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Abstract For more than 6 decades, thermal barrier coat-

ings have been used to protect structural parts in both

stationary and aviation gas turbines. These coatings allow

the use of significant higher operation temperatures and

hence increased efficiencies. In the 1970s, yttria-stabilized

zirconia (YSZ) was identified as outstanding material for

this application. As major deposition technologies both

electron beam physical vapor deposition (EB-PVD) and

atmospheric plasma spraying (APS) have been established.

Although the topic is already rather old, there are still

frequent activities ongoing to further improve the tech-

nology, both with respect to materials and microstructural

issues also regarding the use of advanced coating tech-

nologies, especially in the field of thermal spray. The paper

tries to summarize major developments in both fields, the

materials and the processing focusing on thermal spray

methods. The impact of both materials and processing are

summarized by the results of burner rig tests for various

systems. Furthermore, a short outlook on possible future

directions of developments will be given.

Keywords thermal spray � materials � burner rig test �
lifetime � thermal barrier coatings � yttria-stabilized
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Introduction

The authors are aware that already a number of excellent

review articles on thermal barrier coatings exist (Ref 1-6).

However, the authors believe that a comparative evaluation

of the present status and the discussion of innovative

directions of development was only partially presented up

to now.

A major driving force for the development of advanced

thermal barrier coatings was the wish to further improve

the efficiency and by that reduce fuel consumption and

CO2 emissions. Over several decades, the improvement of

the structural materials from wrought, conventionally cast,

directionally solidified to single-crystal alloys could gen-

erate a considerable increase in operation temperature (Ref

7). A further significant increase could be achieved by the

use of thermal barrier coatings in combination with

advanced cooling technologies. Alternatively, the use of

TBCs can reduce the substrate temperature and hence

increase the lifetime of the components (Ref 9). In practice,

a combination of both strategies is applied. The full use of

the temperature capability would imply a prime reliant

TBC system in combination with a well-developed lifetime

prediction methodology. This last topic is still an issue

although it is the content of intense research for many years

(Ref 10-16). However, it will not be addressed in the

present paper.

This article is an invited paper selected to provide expert perspectives

on a target subject relevant to thermal spray. The views expressed in

the paper are those of the author(s). It is also part of a special issue

focus in the Journal of Thermal Spray Technology celebrating the

30th anniversary of the journal. The papers and topics were curated by

the Editor-in-Chief Armelle Vardelle, University of Limoges/ENSIL.
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2 Ruhr-Universität Bochum, Institute for Materials, Bochum,

Germany
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The development of thermal barrier coatings started in

the 1950s using enamel coatings in military engines (Ref

17); then, in the 1960s the first thermal spray coatings were

used. A major step forward was the identification of par-

tially yttria-stabilized zirconia (YSZ with 4-5 Mol.-%

Y2O3) as a unique material for thermal barrier coating

application (Ref 18, 19) in the 1980s of the last century.

YSZ is now since 4 decades the standard material for TBC

applications (Ref 20). YSZ has a number of unique prop-

erties, which fit excellently to the needs of a thermal barrier

coating system. Several of these properties such as low

thermal conductivity, high thermal expansion coefficient,

good processability, good compatibility with the oxide

scale (alumina) growing on bond coats (see below) or low

sintering rates have been intensively discussed in several

review articles (Ref 6, 21, 22) and will not be repeated

here. Some properties of new TBC materials will be dis-

cussed in the advanced TBC materials chapter.

However, some properties of YSZ are mentioned here as

they are important also for future developments. One

important property is the high fracture toughness of

4-5YSZ TBCs coatings. The values are lower than those

observed at low temperatures in fine-grained sintered so-

called tetragonal zirconia poly-crystal (TZP) material (Ref

23), however, considerably higher than the values of fully

stabilized 8YSZ used in solid oxide fuel cells. Unfortu-

nately, the high toughness values of TZP are not found at

elevated temperatures in TZP as then the driving force for

the transformation toughening is missing. Here the

metastable t�-phase, which is developed during both ther-

mal spray and PVD processing, plays a key role. It has

been shown that this microstructure leads to a ferroelastic

toughening mechanism, which provides sufficient tough-

ness even at higher temperatures (Ref 24). This toughness

is unique compared to most alternative materials which

were investigated during the last decades. However, during

long-term use at elevated temperatures, typically 1200 �C
is given as limit, massive diffusion is observed and the t�-

phase decomposes into tetragonal and cubic phases (Ref

25). The tetragonal phase then shows detrimental phase

transformation to the monoclinic phase during cooling.

Interestingly, a recent paper shows that the influence of

the monoclinic phase in the spray powder is only of minor

importance (Ref 26) for phase stability. New materials

were investigated to overcome the limitation in the thermal

stability of YSZ also with respect to sintering issues. The

identified materials are often advantageous with respect to,

e.g., lower thermal conductivity, improved corrosion

resistance or better high-temperature stability; however, the

lack of toughness often implies that new ceramics have to

be applied in a double-layer structure. A YSZ layer on top

of the bond coat is used here at the interface, where most

often failure occurs and high toughness is needed (Ref 27).

Chinese colleagues in most cases call this a double-ce-

ramic-layer (DCL) structure (Ref 28-30). More details on

the application of new TBC ceramics including pyro-

chlores or high-entropy oxides will be given in this paper.

For the manufacture of thermal barrier coatings, mainly

two methods are commercially used: thermal spray meth-

ods and electron beam–physical vapor deposition (EB-

PVD). The EB-PVD process leads to columnar structured

topcoats with a high strain tolerance (Ref 30, 31). These

typically rather thin coatings of about 200lm are used on

the blades of the first row of the high-pressure turbine of

aero engines.

For many other locations as combustion chambers and

transition ducts in aero engines and nearly all parts in

stationary gas turbines, thermally sprayed coatings are used

with thickness values typically considerably larger than

200 lm (Ref 32). This deposition process will be the focus

of this paper. Often it is emphasized that the performance

of EB-PVD coatings is much better than thermally sprayed

ones (Ref 33). However, if one considers also the possible

larger thickness and the lower conductivity, the advantage

is certainly reduced (Ref 34). Furthermore, compared with

burner rig results also the performance of several thermally

sprayed systems is similar to EB-PVD systems as will be

shown in the paper.

The most often used thermal spray technique is atmo-

spheric plasma spraying (APS). Due to the high enthalpy of

the plasma plume, the high-melting-point YSZ powder can

be easily fully molten which is essential for a highly effi-

cient deposition. The process allows the manufacture of

porous and micro-cracked as well as segmented (or also

called dense vertically cracked—DVC) coatings. Further

flexibility in the coating microstructure can be obtained by

using suspension plasma spraying (SPS, columnar or por-

ous/segmented) and plasma spray–physical vapor deposi-

tion (PS-PVD, columnar). The different features will be

discussed not only with respect to thermomechanical

properties in the as-processed condition but also as they are

compromised by sintering or by corrosion from molten

silicate deposits (which are often called CMAS after their

main components CaO-MgO-Al2O3-SiO2 (Ref 35)).

Thermal barrier coating systems do not only consist of

the isolative ceramic topcoat, but also use a metallic bond

coat (Ref 36). The bond coat used in thermal spray typi-

cally is made of nickel- and cobalt-based alloys with a

large amount of aluminum and chromium (NiCoCrAlY) to

form a protective alumina scale (thermally grown oxide—

TGO) during operation. The addition of so-called reactive

elements (like Y) improves the scale adhesion and reduce

oxidation rates (Ref 37). By forming a slow-growing pro-

tective scale, the bond coat protects the substrate from

oxidation and also corrosion. In addition, the bond coat

deposited by thermal spray techniques such as vacuum
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plasma spraying (VPS), high-velocity oxy fuel (HVOF) or

atmospheric plasma spraying (APS) has a rough surface

with Ra values larger than 6 and often larger than 10 lm
leading to a good interlocking and hence adhesion of the

topcoat to the bond coat. Typically, longer lifetimes are

observed for increased bond coat roughness (Ref 38). In

this paper, additional approaches, like applying of so-called

flash coats, surface structuring, e.g., by laser ablation or

laser cladding, to improve the surface profile of the bond

coat will be discussed to some extent.

For the evaluation of the performance of TBC systems,

different methods such as furnace cycle or also burner rig

testing (Ref 39) are used. While the furnace tests mainly

analyze failure due to bond coat oxidation (Ref 40), in

burner rig testing additionally the effect of realistic gradi-

ents through the topcoat and fast cooling and heating rates

can be considered. Even more realistic tests like thermal

mechanical fatigue (TMF) or thermal gradient mechanical

fatigue (TGMF) also consider mechanical loading of the

TBC system and are hence very close to the thermome-

chanical loading in application (Ref 41). However, due to

the complexity and the costs of the tests, only limited data

are available. For the discussion of different TBC systems,

in this paper results of burner rig tests are compared (Ref

42).

Advanced TBC Materials and their Application

In order to meet the continuously increasing hot gas tem-

perature demand in the gas turbine engine industry, alter-

native ceramic materials for replacing the partially yttria-

stabilized zirconia TBC topcoat have been investigated

(Fig. 1). Among these materials are yttria-stabilized zir-

conia with additional dopants such as titania (Ref 43-45),

tantala (Ref 46, 47), fully stabilized zirconia with yttria (12

wt. %YSZ (Ref 48)) or ceria (25 wt.% CeSZ (Ref 48)),

zirconia stabilized with multiple components in addition to

yttria such as Nd2O3, Gd2O3, Sm2O3 and Sc2O3 (Ref 49-

51), pyrochlores and fluorites (Ref 52-65), perovskites (Ref

66-71), aluminates (Ref 72-74), phosphates (Ref 75, 76)

and high-entropy oxides which will be further discussed

below. Figure 1 compares the thermal conductivity and

coefficient of thermal expansion (CTE) of these materials

or coatings and partially yttria-stabilized zirconia (Ref 77-

79). Thermal conductivity is desired to be as low as pos-

sible to ensure maximum thermal insulation while the

expansion coefficient should be as close as possible to the

substrate material to minimize stresses. In addition to these,

there are many other essential requirements to meet such as

high-temperature phase stability, high sintering onset

temperature, high fracture toughness, low elastic modulus

and chemical compatibility with TGO alumina and YSZ (if

two materials will be combined). The list gets longer if the

extrinsic degradation mechanisms like CMAS corrosion

are considered. The new materials are typically proposed

based on their high-temperature phase stability and low

thermal conductivity (e.g., Gd2Zr2O7 pyrochlore); how-

ever, it is often the case that they lack some other prop-

erties (e.g., fracture toughness). To exploit the best of each

material and to answer the different needs of various

operating conditions, therefore, workarounds are

employed. For instance, if the thermal conductivity of the

material is not low enough to ensure sufficient thermal

insulation, the coating thickness might be increased at least

if elastic modulus and CTE of the same material allow

avoiding high stresses in the rather slowly heated coating

system. If the material has a low fracture toughness, a

second layer made of a material with higher resistance to

crack propagation (e.g., YSZ) is used close to the locations

where the failure most often occurs, namely at the bond

coat topcoat interface (Ref 80-83). It should be also men-

tioned that some of the material properties can be also

altered by microstructural modifications. For instance,

thermal conductivity and elastic modulus can be lowered

with increased porosity while sintering becomes less crit-

ical for a dense vertically cracked microstructure (Ref 84-

88). Using these different strategies by combining the

advances in materials and microstructure developments,

more challenging operating conditions were established

within the last decades leading to increased efficiency in

gas turbine engines.

High-entropy oxides (HEO) which oftentimes refer to a

high configurational entropy but not necessarily an

entropy-stabilized oxide (ESO) in the literature are the

newest high-temperature material category for TBC

application. Entropy-stabilized oxides are named after the

study of Rost et al. (Ref 89) in 2015 wherein it is said that

the authors drew inspiration for this study from high-en-

tropy alloy (HEA) activities. Rost et al. demonstrated the

reversible low-temperature multiphase to high-temperature

single-phase rocksalt structure transformation, which is a

requirement for entropy-driven transitions, for a material

system consisting of an equimolar mixture of MgO, CoO,

NiO, CuO and ZnO. In the following years, many studies

investigating oxides with five components stabilized into a

single-crystal structure that can differ from the typical

crystal structures of the constituent elements and which

may or may not show the reversible phase transition were

published. In these studies, HEO and ESO terms were

interchangeably used by the researchers leading to some

confusion. Definitions of these two fundamentally different

concepts and formation criteria of single phases are dis-

cussed in detail in the recent reviews (Ref 90, 91). From the

TBC application perspective, it is clear that high-temper-

ature phase stability of the oxide is essential, and reversible

multi-single-phase transitions, if any, under long-term
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thermal cycling conditions should require systematic

investigations. Furthermore, research on powder synthesis

and coating processing routes and the effect of these on the

phase stability and other properties of such multi-compo-

nent oxides is imperative to develop advanced coating

systems for the future.

Since 2017, HEOs based on transition metal oxides, rare

earth oxides or a mixture of these two with 5 or more

cations stabilized into different crystal structures including

fluorite (Ref 92-98), pyrochlore (Ref 99, 100), spinel (Ref

101, 102) and perovskite (Ref 103-105) have been reported

in the literature. On multiple occasions, lower room tem-

perature thermal conductivities of the synthesized HEO

than that of the YSZ were demonstrated, i.e., Chen et al

reported thermal conductivity of (Ce0.2Zr0.2Hf0.2Sn0.2-
Ti0.2)O2 to be 1.28 Wm-1 K-1 (Ref 93), Zhao et al.

measured thermal conductivity of (La0.2Ce0.2Nd0.2Sm0.2-

Eu0.2)2Zr2O7 as low as 0.76 W m-1 K-1 (Ref 100), Wright

et al. determined thermal conductivity of Hf0.284Zr0.284-
Ce0.284Y0.074Ca0.074O2-d as 1.54 Wm-1 K-1 (Ref 96), and

finally, Xu et al. reported thermal conductivity of (La0.2-
Sm0.2Er0.2Yb0.2Y0.2)2Ce2O7 as 1.8 Wm-1 K-1 (Ref 98).

According to the study of Lim et al., phonon scattering

from mass and charge disorder is responsible for the

reduced thermal conductivity in ESOs and the latter has a

larger contribution (Ref 106). Zhao et al. reported slower

grain growth in (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7 in

comparison with La2Zr2O7 under the same annealing

conditions (Ref 100). Based on that, the authors suggested

a better sintering resistance in the HEO and attributed it to

sluggish diffusion which is an often used term in the HEA

literature yet hard to prove due to complex diffusion paths

of multiple components (Ref 107). Similarly, Xu et al.

experimentally observed a better sintering resistance of

5RE2Ce2O7 (RE=La, Gd, Er, Yb, Y) when compared to

La2Ce2O7 (Ref 97). Although these are promising results,

some other characteristics of HEOs that are crucial for

TBC application such as phase stability under thermal

cycling conditions, CTE (only reported in a few studies

(Ref 97, 105, 108, 109) which are shown in Fig. 1),

mechanical properties (e.g., elastic modulus and toughness

which were also measured rarely (Ref 96, 109)) remain to

be explored in the future.

Different Plasma Sprayed TBC Topcoats

Thermal spray technologies offer a huge flexibility in

microstructure, especially for ceramic coatings (Ref 110).

The most often used one for TBC application is the

lamellar, micro-cracked structure (Fig. 2a). The coating

shown has a porosity level of about 15% (Ref 111). The

micro-cracks allow by a slight sliding of the splats in the

lamellar microstructure even at room temperature a con-

siderable degree of viscosity (Ref 112) and hence the

ability to relax stresses. Furthermore, the cracks reduce

Fig. 1 Coefficient of thermal

expansion (CTE) vs. thermal

conductivity of different TBC

topcoat materials. Thermal

conductivities of dense

materials or normalized thermal

conductivities from the coatings

with a known porosity are

shown in the graph (for the

plasma sprayed coatings marked

by the arrows, no normalization

was made). Given CTE values

are in between RT-(1000-

1300 �C) and thermal

conductivity values are at

900–1000 �C (in ref [105] at

RT)
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efficiently the thermal conductivity (Ref 113, 114). Typi-

cally such coatings in the thickness range of several hun-

dred microns are used in the high-pressure turbine. Thicker

coatings are of interest, especially in the combustion

chamber or also as abradable seals (Ref 115, 116). How-

ever, in stationary engines also thicker coatings are

nowadays applied on blades and vanes as shown in Table 1

and discussed later. For thick coatings approaching 1 mm

or more, the stresses in the coatings (which are typically

somewhat reduced compared to thin coatings!) lead to high

energy release rates. This elastically stored energy in the

coatings is typically proportional to the coating thickness

and is often the driving force for spallation. One possibility

to reduce the energy release rate is the reduction of the

Young’s modulus by the further increase of porosity levels

up to 25% (Ref 117) or higher also by using additional

polymers (Ref 118, 119). An example of a highly porous

coating (23% porosity) is given in Fig. 2(b). The use of

such highly porous coatings has also some drawbacks as

the coating integrity is reduced leading, e.g., to lower

erosion resistance, and also the deposition efficiency is

reduced; hence, costs increase (Ref 120). Another approach

is the use of segmented or also called dense vertically

cracked (DVC) coatings. These coatings are produced

Fig. 2 Different thermally sprayed YSZ thermal barrier coatings: (a) conventional APS (medium porosity level), (b) highly porous APS,

(c) thick segmented APS, (d) segmented SPS, (e) columnar SPS, (f) columnar PS-PVD
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under rather hot spraying conditions with high substrate

temperatures which allow an excellent bonding of the

splats. Hereby, quenching stress relaxation is not possible

as in ordinary APS coatings and segmentation cracks are

developed (Ref 121, 122). An example of a thick seg-

mented coating is found in Fig. 2(c). Already older results

for about 2-mm-thick coatings show that there is a benefit

of these types of coatings compared to conventionally ones

(Ref 123, 124). Similar as in columnar EB-PVD coatings,

the tensile stress level at elevated temperatures is reduced,

leading to reduced relaxation and hence reduced com-

pressive stress after cooling (Ref 6). However, the seg-

mented coatings show, due to their low porosity levels,

higher thermal conductivities (*1.5 W/m/K) compared to

porous ones (\ 1W/m/K). Hence, thicker coatings are

needed for the same cooling effect, and at a certain

thickness, also this concept is at an end. In fact, only the

surface of the segments are really stress-free, the inner part

of the segments still see, although reduced, stresses and

these can lead to failure at a certain coating thickness.

In Table 1, an overview of the different described types

of thermal barrier coatings with relevant temperature ran-

ges is given. The table is based on an older version pub-

lished in 2000 (Ref 125) and was updated and extended to

aero engines according to the information given by a

number of industrial colleagues and by available informa-

tion in the literature (e.g., Ref 2, 126-128).

Another coating technology which was intensively

studied during the past decades is the suspension plasma

spraying. This process was developed first in the 1990s in a

number of institutions, a list is found in (Ref 129). Due to

the use of suspensions as feedstock, this process allows the

manufacture of new, often more fine-scale microstructures

compared to the conventional APS. In the process, the

suspension is atomized in the injection nozzle and then

further fragmented by the plasma jet. The established

droplet size, which is a key parameter to control the

microstructure, is depending on various process parameters

such as injection and plasma conditions, suspension solid

loading and viscosity. Hence, the process is even more

complex than the APS process and, on the other hand,

allows a large variation in the microstructure. In contrast to

APS, the Stokes number, which describes whether the

particle/droplet can follow the gas flow, comes into play.

For larger Stokes’ numbers as for larger droplets or fast gas

flows that is not the case and the droplets impinge directly

on the substrate. So they form a dense or porous layer

depending on the molten state of the deposited species. As

the species are rather small, the tendency for crack for-

mation is reduced; hence, also relaxation processes cannot

reduce quenching stresses so effectively. As a result, one

can produce segmented coatings even with a high porosity

level ((Ref 130), Fig. 2d).

For about a decade the capability of the SPS process to

produce columnar coatings has also attracted large interest

(Ref 131). This structure (see Fig. 2e) is expected to give

high (tensile) strain tolerance, and they should show

improved thermal cycling performance. In fact, promising

results have been shown, especially in furnace cyclic tests

and thermal shock tests (Ref 132). The large number of

industrial patent applications in the field (Ref 129) also

clearly shows the interest of the industry. In (Ref 133), the

good performance of SPS TBCs also compared to EB-PVD

TBCs is demonstrated in furnace cycling tests. Further-

more, the technology is applied to complex shaped parts;

clearly, the specific growth conditions need optimized

spray processes, especially with respect to the movement of

the spray gun. As an advantage, it should be mentioned

here that the process conditions leading to columnar like

structures have a non-line-of-sight capability. Although

Table 1 Properties and temperature values for thermal barrier coatings applied in aero and stationary gas turbines, por—porous, seg—

segmented, ATBC= advanced TBC materials typically applied by APS as double layer: new material (e.g., pyrochlores, fully stabilized YSZ) /

YSZ by or also as single layer in EB-PVD. Further discussion is found in the materials section.

Component Main material

used

Main

coating

tech. used

Tmax

surface [�C]
Tmax bond

coat [�C]
Coating

thickness [lm]

Porosity levels [%]

Aero engines Blades and vanes YSZ or ATBC EB-PVD

APS (2.

vane)

\1300 950–1050 50–200 Low

Combustion chamber YSZ APS \1300 \950 200–250 15–20

Stationary

gas turbines

Blades and vanes YSZ or ATBC APS YSZ[1300,

ATBC above

1500

(locally)

Approaching.

1000�C
300–500 old,

500–1000 new

15–20, 15–20 (new)

Combustion chamber YSZ APS-por \1500�C \\1000�C 1000–2000 15–25

APS-seg \1350�C \\1000�C 1000–1500 \5
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columnar SPS TBCs appear to be very attractive coatings

for thermally loaded parts, it was also stated that under

harsh burner rig conditions with fast heating and cooling

regimes and additional substantial TGO formation, the

performance appears even worse than this of APS coatings.

This was recently demonstrated in (Ref 134) and will be

further discussed in the burner rig performance part. Under

the specific burner rig conditions combing gradient testing

and massive oxidation of the bond coat, the above-men-

tioned segmented, porous SPS TBC perform somewhat

better; however, they still do not reach the performance of

APS coatings for rather thin coatings.

As a last new deposition process, the plasma spray–

physical vapor deposition (PS-PVD) will be described.

This process, developed by Oerlikon Metco (Ref 135), uses

specific feedstock material, which disintegrates during

feeding, and the generated fine particles are then in the

high-power plasma torch not only molten but also evapo-

rated. Hence, a true gas phase deposition is the result,

which can lead to the growth of columns, which are even

single crystals under specific conditions (Ref 136). This

deposition process also needs smooth bond coats, and the

bonding mechanism is mainly a chemical one. Due to the

unique microstructure (see Fig. 2f), these coatings show an

excellent performance in harsh thermal cyclic conditions,

which is shown in the later part of the paper. Due to the

need of vacuum condition for the deposition process, it is

certainly more expensive than APS or SPS; however, it is

expected that the high powder feeding rates and an opti-

mized coating procedure adopted to the specific compo-

nents might gain a cost–benefit compared to EB-PVD. In

addition, a major benefit of the process is its non-line-of-

sight capability, which also allows the coating of complex

shaped components. Most of the installed PS-PVD facili-

ties are located in China, where the technology attracted a

lot of interest in the last decade. It should also be men-

tioned here that slightly reduced power regimes lead to a

more conventional plasma spraying process, however, with

very high particle temperatures and velocities which offer

the possibility to produce gas tight coatings (Ref 137). This

process is nowadays used for the deposition of excellent

crystalline and dense environmental barrier coatings (Ref

138).

Mitigation of CMAS-Induced Degradation

A critical aspect in the ongoing development of modern

TBC systems is the protection of the integrity of the

ceramic layers against the attack by deposits of sand or

volcanic ash particles (CMAS), which become liquid at

temperatures above approximately 1200 �C. The ceramic

layers of the TBC systems can in general be affected by

these deposits in two ways: First, the melt infiltrates the

open microstructure of the ceramic and the porosity of the

infiltrated ceramic layers is reduced. Second, the chemical

interaction with the melt can lead to the formation of a

reaction zone or an increased sintering rate of the ceramic

layers. Such densification of the microstructure usually

increases the thermal conductivity of the barrier layer.

Most importantly, the solidification of the melt at lower

temperatures, the formation of dense reaction zones and

also the increased sintering rate lead to a stiffening of the

structure, which directly increases the energy release rate,

and thus the driving force for spallation of the stiffened

layers (Ref 139, 140).

Considering this, efforts are being made to optimize

both the composition and microstructure of TBCs for

increased resistance to degradation by CMAS. When using

or additionally applying topcoat materials that show rapid

formation of a passivating reaction layer, it is imperative

that the TEC of both the new topcoat and the dense reac-

tion layer have as small mismatch as possible with the rest

of the TBC system. In addition, the additional or reaction

layers are designed as thin as possible. Preferred materials

for CMAS barrier layers are, e.g., RE zirconates as Gd2-
Zr2O7, aluminum oxide and high YSZ (Y2O3/ZrO2 solid

solutions) (Ref 141-143). It is known that due to the wet-

ting behavior of CMAS slags, infiltration into coarse pore

structures occurs at a slower rate compared to fine pores

and narrow channels (Ref 144, 145). For this reason, it is

advantageous to make the porosity of the layers multi-

modal: Areas with fine pore structure are capable of rapidly

binding CMAS slags. Areas with coarse pore structure with

some distance to the surface maintain strain tolerance for a

longer period of time. Approaches in this direction have

been presented, especially for columnar TBC structures

(EB-PVD, PS-PVD, SPS), where CMAS tolerance of sys-

tems with different intra-columnar porosity or size of inter-

columnar gaps was investigated (Ref 146, 147).

Burner Rig Lifetime of TBC Systems

As mentioned in Introduction, burner rig tests are a rela-

tively cost-effective way to mimic the complex thermo-

mechanical loads in a gas turbine environment. Because

these tests involve temperature gradients at elevated tem-

peratures with cyclic heating and cooling involving rapid

temperature transients, they can be used to study both the

temperature-induced aging of the individual layers of the

TBC systems at relevant temperatures and the effects of

gradient conditions on the effective stress levels resulting

from CTE mismatches. By using the hot combustion gases

as a heat source and the possibility of adding other media,

corrosion phenomena can also be studied to a certain extent

in an application-related manner. A disadvantage of the

burner rig experiments is to date that these test results are
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difficult to cross-reference between different laboratories

due to the still incomplete standardization (Ref 148). On

the one hand, this is attributable to the fact that the ther-

momechanical loads on the coatings are more complex on

the typically button-shaped specimens (due to the non-

negligible influence of the specimen edges) than on

cylindrical specimens. On the other hand, various test rig

designs are used (Ref 39), which differ noticeably in terms

of the heat and force applied to the specimens due to

variants of gas burners, cooling concepts and specimen

fixtures.

In this paper, we therefore relate the performance of

different TBC systems to the lifetime in burner rig exper-

iments from only one/our laboratory to enable a direct

comparison. In doing so, we knowingly accept that the best

TBC systems in each category worldwide may not be

considered. On the other hand, sufficient data are available

to allow some general qualitative conclusions. The test

conditions were chosen in most cases as follows: substrates

were made from IN738 with a button diameter of 30mm

and thickness of 3mm. An MCrAlY bond coat of about

150 lm thickness was applied by vacuum plasma spraying

(VPS) having a roughness of Ra = 7-8lm. The total

thickness of the ceramic topcoats was in the range of about

400-500lm. The surface temperature and the temperature

in the substrate center during the heating phases were at

about 1400 and 1050 �C, respectively. The dwell times in

each cycle were 5min for heating and 2 min for cooling.

The setup and experimental procedure of the burner rig test

are described in more detail in (Ref 149).

The results are plotted in Fig. 3 as a function of the

reciprocal bond coat temperatures. As the major failure

mechanism, the TGO growth, is thermally activated, a

straight line is often found for each TBC system. First,

results of APS coatings having the typical splat-based

microstructure are shown by symbols in black color. The

comparison of two coating systems produced with modern

triplex guns (Triplex II (T2), TriplexPro (TP), Oerlikon

Metco, Wohlen, Switzerland), which differ in their

microstructure mainly by their porosity (T2 12%–14%, TP

14%–16%), clearly shows the positive influence of higher

porosity levels on the lifetime. Taking the current internal

standard deposited by TP as reference, the temperature

dependence of the lifetimes is plotted as a black line. As

mentioned above, this trend is typically found in the case of

failures due to delaminations in the TBC/BC interface

region, which are essentially driven by the thermally

induced growth of the oxide layer (TGO). The lifetime of

the segmented system tested was of a similar order to that

of the porous APS coatings. This can be interpreted so as

that at fairly low layer thickness, the advantage of the

higher strain tolerance of the layers will be compensated by

the disadvantage of the higher modulus of elasticity of the

relatively dense segment structure. For thicker segmented

layer, the positive effect of segmentation is certainly more

pronounced, so the immediate failure of thick ([1mm)

porous coatings was observed in the burner rig test, while

segmented thick coatings survived several hundred cycles

(Ref 150).

The group of data points in red color includes systems

with modified interfaces between the bond coat and cera-

mic. In the case of TBC systems provided with a flash coat

consisting of ODS material (Ref 151), no clear advantage

can yet be observed with IN738 as substrate material

compared to the single-layer VPS system. In the case of

CMSX4 as substrate material, on the other hand, the

improvement is clear, partly due to the improved TEC

adaptation at the interface (Ref 152). For the APS coatings,

which have self-healing particles incorporated in the region

close to the bond coat interface, as comparison the dense

APS coatings (Triplex II) have to be considered. Compared

to these coatings, a rather clear improvement was observed

(Ref 153). Of course, in the self-healing TBCs the antag-

onistic effects of the reacting self-healing particles bridging

the growing cracks on the one hand while reducing

porosity and strain tolerance at the interface region at the

same time have to be well adapted to the specific loading

regime to gain a lifetime increase. An improvement of the

thermal cyclic performance was also found for a structur-

ing of the bond coat surface, e.g., by laser cladding or laser

ablation, detailed results cannot be reported here due to

confidentiality, but similar approaches are found in (Ref

154).

Results of TBC systems with columnar microstructure

are shown with blue symbols in Fig. 3. It is obvious that

single-layer TBCs produced by the SPS process are not

competitive in this category at present (Ref 155). This may

be attributed to a low fracture toughness in the root region

of the columns caused by the growth mechanism during

SPS processing in combination with the local out-of-plane

stresses at the interface (Ref 156). Much improved strain

tolerance and coating adhesion are found in the case of

columnar coatings produced by PS-PVD. Here, deposition

at comparatively high temperatures on slightly pre-oxi-

dized, polished bond coat layers produces a chemical

bonding which, in combination with a higher column

density, leads to a significantly longer cyclic life (Ref 157).

The blue shading in Fig. 3 indicates the region where

lifetime results of commercial EB-PVD coatings are found,

but cannot be published in detail for PI reasons. Similar to

the columnar PS-PVD systems, these lifetimes are notice-

ably higher than the range accessible with typical APS

structures. However, it should be noted that the TBC

thicknesses in these cases are mostly well below 300lm,

which also leads to a lower surface temperature and also

lower energy release rates. It is obvious that the lifetime

692 J Therm Spray Tech (2022) 31:685–698

123



data are reached by some thick thermally sprayed TBC

systems.

Results from double-layer TBC systems are shown in

Fig. 3 with green symbols. It is evident that the cyclic

lifetime of double-layer systems with a porous YSZ

interlayer made by APS and a columnar top layer deposited

by SPS process performs consistently the same or better

than a porous single-layer APS TBC. This can be attributed

to the fact that here the high fracture toughness of the APS

microstructure was successfully combined with reduced

driving forces for crack propagation arising from the strain-

tolerant columnar SPS top layer and especially the reduc-

tion of the local out-of-plane stresses at the APS/SPS

interface due to the use of equal materials. Double-layer

systems YSZ/GZO with porous APS top layers are inferior

to those with columnar SPS top layers of GZO. Here also

the extremely good performance of the complex perovskite

La(Al1/4Mg1/2Ta1/4)O3 (LAMT) SPS coatings should be

mentioned. Although the phase composition changed dur-

ing cycling, the coating still was intact after up to more

than 4800 cycles (Ref 158).

Finally, in Fig. 3 also two data points of APS YSZ

topcoats with modified thermal cycles are included (Ref

159). In this case the heating and cooling rates have been

reduced (?/- 10K/min). Although the surface temperature

was extremely high (* 1550�C), the lifetime of these

coatings were longer than the ones of the other APS TBCs.

This clearly indicates the importance of the transient pha-

ses of the thermal cycles and is currently the content of

further studies.

Short Summary

In the field of processing, especially the deposition tech-

niques with non-line-of-sight capabilities in combination

with columnar structures (SPS, PS-PVD) appear to be

attractive for the application of TBCs, especially for

coatings of complex shaped parts, also, e.g., additively

manufactured ones. Improved understanding of the differ-

ent failure modes compared to APS coatings seems still to

be needed. It is worthwhile to note that certain thermal

spray coatings (as PS-PVD ones) can show similar life-

times as EB-PVD coatings under the harsh burner rig tests

conditions with extensive TGO growth, however, without

additional mechanical load. This is astonishing as the tes-

ted thermally sprayed coatings were much thicker than the

EB-PVD ones. For high-temperature applications, dou-

ble-/multilayer approaches with new thermally stable ma-

terials combined with tough YSZ used directly on the bond

coat will probably be the most reliable approach. These

concepts can also mitigate to some extent the CMAS attack

using reactive topcoats and appropriate microstructures.

Fig. 3 Results of burner rig tests with 5 min dwell time and surface temperatures of about 1400 �C for different TBC systems as a function of

reciprocal bond coat temperature. The star added for APS indicates slower heating/cooling (see text)
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Modifications of the regions close to topcoat/bond coat

interface can lead to a considerable improvement of the

performance of the system by improving the adhesion

(bond coat structuring, adopting of thermal expansion) or

reducing crack growth (self-healing concept).

The role of the transient phases during thermal cycling

is not fully understood yet, and detailed knowledge might

lead to a considerable extension of the operation regime of

YSZ.

Outlook

Several thermally sprayed thick coatings (PS-PVD, double-

layer SPS) show similar lifetimes as thin EB-PVD coat-

ings. Here it is important to demonstrate that the columnar

structure obtained by the thermal spray method can be

comparable to EB-PVD microstructures under thermal and

mechanical loads as in TGMF testing. Corresponding

experiments are planned in the near future.

A huge number of new TBC materials have been sug-

gested and characterized to some extent in the past. It is

essential that not only thermophysical properties of new

ceramics are evaluated, but also the more application ori-

ented investigations on real coatings are made using harsh,

engine like conditions and compare the results to standard,

e.g., APS YSZ, coatings.

CMAS will remain a major issue, especially for aero

engines for at least the next decade. Certainly, a major part

of the present TBC research is focusing on this problem as

it is a major source of third party funding. This amount of

funding is of course showing that CMAS attack is a major

problem for the industry. Some of the advanced TBC

materials certainly have potential in mitigating CMAS

attack. If these are deposited with adopted porosity distri-

butions, also using new thermal spray methods, further

significant progress can be expected.

Although not discussed in too much detail, also due to

propriety reasons, the adjustment of the bond coat surface

before depositing the topcoat appears to be an excellent

way to improve the lifetime and performance of TBCs. Of

course, it is known for decades that rough bond coats and

also flash coats, which are meanwhile standard for many

TBC applications, lead to an improvement. More specific

surface structures obtained by, e.g., laser-assisted pro-

cesses or by optimized spraying processes allow a further

significant lifetime increase.

With the increasing need to reduce CO2 emissions also,

hydrogen turbines are attracting more attention. Although

the adoption of the combustion process to allow stable op-

eration and to reduce NOx emissions is a major focus of the

research also, materials issues have to be solved including

adopted protective coatings (Ref 160). It is obvious that

materials issues related to the higher water vapor content,

which often increases oxidation rates and volatilization, are

important. In addition, more pronounced phase transfor-

mation of the YSZ at lower temperatures and a lower cyclic

lifetime, especially for heavy cycling, as in aero engines

can be observed under wet conditions. Furthermore, also

the higher heat transfer to the components has to be con-

sidered, which can be addressed by lower conductivity

materials in combination with improved temperature

capability.

Within the context of increased use of renewables, gas

turbines will play an increasing role as load and full-flex-

ible technology to fill the gap between energy demand and

production. Here research with respect to TBCs should be

focused on the impact of varying operation times and dif-

ferent heating and cooling phases on the lifetime of the

coating systems.

Related to this topic, we will certainly further investi-

gate the massive increase in the lifetime of YSZ TBCs by

the use of specific transient regimes with medium cooling/

heating rates. This might allow the use of YSZ far beyond

1200 �C surface temperature.
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Gasturbinen. cfi/Ber. DKG, (2000). 77(9): p. 18-21.

J Therm Spray Tech (2022) 31:685–698 697

123

https://doi.org/10.1111/jace.18155
https://doi.org/10.1111/jace.18155


126. Subramanian, R., A. Burns, and W. Stamm. Advanced Multi-
functional Coatings for Land-based Industrial Gas Turbines. In:
ASME Turbo Expo 2008: Power for Land, sea and Air. 2008.
June 9-13, 2008, Berlin, Germany: ASME, New York.

127. K. Mondal et al., Thermal Barrier Coatings Overview: Design,

Manufacturing, and Applications in High-Temperature Indus-

tries, Ind. Eng. Chem. Res., 2021, 60(17), p 6061–6077.

128. Q.M. Liu, S.Z. Huang and A.J. He, Composite Ceramics Ther-

mal Barrier Coatings of Yttria Stabilized Zirconia for Aero-

Engines, J. Mater. Sci. Technol., 2019, 35(12), p 2814–2823.

129. M. Aghasibeig et al., A Review on Suspension Thermal Spray

Patented Technology Evolution, J. Therm. Spray Technol.,
2019, 28(7), p 1579–1605.

130. Vaßen, R., et al., Suspension Plasma Spraying: Process
Development and Applications, In: Thermal Spray 2009: Pro-
ceedings of the International Thermal Spray Conference / ed.:
B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, G.
Montavon. - S. 162 - 167. (2009).

131. K. VanEvery et al., Column Formation in Suspension Plasma-

Sprayed Coatings and Resultant Thermal Properties, J. Therm.
Spray Technol., 2011, 20(4), p 817–828.

132. N. Curry et al., Thermal Conductivity Analysis and Lifetime

Testing of Suspension Plasma-Sprayed Thermal Barrier Coat-

ings, Coatings, 2014, 4(3), p 630.

133. B. Bernard et al., Effect of Suspension Plasma-Sprayed YSZ

Columnar Microstructure and Bond Coat Surface Preparation on

Thermal Barrier Coating Properties, J Therm Spray Tech, 2017,
26, p 1025–1037.

134. N. Kumar et al., Columnar Thermal Barrier Coatings Produced

by Different Thermal Spray Processes, J. Therm. Spray Tech-
nol., 2021, 30(6), p 1437–1452.

135. K..v Niessen, M. Gindrat and A. Refke, Vapor Phase Deposition

Using Plasma Spray-PVD, J. Therm. Spray Technol., 2010,

19(1–2), p 502–509.

136. W. He et al., Advanced Crystallographic Study of the Columnar

Growth of YZS Coatings Produced by PS-PVD, J. Eur. Ceram.
Soc., 2018, 38(5), p 2449–2453.

137. D. Marcano et al., Plasma Spray-Physical Vapor Deposition of

La1-xSrxCoyFe1-yO3-d OxygenTransport Membranes on Por-

ous Metallic Supports: Controlling Stress State andPhase

Composition, International Thermal Spray Conference. ASM
International, Long Beach, CA, USA, 2015, p 1121–1127

138. Bakan, E., G. Mauer, and R. Vassen. An assessment of thermal

spray technologies for deposition for environmental barrier

coatings (EBC). in Thermal Spray paves the Way to the Stars!

International Thermal Spray Conference and Exhibition,

Düsseldorf, DVS Media GmbH, Germany, 2017.

139. C.G. Levi et al., Environmental Degradation of Thermal-Barrier

Coatings by Molten Deposits, MRS Bull., 2012, 37(10),
p 932–941.

140. D.L. Poerschke, R.W. Jackson and C.G. Levi, Silicate Deposit

Degradation of Engineered Coatings in Gas Turbines: Progress

Toward Models and Materials Solutions, Annu. Rev. Mater.
Res., 2017, 47(1), p 297–330.

141. A. Aygun et al., Novel thermal barrier coatings that are resistant

to high-temperature attack by glassy deposits, Acta Mater.,
2007, 55(20), p 6734–6745.

142. Mohan, P., et al., Degradation of Thermal Barrier Coatings by
Fuel Impurities and CMAS: Thermochemical Interactions and
Mitigation Approaches. Journal of Thermal Spray Technology,

2009.

143. N.K. Eils, P. Mechnich and W. Braue, Effect of CMAS Deposits

on MOCVD Coatings in the System Y2O3–ZrO2: Phase Rela-

tionships, J. Am. Ceram. Soc., 2013, 96(10), p 3333–3340.

144. X. Shan et al., Pore Filling Behavior of YSZ under CMAS

Attack: Implications for Designing Corrosion-Resistant Thermal

Barrier Coatings, J. Am. Ceram. Soc., 2018, 101(12),
p 5756–5770.

145. D.E. Mack et al., Evolution of Porosity, Crack Density, and

CMAS Penetration in Thermal Barrier Coatings Subjected to

Burner rig Testing, J. Am. Ceram. Soc., 2019, 102(10),
p 6163–6175.

146. R. Naraparaju et al., Tailoring the EB-PVD Columnar

Microstructure to Mitigate the Infiltration of CMAS in 7YSZ

Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2017, 37(1),
p 261–270.

147. S. Rezanka et al., Investigation of the Resistance of Open-col-

umn-structured PS-PVD TBCs to Erosive and High-Tempera-

ture Corrosive Attack, Surf. Coat. Technol., 2017, 324,
p 222–235.

148. ISO, Test Method of Cyclic Heating for Thermal-Barrier
Coatings under Temperature gradient, In: Metallic and Other
Inorganic Coatings, ISO, Editor. 2011, ISO. p. 14.

149. F. Traeger et al., Thermal Cycling Setup for Testing Thermal

Barrier Coatings, Adv. Eng. Mater., 2003, 5, p 429–432.

150. M. Karger, R. Vaßen and D. Stöver, Atmospheric Plasma
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