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Abstract The three powders (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20, Fe48Mo14Cr15Y2C15B6, and

Fe56.04Co13.45Nb5.5B25 were produced by gas atomization

and sieved to the fraction of ? 15 to 50 lm. The chemical

compositions of the powders were selected to cover three

groups of iron-based metallic glass alloys, which were

separated in terms of non-metal elements: B, C, and P

included in these alloys. The powder morphology and size

distribution were determined. The coatings were then

prepared on steel substrates with atmospheric plasma

spraying. The coating microstructures were characterized

by light microscopy, scanning electron microscopy, and

their phase compositions were confirmed by XRD. Addi-

tionally, the hardness and Young’s moduli were studied

with nanoindentation. The bond strength of the coatings

was determined by a pull-off test. Finally, the wear prop-

erties were evaluated with the rubber wheel test according

to the ASTM G65-04 standard. For the Fe48Mo14Cr15Y2-

C15B6 coatings, it was possible to preserve the fully

amorphous structure, and these coatings were characterized

by the lowest wear loss values.

Keywords amorphous structure � atmospheric plasma

spraying � coatings � iron-based metallic glasses � wear

resistance

Introduction

Iron-based metallic glasses are seen as a good candidate for

wear/corrosion resistant coatings (Ref 1). Due to the small

thickness of the coatings (up to several hundred microm-

eters), it is possible to achieve sufficient cooling rates and

preserve an amorphous structure, which is one of the main

issues limiting the processing and application of metallic

glasses. The iron-based metallic glasses proved to have

superior wear and corrosion resistance prevailing, e.g., the

HVOF sprayed SS316L coatings (Ref 2). The corrosion

resistance of metallic glasses is excellent mainly due to the

alloying elements and the homogeneous structure (Ref 3).

They usually contain Cr, Mo, and P. Cr is regarded as the

element that provides the highest passivation ability of the

Fe-based metallic glasses (Ref 4). Mo enhances the Cr

influence since it prevents the dissolution of Cr during

passivation (Ref 5). Additionally, metallic glasses demon-

strate the structurally and chemically homogeneous single-

phase nature and lack of crystalline defects, including the

grain boundary. Therefore, the passivation film is uni-

form (Ref 3).

The wear of material is usually inversely proportional to

its hardness (Ref 6). It is also reported that the presence of

nanocrystals improves the strength and toughness of the
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material and hence wear resistance (Ref 7, 8). Several

thermal spraying methods have already been tested for the

deposition of metallic glass coatings, including high-ve-

locity oxygen fuel (HVOF) (Ref 9), atmospheric plasma

spraying (APS) (Ref 10), or cold gas dynamic spraying

(CGDS) (Ref 11). Thermal spraying techniques are an

effective way to prepare various high-quality coatings

without influencing the substrate material. The key feature

is the possibility of controlling and limiting the temperature

during the spraying of metallic glass in the range close to

the glass transition temperature (Ref 9). APS is getting

more and more attention in this field because it is more

convenient and economical than other thermal spray

technologies such as HVOF, low-pressure plasma spraying

(LPPS), and vacuum plasma spraying (VPS) (Ref 12). The

typical cooling rates of a single particle can achieve 107 to

108 K/s (Ref 13) during spraying, which is sufficient for

vitrification. However, the processing of metallic glasses

by APS also has some limitations. The content of the

amorphous phase varies with plasma spray parameters but

is usually lower than that of the initial feedstock material

(Ref 12). This is the result of heat accumulation during

subsequent spray passes. Moreover, the powder oxidizes

during atmospheric plasma spraying, facilitating the for-

mation of crystallites. The APS sprayed coatings have a

mostly dense layered structure with pores and micro-cracks

originating from the loosely packed structure, gas porosity,

and shrinkage. The main wear mechanisms in the case of

plasma-sprayed coating include brittle fracture and splat

detachment. Plasma-sprayed coatings are prone to detach-

ment of the splats, and unfortunately, the low toughness of

metallic glasses favors brittle fracture during the friction

processes (Ref 12, 14). Consequently, the correlation to the

microhardness is not linear but depends on inter-splat

binding (arc power), crystallite amount, and their size in

the coatings (Ref 5).

Iron-based metallic glasses might be classified into three

main groups FeC(B), FeB, and FeP(C), based on metalloid

glass-forming elements that differ in glass-forming ability,

strength, hardness, and ductility. The FeC(B) and FeB-type

glasses show high strength and hardness but much lower

ductility than FeP(C) type (Ref 15). Usually, FeC(B) types are

processed because of their high glass-forming ability. The

usually deposited alloys include: Fe41.87Cr14.37Ni1.06Mo11.33-

C20.82B7.15Si3.40 (Ref 16), Fe45Cr16Mo16C18B5 (Ref 17),

Fe48Cr15Mo14C15B6Y2 (Ref 18, 19), Fe73Cr2Si11B11C3 (Ref

20–22), FeSi3.1B4.5 (Ref 23). In particular, the Fe48Cr15-

Mo14Y2C15B6 alloy is widely studied (Ref 1, 10, 24) because

of its excellent corrosion resistance and relatively high glass-

forming ability (Ref 24). In present study, Fe48Mo14Cr15Y2-

C15B6 was compared to two other alloys (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 and Fe56.04Co13.45Nb5.5B25. The

(Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 alloy is characterized

by enhanced plasticity while continuing to exhibit good

mechanical properties and a high tendency to vitrification (Ref

25). The alloys from Fe-Co-Nb-B systems exhibit an ultra-

high compressive strength reaching 4.5 GPa (Ref 26). The

selection of these three alloys allows the cover of three groups

of iron-based metallic glasses, namely FeC(B), FeB, and

FeP(C).

Materials and Methods

Feedstock Characterization

Three types of metallic glass powder were selected for

coatings: (1) Fe48Mo14Cr15Y2C15B6, (2) (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20, (3) Fe56.04Co13.45Nb5.5B25. The

powders were custom made (Nannowal GmbH & Co. KG,

Berlin, Germany) by gas atomization and then sieved to the

desired fraction ? 15 to 50 lm. The size distributions of

the powders were analyzed by wet laser diffraction

(HELOS/BR, Sympatec GmbH) and are within the

assumed range. SEM images of the powders used and their

size distribution are shown in Fig.1. Two powders (Fe0.9-

Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 and Fe56.04Co13.45Nb5.5-

B25 are mostly spherical, while the third powder

Fe48Mo14Cr15Y2C15B6 is partially elongated and irregular

in shape. A similar shape of these powder particles was

observed by Manai (Ref 27). The precipitations are visible

in the selected particles of the Fe56.04Co13.45Nb5.5B25

powder (Fig. 1g). These may be the a-FeCo precipitations

observed during the crystallization of alloys from the Fe-

Co-Nb-B group (Ref 28). However, since no clear peaks

were observed in XRD (Fig. 4), they were not accurately

identified. All three powders show a slight porosity within

the particles. During gas atomization, the so-called bag

break-up may occur. A melt fragment is shaped into a bag-

like form that spreads in the gas flow direction. The bag

may then shatter into fine droplets or close, forming a large

drop (hollow sphere) with a trapped atomization gas inside

(Ref 29). Apart from gas velocity, the formation of hollow

spheres is directly related to the viscosity of the melt. The

higher the viscosity, the greater the possibility of gas

trapping (Ref 30). The metallic glasses exhibit large vis-

cosity; therefore, gas porosity inside the iron-based

metallic powder particles is likely to occur.

Thermal Spray

The deposition of coatings was performed using an atmo-

spheric plasma spraying process.

The process was carried out by one cathode-one anode

SG-100 plasma torch (Praxair), which was installed on a

6-axis industrial robot. In order to limit the heat input

J Therm Spray Tech (2022) 31:1330–1341 1331

123



during spraying, the plasma was formed by using pure

argon only, with a flow rate equal to 45 slpm. Electric

power was also limited to a constant value equal to 22 kW.

The powder was injected radially and externally into a

plasma jet. The powder feed rate was set as a 20 g min-1,

which was controlled during the deposition process. Argon

was used as a carrier gas with a flow rate of 3 slpm.

On the contrary, the substrates were mounted on a car-

ousel and rotated by a turntable. The rotational speed was

set to ensure the relative velocity between the plasma torch

Fig. 1 Cross sections and size distributions of used powders: (a, b) Fe48Mo14Cr15Y2C15B6, (c, d) (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20, (e–g)

Fe56.04Co13.45Nb5.5B25
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and the substrates as 400 mm s-1. The spray stand-off

distance was set to be 90 mm. The substrates used in this

work were made of S235 steel and were in the form of

coupons 40 mm in diameter and 10 mm in thickness. The

substrates were sand-blasted and cleaned with ethanol

directly before plasma spray deposition. The described

spray procedure was similar for each type of powder

feedstock.

An infrared pyrometer monitored the thermal history on

the face side of the samples to keep the narrow regime of

temperature changes (as shown in Fig. 2). The substrates

were preheated before spraying to * 200 �C, and then the

spray cycles were programmed so that they did not exceed

* 450 �C. The samples were also intensively cooled by

air-blades during spraying.

Coatings Characterization

Metallographic specimens were prepared from the depos-

ited coatings and then subjected to observation with a

digital light microscope (LM, Keyence VHX-6000) and

scanning electron microscopes equipped with EDS (SEM,

Tescan Vega 3, and ZEISS LEO1455VP). Based on the

micrographs, porosity and coating thicknesses were cal-

culated using ImageJ software. X-ray diffraction was per-

formed on the samples to identify the phases present in the

coatings. XRD measurements (Rigaku Ultima IV Diffrac-

tometer) were performed with Cu Ka irradiation (k =

1.5406 Å) in the range of angles 2h from 20� to 90�, a step

of 0.05 and an exposure time of 4 s per point. Nanoin-

dentation (Anton Paar, NHT3) was performed with a

Berkovich-type tip, calibrated on fused silica samples. The

applied load was set to 50 mN and the dwell time to 30 s.

The loading and unloading rates were equal to 100 mN/

min. The hardness and elastic modulus were calculated

using the Oliver and Pharr method (Ref 31). At least ten

measurements were taken for each coating, and an average

was calculated. Furthermore, Vickers microhardness was

measured under a 2.49 N load. Similarly, at least ten

indentations were made, and the average value was cal-

culated. The bond strength was determined by a pull-off

test carried out with an Elcometer 510 tester (Elcometer

Instruments, Manchester, UK). Epoxy adhesive Distal

Classic (Libella, Warsaw, Poland) was used to bond a

counterpart with a diameter of 10 mm to the coating. The

pin was pulled with a constant pressure rate of 0.4 MPa/s.

After the test, the failure mode was determined. The

average value and standard deviation were calculated based

on three measurements. To investigate the wear charac-

teristics of the samples, a rubber wheel wear test was

carried out according to ASTM: G-65-04 (Ref 32) standard

with a load of 130 N and a sliding distance of 71.8 m

(0.5 min), 718 m (5 min), and 1436 m (10 min). The three

specimens of each coating were tested, and an average

value was reported. The samples were weighed before and

after the wear test with a high accuracy balance.

Fig. 2 The representative plasma spray thermal history recorded by infrared pyrometer
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Discussion and Results

Microstructure

The low and high magnification micrographs of the depos-

ited coatings are shown in Fig. 3 for both cross section and

surface. All coatings have a typical lamellar microstructure

and good adhesion to the substrate. The Fe48Mo14Cr15Y2-

C15B6 coating has the lowest thickness of* 215 lm. This is

due to the elongated shape of the powder particles, which

caused them to block in the powder feeder and thus hindered

their uniform feeding. The thickness of the other two

coatings is comparable * 328 lm for (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 and * 308 lm for Fe56.04-

Co13.45Nb5.5B25. Oxidation is very limited in the

Fe56.04Co13.45Nb5.5B25 coating, contrary to the rest of the

coatings. The highest porosity of * 5.3% was recorded for

the Fe56.04Co13.45Nb5.5B25 coating. The pores are visible as

dark regions and partially aggregated, forming single clus-

ters. The Fe48Mo14Cr15Y2C15B6 and (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 coatings exhibit lower porosity of

* 3.7 and *2.8%, respectively. Additionally, the diameter

of the pores is, on average lower than for Fe56.04Co13.45-

Nb5.5B25. Furthermore, randomly distributed vertical micro-

Fig. 3 Cross sections of the deposited coatings: (a–c) Fe48Mo14Cr15Y2C15B6, (d–f) (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20, (g–i)

Fe56.04Co13.45Nb5.5B25

1334 J Therm Spray Tech (2022) 31:1330–1341

123



cracks and cracks are visible in the Fe48Mo14Cr15Y2C15B6

coating. These cracks run through the entire coating or occur

near the substrate or at the top of the coating. A similar

phenomenon was also mentioned by Xie et al. (Ref 33).

Numerous cracks in the Fe48Mo14Cr15Y2C15B6 coating

could be attributed, among other factors, to the shape of the

powder. Powder feeding was not perfectly stable during the

deposition process, which caused differences in the thermal

history of various particles. This, in turn, led to an increase in

thermal stresses and finally to crack formation. Iron-based

metallic glasses are brittle materials, and therefore, it is not

possible to reduce the resulting thermal stresses through

plastic deformation. The two remaining coatings (Fe0.9-

Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 and Fe56.04Co13.45Nb5.5-

B25 were free of cracks. The surface of all coatings was also

observed. In the case of the Fe48Mo14Cr15Y2C15B6 coating,

the surface consists of well-melted splats, but the fine, par-

tially, or even non-melted particles are visible in the coating

structure. This was probably caused by the fraction of fine

particles observed in this powder feedstock, as Fe48Mo14-

Cr15Y2C15B6 had the lowest d10. These fine powders were

not perfectly injected into the core of the plasma jet and

traveled in colder plasma periphery regions. Thus, they were

not perfectly heated by the plasma jet. The other two coat-

ings, that is, (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20, and

Fe56.04Co13.45Nb5.5B25, showed a much more uniform sur-

face. The splats are homogenously flattened and cover most

of the surface, with just a single very fine non-melted powder

particle embedded in the coating structure.

The chemical composition of the deposited coatings

(Table 1) agrees with the target chemical composition. All

elements are included besides boron. Boron is a light ele-

ment and cannot be measured accurately with a standard

EDS detector. Therefore, it was omitted. The carbon con-

tent is clearly overestimated, but its measurement using an

EDS cannot be considered fully reliable.

X-ray Diffraction

XRD patterns are shown in Fig. 4. In all coatings, a halo peak

appears, which confirms that an amorphous phase is present.

It is most evident in the case of Fe48Mo14Cr15Y2C15B6. The

glass-forming ability (GFA) of Fe56.04Co13.45Nb5.5B25

seems to be lower than Fe48Mo14Cr15Y2C15B6, which is

evidenced by a smaller halo peak in the XRD pattern. The

Fe48Mo14Cr15Y2C15B6 material is known for its exceptional

glass-forming ability (Ref 24). Additionally, crystallization

peaks are present in (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20

coating, which were not present in the feedstock powder.

Other peaks coming, e.g., from oxides, were not detected,

which indicates their low content. Heating the metallic glass

above crystallization reduces the free volume and conse-

quently causes embrittlement of metallic glass (Ref 34, 35).

However, there is a particular critical volume of crystallites

above which the ductility of the metallic glasses increases

(Ref 36). The increase in coating toughness after crystal-

lization was observed exemplary by Yasir et al. (Ref 37).

Bond Strength

The bond strength of the coatings was investigated by a

pull-off test. The results are presented in Fig. 5. The lowest

bond strength of 30.1 MPa was observed for Fe48Mo14-

Cr15Y2C15B6. The bond strength of (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 and Fe56.04Co13.45Nb5.5B25 was

comparable and amounted to * 40 MPa. The fracture type

was adhesive in all cases. Usually, the tiny fragment of the

coating was ripped off, as shown in Fig. 5. The observed

bond strength values are similar to the 25–41 MPa reported

by Peng et al. (Ref 38) for HVOF sprayed Fe48Mo14Cr15-

Y2C15B6 coatings and much higher than 14.9–18.9 MPa

reported by Wang et al. (Ref 39) for plasma-sprayed Fe-

based coatings on Al-Si substrate. Although the adhesion

of metallic glass coatings can reach up to[68 MPa when

applied with HVOF (Ref 40) the obtained values are high

enough not to cause increased abrasive wear. Especially,

since there was an adhesive type of fracture.

Nanoindentation and Microhardness Measurements

The values obtained from the indentation test and micro-

hardness measurement are shown in Table 2. The differ-

ence between the Vickers test values and the recalculated

hardness value from the nanoindentation test is approxi-

mately * 200 HV. The highest one might be noticed for

Fe56.04Co13.45Nb5.5B25. The differences are caused by

Table 1. Chemical composition of deposited coatings

Coating Fe

at.%

Cr

at.%

Mo

at.%

Y

at.%

Co

at.%

Nb

at.%

C

at.%

P

at.%

Si

at.%

Fe48Mo14Cr15Y2C15B6 44,26 12,63 15,05 1,35 … … 26,71 … …
(Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 61,90 … 3,59 … 8,36 … 16,72 7,56 1,87

Fe56.04Co13.45Nb5.5B25 72,90 … … … 20,76 6,33 … … …
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defects in the deposited coatings, e.g., pores, micro-cracks,

or crystallites. They are revealed through the use of higher

loads and hence a larger area from which data are gathered.

The hardness recalculated from nanoindentation for Fe48-

Mo14Cr15Y2C15B6 alloy is close to the values obtained for

bulk material (Ref 41). It confirms the amorphous state of

the coating. In the case of Fe56.04Co13.45Nb5.5B25, the val-

ues are much lower than for the bulk material (Ref 26).

There is no direct hardness data for (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20, but it can be suspected that the

Fig. 4 XRD patterns of the

powders and deposited coatings

Fig. 5 (a) Bond strength of deposited coatings, typical fracture: (b) coating, (c) pin
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obtained hardness values are lower than for the bulk

material. The obtained elastic moduli are also relatively

low for iron-based metallic glasses (Ref 42).

Abrasive Wear

The lowest wear was recorded for the Fe48Mo14Cr15Y2-

C15B6 coatings (Fig. 6). For coating Fe56.04Co13.45Nb5.5-

B25, the abrasive wear was twice as high. The highest wear

loss was observed for (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20, approximately three times

higher than for Fe48Mo14Cr15Y2C15B6. Overall, the

obtained values of * 128 mg for Fe48Mo14Cr15Y2C15B6

and of * 242 mg for Fe56.04Co13.45Nb5.5B25 appear

promising in the background of the literature data (Ref 43).

Exemplary, the values given for plasma-sprayed Al2O

coating with a thickness of 200 lm and a porosity of 5%

tested under similar conditions amounted to * 275 mg

after 5 min. In a further step of the test, this coating was

destroyed (Ref 43). It must be noted that there is a possi-

bility of further optimization of the coating microstructure

toward minimalization of the present defects.

Figure 7 shows the calculated values of g and the H/E

ratio from the nanoindentation data. It was observed that

wear resistance is not influenced by hardness alone, but

elasticity also plays a role. The H/E ratio can be seen as an

elastic limit of strain (Ref 44). It indicates the depth that a

material can tolerate without exceeding the elastic limit

(Ref 45). The g value provides information on how much

energy is released after loading the material and is defined

as a ratio of the elastic deformation energy to the total

deformation energy during the loading-unloading cycle in

the nanoindentation test. The total energy might be calcu-

lated as the integral of the area under the load depth

indentation curve from the start point to the maximum

indentation depth. During the unloading phase, materials

recover partially, and hence the final indent depth is

reduced in comparison to the maximum indentation depth.

The elastic energy is given by the integral of the area under

the load depth curve from the maximum indentation depth

to the final depth. The g value is provided by the following

formula:

g ¼ Eelastic

Etotal

where: Eelastic—elastic deformation energy, Etotal—total

deformation energy.

The higher the g, the greater the material’s ability to

absorb deformation without damage. Both g and the H/

Table 2. Nanoindentation and hardness measurement results

Fe48Mo14Cr15Y2C15B6 (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 Fe56.04Co13.45Nb5.5B25

Parameter HIT HVIT HV0.3 EIT HIT HVIT HV0.3 EIT HIT HVIT HV0.3 EIT

Unit [MPa] [GPa] [MPa] [GPa] [MPa] [GPa]

Mean 12984 1203 1020 173 10882 1008 810 162 10998 1019 792 181

Standard deviation 1144 106 74 9 1048 97 96 9 1430 133 71 8

HIT, indentation hardness; HVIT, Vickers hardness calculated from indentation hardness ;HVIT = HIT / 10.80, EIT, indentation elastic module

Fig. 6 Rubber wheel test results for deposited coatings

Fig. 7 The relationship between H/E and wear loss for deposited

coatings
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E ratio can provide information on the resistance to abra-

sive wear.

The correlation between H/E, g, and the mass wear loss is

not perfect. Based on the obtained H/E data, it might be

suspected that Fe48Mo14Cr15Y2C15B6 will have the highest

abrasion resistance, followed by (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 and Fe56.04Co13.45Nb5.5B25.

However, the mass wear loss for (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 is unexpectedly high. Figure 8

shows the coatings after the rubber wheel test. The worn

surface (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 coating

reveals continuous grooves and some plastic deformation

along the sliding direction. In the other two coatings, with

less abrasive wear, grooves are also present, but the surface is

smoother. The micro-cutting was partially hindered, and the

flacking-off occurred. Micro-cracks might form under

abrasion conditions and grow especially at the boundary of

the oxide lamella and metallic lamella. After exceeding the

critical size, flacking-off occurs (Ref 46). This mechanism is

prevailing for brittle materials (Ref 47). It might be observed

in the form of pits and micro-cracks for the Fe48Mo14Cr15-

Y2C15B6 and Fe56.04Co13.45Nb5.5B25 coatings. In the Fe48-

Mo14Cr15Y2C15B6 samples, an additional mechanism was

chipping coating fragments due to cracks. The measured

Fig. 8 Coating surfaces and cross sections after abrasive wear test of deposited coatings: (a–c) Fe48Mo14Cr15Y2C15B6, (d–f) (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20, (g–i) Fe56.04Co13.45Nb5.5B25

1338 J Therm Spray Tech (2022) 31:1330–1341
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adhesion of the coatings does not allow us to conclude that

this results from a lack of cohesion of the entire coating.

Instead there are some local lacks of cohesion due, e.g., to

cracks or unmelted powder particles. This causes local

peeling of the coating fragments, accelerating its abrasive

wear. The results obtained show that the best properties were

obtained for the coatings with a fully amorphous structure,

despite the existing cracks and high brittleness. Interestingly,

the (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 alloy, charac-

terized by the highest plasticity (according to literature 1.7%

(Ref 25)), showed the worst properties in the form of coating.

The ductility of the (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20

samples was partially confirmed by the low Young’s mod-

ulus and the abrasive wear mechanism itself. At a hardness

comparable to Fe56.04Co13.45Nb5.5B25, the coating exhibited

much worse wear resistance. One of the reasons may be the

oxide content in the (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20

coating which could have significantly affected the hardness

results (the Fe56.04Co13.45Nb5.5B25 coating was almost not

oxidized) and therefore increased the calculated H/E ratio for

(Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 coating. Addition-

ally, the presence of the crystallized phase in the form of

ferrite in (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 coating

could increase abrasive wear due to its low hardness. It was

claimed that the second phase is often introduced into the

metallic glass on purpose to increase its toughness (Ref 48).

Also, crystallization may improve ductility and reduce

abrasive wear (Ref 49). However, this effect was not

observed in this study for ferrite precipitates characterized by

low hardness.

Conclusions

This study investigated the microstructure and wear prop-

erties of three iron-based metal glasses that differ among

others in their GFA and plasticity: (1) Fe48Mo14Cr15Y2-

C15B6, (2) (Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 and (3)

Fe56.04Co13.45Nb5.5B25. The powders were produced by gas

atomization, and some powder particles contained fine

pores due to gas entrapment. The two powders (Fe0.9-

Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 and Fe56.04Co13.45Nb5.5-

B25 were highly spherical, while the particles of the

Fe48Mo14Cr15Y2C15B6 were slightly elongated, which

made feeding more complex and less stable. The powders

were used for coating deposition by atmospheric plasma

spraying (APS). The coatings were characterized by

porosity ranging from 2.8 to 5.3 vol.%. Fully amorphous

Fe48Mo14Cr15Y2C15B6 coatings showed the lowest wear

loss despite the vertical crack in their structure. In terms of

wear resistance, the second-best performance was obtained

with Fe56.04Co13.45Nb5.5B25 coatings. The (Fe0.9Co0.1)76-

Mo4(P0.45C0.2B0.2Si0.15)20 coating was found to have the

lowest wear resistance. The results obtained did not

entirely coincide with the calculated values of H/E. This

could be partially caused by the high oxidation of the

(Fe0.9Co0.1)76Mo4(P0.45C0.2B0.2Si0.15)20 coating and, there-

fore, the overestimated hardness values compared to the

oxide-free and porous Fe56.04Co13.45Nb5.5B25 coating. The

measured weight loss values were lower than in the case of

Al2O3 plasma-sprayed coatings, which shows that metallic

glasses can be considered promising anti-wear protective

materials.
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