of the standard and anomalous

classes of coatings, and then verify the effectiveness of the

diagnostic model, Fig. 8 shows the set of test samples,

including 2 samples of standard class (TS-1-TS-2), 1

sample of burnt nozzle (TB-1), 1 sample of old nozzle

exceeding the service life (TO-1), 2 samples of abnormal

powder carrier gas flow (TF-1-TF-2), 2 samples of abnor-

mal main gas flow (TA-1-TA-2), and 2 samples of abnor-

mal plasma gun power (TP-1-TP-2), making 10 cases in

total (For the specific process parameter settings of the test

set, refer to the training set parameters in Table 1, taking

the median of the upper and lower deviation ranges for

each type of anomaly sample).

Classification Prediction Algorithm Validation

Firstly, to mitigate the impact of different scales within the

dataset, all sample data is standardized using the z-score. In

order to select appropriate principal components that

effectively eliminate redundant information in multidi-

mensional data and prevent model overfitting, the covari-

ance matrix of the standardized dataset is computed. The

eigenvalues are then arranged in descending order, and the

cumulative variance contribution corresponding to each

eigenvalue (principal component) is illustrated in Fig. 9.

Choosing 2 to 3 principal components captures a substan-

tial portion of the information (variance contribution). For

a more concise extraction of meaningful information and

ease of visualization, 2 principal components are selected.

Figure 10 shows the test set of the PCA and KNN,

through the PCA method, with sample data from 12-di-

mensional features down to two-dimensional features.

Through the visualization, as shown in Fig. 10(a), which

reflects the distribution of the training samples and test

samples of each type after the reduction to 2 dimensions,

there is a certain clustering tendency in the two-dimen-

sional data distribution of the standard class and anomalous

class samples after the reduction of dimensionality.

Therefore, there is not only a big difference in the micro-

scopic morphology of coatings, but there is also a large

amount of information even after the digitization and data

dimensionality reduction, so it is feasible to digitalize the

samples, and the PCA algorithm is well validated.

Using the data after dimensionality reduction to validate

the KNN algorithm, Fig. 10(b) shows the data visualization

of the PCA-KNN test sample set. The species of the three

training set samples closest to the test samples can be

determined by calculating the Euclidean distance between

the test samples and the training set samples, then predic-

tion of the species of the test samples is available. After

calculating, the accuracy of the KNN algorithm in pre-

dicting the test samples using the data after dimensionality

reduction is 100%, and the accuracy of the prediction using

the 12-dimensional original data before dimensionality

reduction is 90%. Table 3 displays the actual categories,

predicted results, and accuracy of the classification algo-

rithm for each test sample.

Due to the relatively small sample size, potential over-

fitting may exist in this training set. The PCA-KNN model

is tested using K-fold cross-validation, as illustrated in

Fig. 11. For each fold, the confusion matrix is obtained,

and performance metrics, including accuracy, precision,

recall, and F1 score, are calculated. Specifically:

Accuracy ¼ Number of correct predictions

Total number of predictions
ðEq 10Þ
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Precision ¼ True positives

True positivesþ False positives
ðEq 11Þ

Recall ¼ True positives

True positivesþ False negatives
ðEq 12Þ

F1 - score ¼ 2� Precision� Recall

Precisionþ Recall
ðEq 13Þ

After conducting a 5-fold cross-validation, the PCA-

KNN model demonstrated an average accuracy of 94.7%.

Additionally, the other three relevant metrics exhibited

high values, suggesting its capability to perform well

Fig. 7 Relationships between plasma spray process parameters and plasma spray process and the 3D morphological characteristics of coatings

Fig. 8 Test sample set
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across various data subsets. These results highlight the

model’s robust generalization ability and feasibility for

practical applications.
Process Feedback Method

It can be known from the principle of the EAF model in the

‘‘Method of analysis’’ section of this article, the eigenval-

ues of the covariance matrix represent a measure of the

variance of the data in the corresponding dimension on the

Fig. 9 Cumulative Variance Contribution of Principal Components

(Eigenvalues of the Covariance Matrix)

Fig. 10 Test set PCA and KNN

Table 3 Actual categories of test samples and predicted results from

the classification algorithm

Algorithm Actual KNN PCA-KNN

Test samples Classification (Standard 1, Abnormal 0)

TS-1 1 1 1

TS-2 1 1 1

TB-1 0 1 0

TO-1 0 0 0

TF-1 0 0 0

TF-2 0 0 0

TA-1 0 0 0

TA-2 0 0 0

TP-1 0 0 0

TP-2 0 0 0

Accuracy (%) … 90 100
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rotated coordinate system. The samples’ factor analysis of

standard and deviation process (abnormal powder feed gas

flow) is shown in Fig. 12, and in Fig. 12(a), it can be seen

that larger eigenvalues correspond to eigenvectors in the

direction of data with greater variability, and four factors

can cover the majority of the amount of information of the

original data. Combining the magnitude of the eigenvalues

of the selected factors and the factor loadings generated by

the EFA model (shown in Fig. 12b), it is possible to get the

raw characteristics of the main effects of this deviant

process.

The ranking of the influence of feature parameters under

different process parameters based on the EFA model is

shown in Fig. 13, and as shown, it analyzes all the factors

of anomalous samples and standard samples under deviated

processes to get the relationships between deviated process

parameters and Gaussian peak feature parameters of the

coating morphology, which can reveal the influence of

different types of deviated process samples on the coating

morphology and establish a correlation model between

them (the radial data in Fig. 13 indicates the ranking of the

contribution of the feature parameters).

In practical engineering applications, with the compre-

hensive prediction classification algorithm and the EFA

model, before workpiece spraying, the fixed-point APS

process can be used to produce test specimens, according to

the PCA-KNN algorithm to determine whether the process

meets the requirements of the standard process. If the

requirements are met, the workpiece can be coated.

bFig. 11 (a) to (e): PCA-KNN model is tested using F-fold cross-

validation, with each fold producing a confusion matrix. (f): For each

fold, the metrics of accuracy, precision, recall, and F1 score are

calculated.

Fig. 12 Factor analysis of samples from standard and deviant processes (abnormal powder feed gas flow), ((a) Plot of factor number and

eigenvalue relationship. (b) Heat map of EFA factor loadings)

Fig. 13 Ranking of influence of characteristic parameters under

different process parameters based on EFA model
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Otherwise, it is necessary to obtain the original features

with the largest difference between the test piece and the

sample under the standard process, and combine the rela-

tionship model of process parameters-process-coating

three-dimensional morphology characteristics established

by EFA to adjust the relevant spraying process parameters

until the new test piece is judged to meet the standard

process.

Conclusions

Based on machine learning algorithms, this study proposes

a process quality diagnosis method for thermal barrier

coatings using macroscopic three-dimensional surface

features obtained through atmospheric plasma spraying.

The main conclusions are as follows:

1. After reconstructing the three-dimensional morphol-

ogy of one-dimensional coating samples, the cross

sectional morphology exhibits a Gaussian peak distri-

bution. The study establishes a correlation between

Gaussian peak feature parameters and process charac-

teristics, enabling a digital analysis of feature param-

eters for standard and anomalous process samples, with

extraction of typical feature data for analysis.

2. The effectiveness of the classification algorithm was

assessed, with the PCA-KNN algorithm demonstrating

high accuracy in the classification and diagnosis of

process quality for coated samples. Following K-fold

cross-validation, it achieved an average accuracy of

94.7%.

3. By standardizing the coating material, equipment, and

developing a standard process, this study utilizes

exploratory factor analysis to establish a correlation

model between process parameters and coating char-

acteristic morphology, enabling the diagnosis of pro-

cess abnormalities. Furthermore, through additional

data accumulation and secondary development, the

model can be swiftly applied to different plasma

spraying coatings, facilitating the rapid diagnosis of

coating abnormalities in the mass production process.
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