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Abstract This perspective paper summarizes the authors’

view on how process diagnostics and control can help to

gain a deeper insight into thermal spray processes and to

better understand the underlying mechanisms. The current

situation in terms of available process control strategies

and suitable sensors is described. In perspective, it is

assumed that with suitable models, sensors and machine

learning tools, it will be possible to perform a smaller

number of experiments to develop coatings with specific

target characteristics. In addition, trained machine learning

tools can be used to implement an efficient control strategy

to produce coatings with high reproducibility and reliabil-

ity. The corresponding existing knowledge gaps are ana-

lyzed to identify needs for future research.

Keywords processing, reproducibility � processing,

stability of TSprocess � processing � reliability

Introduction

It is well known that thermal spray guns are sensitive to

aging. In plasma spraying, electrodes wear results in the

voltage reduction, thus in power level reduction, if the

power source is operated in a constant current mode

(Ref 1). In this case, it is widely practiced to increase the

secondary plasma gas flow rate. In (Ref 2), time resolved

diagnostic measurements of the individual particle veloci-

ties and temperatures were taken and correlated to the

instantaneous voltage difference between the electrodes.

The time-dependent variations in particle temperature and

velocity due to the power fluctuation induced by the arc

movements were found to be very large when plasma torch

operates under the restrike mode (DP/P & 100%). When

operating under the takeover mode, those fluctuations

decrease but still remain fairly high (DP/P & 30%). Thus,

the arc dynamics are a prime source of broadening the

distribution of particle in-flight characteristics. As a con-

sequence, the deposition rate and the microstructure of the

sprayed coating are affected. A higher jet fluctuation thus

leads to an increased porosity, a higher content of partially

or not melted particles as well as to lower deposition rates

(Ref 3). In (Ref 4) it was found that it is preferable to

maintain the in-flight particle temperature around a con-

stant value to obtain more consistent and reproducible

deposition efficiencies and microstructures, instead of

keeping a constant input power by adjusting the secondary

hydrogen flow rate.

This example proves the importance of getting insight

into thermal spray process and to understand the governing

mechanisms. However, the matter is complex, obviously.

Can process diagnostics and control help?
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Current Situation

A basis for process analyses involves schemes systemizing

process variables and relations which have an impact on

the coating properties. Several examples can be found in

the literature, e.g., in (Ref 5-7). It must be noted that these

schemes do not reflect the complexity of all effects on the

coating properties in depth, e.g., stochastic, 3D, or material

aspects.

Heimann et al. proposed a process structure with a three-

tiered hierarchy of parameters relating extrinsic ones and

intrinsic ones (Ref 8). The parameters affecting the coating

properties were structured as follows, first level: plasma

spray system settings, second level: temperatures of

plasma, particles, and substrate, and third level: particle

velocity, degree of melting, and degree of bonding.

Moreau described the thermal spray processes as com-

posed of three zones (or sub-processes). They correspond

to the generation of the heat source, the heat and

momentum transfer to the particles, and the coating

buildup (Ref 9). Feedback strategies for process control

were proposed comprising nested loops on different levels

which are associated to the three process zones and their

main input variables.

Another scheme was proposed by Mauer et al. (Ref 10).

Here, the torch parameters, feedstock characteristics, sub-

strate conditions, and robotic motion are designated as

extrinsic operating parameters acting as input variables on

the process. Monitoring of extrinsic variables can be sup-

plemented or replaced by the observance of intrinsic ones.

The latter are most influential as they are closely linked to

the deposit state and bundle a variety of input parameters.

Intrinsic parameters are associated with process sub-steps

(Ref 11). Thus, it is apparent that the development of the

torch voltage, plasma jet properties, and spray stream

characteristics impact the deposit state by increasing

directness the more downstream they are found in the

process scheme (Ref 10).

The demand on process control strategies implies the

request for appropriate sensors. Focusing on intrinsic

parameters, various sensors are available to analyze the

voltage fluctuation, average torch power, particle flux in

the powder feedline, and in particular in-flight particle

velocities and temperatures. Regarding particle diagnostic

systems, since the mid-90s some sophisticated systems

were developed. Some of them are even suitable for

application in industrial environments (Ref 1) while others

are dedicated rather to R&D (Ref 12). Anyhow, the way to

on-line controls with a feedback of the sensor data to the

process controller was considered as long regarding the

lack of knowledge on correlations between coating service

properties and in-flight particle parameters (Ref 13).

It is inherent that the particle state does not fully

describe the deposit formation since non-particle state

parameters (feedstock flux, substrate conditions, torch

motion) are not covered (Ref 14). Furthermore, it is

reported that particle conditions may contain only little

information on process reproducibility as they tend to be

not sufficiently significant and sensitive (Ref 15). In

(Ref 10), examples are given showing that T-v data can be

meaningful to detect process deviation, but due to limited

coverage and sensitivity not necessarily in all cases. So, a

small variability in particle state was found to correspond

to a large variability in coating properties (Ref 15).

Another issue is that the relations between process

parameters, particle in-flight properties, and coating prop-

erties may not be invertible unique (i.e., they are not one-

to-one corresponding in both directions). In (Ref 16), it is

shown that similar particle states can be obtained by dif-

ferent F4 torch parameter sets. This ambiguity complicates

the establishment of closed-loop control systems based on

particle diagnostics (Ref 10).

It is obvious that more data must be covered by process

monitoring and capable methods are needed to interpret

them appropriately. However, in thermal spray processes

there are intrinsic, hidden layers of parameters and rela-

tions linking process settings, on the one hand, and coating

properties, on the other hand. These complex layers are

difficult to see through and thus appear as a black box. This

is a typical situation to apply novel machine learning (ML)

techniques. Such algorithms build models based on sample

data, known as training data, in order to make predictions

or decisions without being explicitly programmed to do so

(Ref 17). ML is considered as a part of so-called artificial

intelligence (AI). One important approach to put ML into

practice is networks with layers of interconnected artificial

neurons (ANN) inspired by neural networks in biological

brains.

In one of the first applications of ML in thermal

spraying, the effect of the plasma and powder injection

parameters on particle in-flight properties (average veloc-

ity, temperature and diameter) was investigated for an

Al2O3 feedstock with 13 wt.% TiO2. After carrying out a

validation step (to fix the ANN architecture parameters), a

training step (to minimize the difference between the pre-

dicted and experimental output), and a test step (to confirm

the generalization capability of the ANN), the predicted in-

flight characteristics were in good agreement with the

measured values, in particular for particle temperatures and

velocities (Ref 18, 19), in (Ref 20) for the diameters, too.

In a follow-up study, also coating structural characteristics

were included into the ANN. So, this model was used to

investigate the oppositely directed trends of the deposition

yield and the porosity (Ref 21) as well as the melting status

of the particles (Ref 22). While the aforementioned studies
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focused on plasma spraying, ANN were also built for high

velocity oxy-fuel spray processes (HVOF) to investigate

the relations between main process parameters and particle

in-flight characteristics. Here, hydroxyapatite (Ref 23) and

Cr3C2-25NiCr (Ref 24) feedstocks were sprayed and the

effects on in-flight particle characteristics and microstruc-

tural coating properties were studied. For coatings from the

latter feedstock, also the wear performance was included

and predicted with good accuracy. Figure 1 shows an

example for the representation of an HVOF process and the

resulting coating performance by ANNs. The same group

recently developed an ANN to predict the coating thickness

profile of cold gas sprayed (CGS) multilayered copper

coatings on flat and curved substrates with a view to

additive manufacturing (Ref 25). The dependence of the

critical velocity in CGS on basic feedstock characteristics

was investigated by means of an ANN as well (Ref 26).

For most of the investigated materials, the results were in

better agreement than those obtained by an already pub-

lished empirical approach. It was found that mechanical

material parameters (tensile and yield strength) have the

largest impact on the critical velocity followed by thermal

parameters (thermal conductivity, melting temperature).

The work in (Ref 27) demonstrates that ANN techniques

can also be used for process monitoring. Initially, fre-

quency bands highly contributing to the airborne acoustic

emission power in HVOF were identified carrying the

effects of the process parameters (powder feed rate,

standoff distance). Then, the power spectra at these

frequencies were used as input signals to predict the

microhardness of WC-17Co coatings.

This selection of research works shows that the first

steps to apply ML methods and ANN in thermal spray were

done successfully. However the beginnings already go

back for almost 20 years. And it is also obvious that the

road is still far to models comprehensively covering the

thermal spray process to the operating performance of the

sprayed parts. Thus, it is of high interest to review the latest

efforts in R&D and how the user demand develops in this

field.

To examine the actual status of thermal spray technol-

ogy, the International Thermal Spray Conference (ITSC) is

always a good opportunity. Reviewing the contributions to

the ITSCs in the last years, a trend is noticeable. While the

number of presentations on process diagnostics and sensors

decreased, topics like ML- and AI-based approaches

became permanent features of the conferences. In 2017,

there was still one session ‘‘Process Diagnostics, Sensors &

Controls’’ with three presentations while no session or

presentation was on ML. The turn came in 2018 when the

first presentation on an application of AI was given in the

session ‘‘Fundamentals/Research and Development’’.

However, there was no presentation on diagnostics and

sensors. In 2019, the first session on ‘‘Multi-scale Model-

ling and Artificial Intelligence-based Approaches’’

appeared in the program with three presentations while

there was another session on ‘‘Diagnostics and Control’’

with two presentations. In 2021, one session entitled

‘‘Thermal Spray 4.0: Sensors, Data Analytics and Machine

Fig. 1 Representation of an

HVOF process and the resulting

coating performance by ANNs

(Ref 24); reprinted with

permission of Springer Nature
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Learning’’ with one presentation on particle imaging and

one lecture on ML were contributed. The latter was

peculiar since the data to build and train the neural network

did not come from experimental measurements but from

calculations carried out using a validated simulation model

(Ref 28).

At ITSC 2021, Dorfman (Oerlikon Metco) also gave a

keynote lecture on present and future thermal spray chal-

lenges and opportunities in the aerospace industry (Ref 29)

comprising several interviews with experts from business

and academia. Process diagnostics and control played a

major role in a number of statements. A. Ruglio (Pratt &

Whitney) criticized that until today, sensors were not fully

mandated by OEMs. On the other hand, applicators would

need guidance on how to implement sensors into their

production and equipment suppliers should fully integrate

sensors into their systems. The implementation of diag-

nostics had been too slow in the past. Luc Pouliot (Poly-

controls) saw key factors in the development of efficient

ML-based algorithms to ensure robust process control and

in the improvement in sensor connectivity to follow the

trends to ‘‘industry 4.0’’ with fully digital spraying envi-

ronments. In his own statement, Dorfman confirmed the

need for industrial diagnostics with closed loop data

monitoring capability.

It can be concluded that process diagnostics in thermal

spray are essential more than ever. They must become

more intelligent and connective and well integrated in

spray systems and modern production environments. In

particular, novel techniques are needed to process the huge

amount of measurable data and to make use of them to

control thermal spray processes with respect to improved

reliability and robustness. ML techniques will play a

leading role to achieve this.

Vision

As pointed above, monitoring and controlling thermal

spray processes are extremely challenging since these

processes involve a large number of variables, some of

them not being well controlled such as the electrode wear.

Sensors are important tools to monitor and eventually

control spray processes but they are certainly not the only

ones to achieve these functions. With the development and

deployment of digital solutions in the industry, data col-

lection, process modeling and ML will become common

tools that, coupled with appropriate sensors, will make it

possible to better predict spray coating characteristics and

better control spray processes in production. Some ML

tools such as ‘‘black box’’ optimization approach appears

well adapted for this purpose as they do not require the

formulation of an algebraic model of the process. In

particular the black box approach can manage discontinu-

ities and nonlinearities and does not require extensive

computational resources (Ref 30, 31). It has already been

applied to many real-world engineering problems (Ref 30).

ML tools can be trained with the actual sensor data and

results of numerical models, permitting the control of in-

flight particle characteristics and the resulting coating

characteristics.

Future thermal spray production units could comprise a

series of process diagnostic tools for monitoring on-line

key extrinsic and intrinsic spray parameters including key

coating characteristics. The control strategy will be based

on properly trained ML algorithms. Such an approach

should not take into account only the torch parameters and

mean particle temperature and velocity. It needs to enclose

a much broader view on the global spray process. For

example, in plasma spraying, the mean voltage and the

actual voltage fluctuation patterns will be recorded and

used to feed ML algorithms. The in-flight particle charac-

teristics should comprise not only the mean temperature

and velocity but also a much comprehensive set of data

including the actual distributions of the particle tempera-

ture, velocity and diameter in different points across the

particle jet. Additionally, since the coating characteristics

also depend on the torch movement, substrate temperature

during spraying and substrate geometry, some coating

characteristics can be assessed during or after spraying. For

example, monitoring the coating thickness and roughness

can supply key information to confirm that the properties of

the coating under production meet the expected require-

ments. Other sensing approaches such as the In-situ Coat-

ing Property (ICP) sensor developed by Sampath and his

team (Ref 14) for monitoring the residual stress and elastic

modulus of the deposited coatings or optical light scatter-

ing-based techniques (Ref 32–34) can be used to assess the

actual coating properties.

Beside being used for producing coatings with repro-

ducible properties, the integration of sensors, numerical

models and ML tools would make it possible to optimize

much more efficiently the coating microstructure and

properties for specific targeted applications. To move

toward this vision, one needs to take into account not only

the spray torch operation, heat and momentum transfer to

the particles, robot trajectory, etc., but also the impact of

the spray particles with the substrate and the resulting

coating buildup. Coating buildup models based on the

actual characteristics of the impacting particles and sub-

strate will make it possible to predict key coating proper-

ties. A few limited studies have been carried out to model

the growth of plasma spray (Ref 35, 36), cold spray

(Ref 37), and SPS coatings (Ref 38). Again, these models

coupled with data from adequate sensors can be used to

train ML tools to determine the influence on spray
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parameters of the coating characteristics. Potentially, this

could even reduce the efforts for microscopic inspections

of metallographic cross sections.

One can foresee that, with the appropriate models,

sensors and ML tools, it will be possible to conduct a

reduced number of trials to engineer coatings with specific

targeted characteristics (porosity level, phase content,

residual stress, elastic moduli, thermal conductivity, etc.).

This will make it possible to optimize the structure of the

spray coatings in a more efficient way. Additionally, the

trained ML tools used to optimize the coatings may be used

to implement an efficient control strategy for producing the

same coatings on the production floor day after day.

What are the Gaps?

We propose research priorities in three areas, sensors and

testing methods, models, and machine learning (ML) to

tackle the existing gaps.

Sensors and Testing Methods

The commercialization and application of sensor systems

have contributed to improve the reliability of various

thermal spray methodologies seriously. The precision (re-

peatability) of particle temperature and speed measure-

ments is in the range of 10 Kelvin and a few meters/second,

respectively, which is much smaller than the variations

occurring over time due to the electrode wear as reported in

(Ref 39), for example. Moreover, the drift in particle

characteristics occurs typically in time intervals of several

minutes while the current sensors can detect changes

within a few seconds. So, the current sensors are mostly

precise and rapid enough to provide reliable information

for process control.

However, some emerging novel spray processes push

the available sensor techniques to their limits. Thus, the

understanding of the complex processes during and after

liquid feedstock injection up to the layer deposition in

suspension and solution precursor plasma spraying (SPS

and SPPS) is incomplete so far. One major reason for this is

that the available methods for process diagnostics are not

sufficient (Ref 40). Moreover, it was mentioned already

that small variations in particle characteristics can effect in

largely varying coating characteristics.

Due to the high velocities and temperature gradients,

one of the methods that can basically be considered for

particle or droplet diagnostics in the plasma jet is the

generation of images with high temporal and spatial reso-

lution. For this, suitable illumination sources and filters

must be used. Systems for particle diagnostics in conven-

tional thermal spray processes, on the other hand, are not

suitable because they detect only a portion of the particles,

if at all (Ref 41), and cannot be used for short spray dis-

tances (Ref 42). Particle image velocimetry (PIV) is again

a suitable method, since particles \ 1 lm can also be

detected, in contrast to shadowgraphy, whose minimum

resolution is only about 5 lm (Ref 43). In (Ref 44), the

authors analyzed the Gaussian-distributed suspension par-

ticles in the plasma jet by means of laser scattering and

Mie’s scattering laws. The minimum size of the suspension

particles is again about 5 lm, since classical particle

analysis methods (especially camera-based systems) reach

their imaging and resolution limits here.

Due to the limited applicability of these diagnostic

methods, important parameters of plasma generation, sus-

pensions, solutions as well as injectors could hardly be

optimized specifically and has been advanced mainly on

empirical basis. For example, the injector systems used to

date have not yet been fully developed (Ref 45). Besides

SPS and SPPS, the small particle size is a particular issue

also for diagnostics in aerosol deposition (AD) (Ref 46, 47)

requiring solutions.

Low particle temperatures are another specific difficulty

for process diagnostics in novel spray processes like CGS,

high velocity air fuel spraying (HVAF), and warm spray-

ing. Here, the thermal radiation power is too small for

detection and valuation by two-color pyrometry based on

Planck’s law. Thus, measuring the particle thermal state

during its flight and upon impact proves to be challenging.

The first application of a high-speed, high-resolution

infrared camera with fast readout speed to measure particle

temperatures in CGS was reported in (Ref 48). This system

operating in the mid-infrared spectral range (3-5 lm) was

used to capture in-flight temperatures of titanium particles

at the exit of a CGS nozzle. The method needed to be

further developed as in that work, the measured particles in

the diameter range of -150/?45 lm were still extraordi-

narily large and thus also slow. However, latest velocity

and temperature measurements taken by another group

were under realistic CGS process conditions processing

Inconel 718 and c-titanium aluminide powders (Ref 49),

Fig. 2. This development must be followed up.

It is well known that the voltage fluctuations and the

power level contain information about the state of the

plasma torch and hence can be used for torch hardware and

process monitoring (Ref 50). The signals must be mea-

sured and processed with high temporal resolution as they

oscillate in the kHz range. In (Ref 51), e.g., a high-speed

camera was used to observe the threefold plasma jet of an

Axial III torch with frame rates of 2�104 frames per second.

The images were triggered with current and voltage mea-

surements in eight different channels at a rate of 4�107

samples per second. However, the available control units

for plasma spray systems do not offer such possibilities.
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Present integrated trend monitors typically operate with

time steps of about one second only. Hence, suitable stan-

dard interfaces in the control units of power sources for

plasma spray systems to connect with high-resolution, fast

monitoring systems would therefore be highly desirable.

Another kind of needed sensors is for in situ coating

characteristics. First, the development of the layer thick-

ness could be measured and controlled which is most

important for 3D-shaped parts. Beyond that, the surface

roughness reflects the coating deposition process and thus

contains a lot of information. Besides precise and robust

measurement devices, the decryption of such data requires

sophisticated approaches and the identification and

extraction of meaningful characteristic values.

Last but not least, the feedstocks for the novel kinetic

processes at low temperatures (CGS, AD) require increased

attention. Here, the particle properties are of growing sig-

nificance since they are no longer melted. Thus, their

crystalline structure and phase composition resulting from

the powder manufacturing process are not resolved and

impact the coating characteristics directly. To characterize

the particles, assess their sprayability, and tailor their

properties, new methods are needed, e.g., micromechanical

tests (Ref 52). In particular, the mechanical strength and its

dependence on the particle size, which are among the most

relevant properties of the feedstock powder for CGS, are

rarely covered when reporting powder specifications. This

is mainly due to the lack of standardized characterization

methods for these specific properties (Ref 52). This prob-

lem requires concerted action by various players from

research and development in academia and industry.

Models

Models are important tools to apprehend the complexity of

the different thermal spray processes in terms of charac-

teristics of the fluid flows, heat and momentum transfers,

phase changes, etc. To do so, better and more precise

stochastic models are sought. Moreover, numerical models

will further gain importance in the future as they will be

used to feed ML algorithms to better control of the dif-

ferent spray processes. For such a use, models must be

adapted to provide valuable results in a relatively short

time so that numerous runs can be executed to investigate

the influence of the spray parameters and their interactions.

Computation of the fluid flow fields and arc behavior in

air plasma spraying has made important progress in the

recent years but several additional elements need to be

addressed to develop predictive models as pointed out in

(Ref 53). Figure 3 shows an example of the computed

plasma temperature fields obtained when two different

boundary conditions are used for the magnetic vector

potential in the same operation conditions of a cascaded

plasma torch illustrating the difficulty in obtaining pre-

dictive results from such models. In particular, in (Ref 53),

the authors identified the calculation of the voltage drop at

the electrodes and a more precise description of the thermal

disequilibrium at the fringes of the jet and close to the

walls as necessary to improve reliability of the results. As

shown in (Ref 53), such models can be used to predict the

electrode wear in a cascaded plasma torch which is of high

practical importance. Further work is necessary to apply

such an approach to other plasma torch configurations and

to better understand and predict how the wear of the

electrodes actually influence the arc behavior and its

fluctuations.

In the SPS and SPPS processes, the atomization of the

liquid jet/droplets upon penetration in the high-temperature

high-speed plasma jet, evaporation to the liquid, chemical

reactions (in SPPS), fragmentation of the ceramic

agglomerates and particle melting must be better modeled.

Fig. 2 High-resolution infrared camera setup for in-flight particle

velocity and temperature measurements in cold gas spraying (Ref 49)

Fig. 3 Significantly different predicted time-averaged plasma tem-

perature fields when two different boundary conditions are used for

the magnetic vector potential in a cascaded plasma torch. Top image:

Biot and Savart boundary conditions. Bottom image) so-called PVNF

boundary conditions (Ref 53)
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All these steps influence the size of the particles and their

melting state upon impact on the substrate. Each of these

steps brings its own challenges in terms of predictability

and computational time.

Plasma fluctuations bring an additional degree of com-

plexity that started to be addressed but requires more

attention. As described in (Ref 54, 55), very simplified

models of plasma fluctuations have been used to capture

the incidence of these fluctuations of the resulting particle

temperature, velocity and size. Again, the predictability of

the models and the computation time are still important

challenges. As mentioned above, the electrode wear indu-

ces a drift in the plasma power as well as in the plasma

fluctuation patterns. Such drifts in SPS and SPPS processes

are expected to have a larger influence on in-flight particle

characteristics than observed in APS as the transit time of

the particles in the plasma jet is shorter, their speed being

close to the plasma jet speed.

Being able to predict the microstructure and properties

of a spray coating from the knowledge of the in-flight

particle flow characteristics, torch movements, shape and

roughness of the substrate and its temperature during

spraying still represents a challenging task that must be

addressed. The ‘‘simple’’ impact of a molten plasma spray

droplet on a smooth substrate at room temperature is still

not fully understood. When the substrate is heated at

300-400 �C, droplet impact numerical models can very

well predict the flattening and solidification of the

impinging droplet that is in good thermal and mechanical

contact with the substrate. At room temperature, when

water vapor or other gases are adsorbed on the substrate

surface, the spreading behavior of the droplet changes

drastically. The liquid is in good contact with the substrate

close to the impact location but, upon further spreading, the

liquid detaches from the substrate forming a thin expanding

molten film that breaks when it gets too thin. To date, no

models have provided a satisfactory representation of the

droplet spreading and solidification at room temperature.

This is an important gap as the individual flattened and

solidified droplets (usually called splats or lamellae) are the

building blocks of the plasma spray coatings. The substrate

temperature during spraying is also known to have a direct

influence on the interlamellar pores in the spray coatings.

Such pores have a strong influence of the coating properties

such as thermal conductivity, elastic moduli, and strain

tolerance. The liquid detachment observed at room tem-

perature and the increased interlamellar porosity in coat-

ings sprayed at room temperature are possibly both related

to the presence of adsorbates on the impacted surface.

Similarly, modeling of particle impacts in low-temper-

ature spray processes (cold spray, warm spray, HVAF,

aerosol deposition) still need additional investigation. In

the warm spray and HVAF processes, an important fraction

of the particles are solid and deform plastically upon

impact. Further work is necessary to identify and validate

the appropriate plastic deformation model (Mie–Gruneisen

Equation of State, Johnson–Cook) when the particle

impacts at low temperature or near their melting point.

Again, these impacting particles are the building blocks of

the coatings and their characteristics directly influence the

coating properties.

Coatings are built from the successive impact of parti-

cles on the substrate or already deposited layers. Modeling

the actual coating buildup process has been done in plasma

spray, cold spray, and other processes. Several approaches

have been proposed to simulate the accumulation of par-

ticles with significant simplifications to limit the compu-

tation cost, see for example (Ref 56, 57). To be able to

predict the actual coating structure and properties, one

must better understand the different mechanisms involved

in single particle impacts and develop stochastic compu-

tational methods that will integrate that knowledge and

apply it to a number of particles large enough for well

representing the deposited coatings with a reasonable

computation cost.

In SPS the situation is significantly different as the main

features in the coatings, the columns and cauliflowers,

which have a strong influence on the coating microstruc-

ture are much larger than the micron-size spray particles

(the building blocks). It is known that the columnar

structure of SPS coatings results from the so-called ‘‘sha-

dow effect’’ due to the deflection of the particle trajectories

close to the substrate. The preliminary modeling results

have shown that the substrate shape has a strong influence

on the number of particles that actually land on the sub-

strate as well as their impact angle (Ref 58). Particle

properties (temperature, velocity, diameter, direction) close

to the substrate surface can be used to calculate the landing

position on the substrate where the particle attaches. Such

an approach was used recently by Kashfi (Ref 38). Figure 4

(left) shows the set of in-flight particles with their landing

position relative to the plasma torch axis. The torch was

numerically scanned for several passes in front of the

substrate accumulating particles one at a time. As seen in

Fig. 4 (right), the resulting coating structure shows the

influence of the substrate surface profile on the column size

and intercolumnar gap. The initial substrate asperities are

represented by the red triangles. Such approach should be

further developed to better understand on how the spray

parameters as well as the surface roughness and substrate

shape influence the coating columnar structure.

Validation of the models discussed above also repre-

sents an important challenge that merits further attention.

For example, computed in-flight particle characteristics are

difficult to validate as the particle temperature and size are
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difficult to measure in SPS conditions as discussed in the

previous section.

Machine Learning

Machine learning is at the heart of the fourth industrial

revolution—Industry 4.0. Industrial processes can be

monitored and controlled with the integration of data

coming from an extensive suite of connected sensors,

analyzed with innovative approaches based on artificial

intelligence, machine learning and deep learning. The

amount of data that can be collected and analyzed go well

beyond what was possible a few years ago.

This revolution is expected to deeply transform the way

the research in thermal spray is carried out and the way

spray processes are controlled on the production line. ML

algorithms are trained by using data collected from on-line

process sensors, from coating characteristics measured on-

or off-line and from results of computer models. Beyond

the parameters that are commonly measured today, on-line

sensors can comprise measurement of voltage fluctuations

at high frequency, noise in the spray booth, temperature

and velocity of individual particles (not only the mean

values but the whole distributions), videos of the spray

process in the visible range and infrared ranges, etc. Some

coating characteristics can be monitored on line such as

elastic modulus, thermal conductivity, and thickness. Off-

line characteristics can comprise images of the coating

cross sections, mapping of the coating surface, crystalline

phases, mechanical properties, etc. Output of the computer

models discussed above can be used to determine how to

adjust the spray parameters to induce a determined change

in specific process or coating attributes. The strength of

these artificial intelligence approaches is the possibility to

learn and improve the control algorithms continuously.

As mentioned in Section 2, several studies have been

initiated in the past decades to integrate neural networks for

controlling thermal spray processes. However much more

efforts must be dedicated in the coming years to determine

the sets of data and ML approaches that are pertinent for

implementing robust control strategies for developing

optimum coatings and for controlling thermal spray pro-

cesses in industrial production.

Final Statement

For process control, monitoring parameters which are

sensitive and representative for coating quality are a key

issue of every approach to improve process reliability.

Besides the development of sensors and tests, the

involvement of models can contribute to reduce experi-

mental efforts and to build large databases. Machine

learning approaches will help to exploit these resources

effectively and to control process conditions. Despite the

great importance of diagnostics for control, it is important

to remember that coating properties depend on numerous

parameters, which are not necessarily all covered (Ref 59).

Fig. 4 Modeling of SPS coating buildup: left) particle trajectories

close to the substrate surface as seen from the torch: the arrows

represent the particle trajectories in the last 100 lm before the

substrate surface; right) different columnar structures obtained with

different sizes of substrate surface asperities (in red) (Color

figure online)
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Process design is closely related to process control since

also here process parameters must be identified to achieve

specific coating properties. It must be provided that the

underlying relations are invertible unique (Ref 10). Since

the complexity of these relations often exceeds our

knowledge and understanding, process design will also

benefit from the mentioned developments in the field of

sensors and test methods, models and machine learning

systems.

The further development of sensors, testing, modeling,

and machine learning techniques is found in concerted

action with other activities to improve the design and

control of thermal spray processes. Examples include the

development of stable equipment such as cascaded plasma

torches or the production of precursors in compliance with

increasingly tight specifications.

Despite all the enthusiasm about expanded technical

possibilities, it must not be forgotten that also the practical

knowledge of well-trained personnel is an important

resource for process diagnostics and control now and in the

future. Hence, effective methods for collection, system-

atization, representation and transfer of knowledge will be

important, which admittedly goes beyond the thematic

scope of this article.
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