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Abstract Cold spray is a newly developed solid-state

metal deposition technology, which allows for preparing

various functional coatings and repairing damaged metal

components, as well as fabricating freestanding parts. In

order to obtain the deposits with the desired shape and

accuracy, the coating profile, including its thickness and

distribution, is an important indicator to monitor and con-

trol. In this work, an artificial neural network (ANN) model

has been employed to describe and predict the multi-layer

profile of cold-sprayed deposits. Compared to conventional

feature-based modeling methods, the ANN model is cap-

able of simulating a complete track profile on defined

substrate morphologies. The superiority of the ANN

approach is further emphasized by its ability to simulate a

multi-layer profile, which differs from previous works that

focus on single-layer profiles. It is essential for guiding the

coating formation and fabrication of near-net-shape parts.

The results imply that the ANN model is well trained and

capable of predicting multi-layer profiles with accept-

able accuracy. It can be used for profile control during cold

spray additive manufacturing.

Keywords artificial neural networks � cold spray additive

manufacturing � multi-layer profile � profile control

Introduction

Cold spray (CS) has attracted significant attention and has

been widely employed in industrial applications. It is a

materials deposition technology that preheats and leads a

high-pressure gas jet into a converging–diverging de

Laval-type nozzle. Here, gas and powder particles are

accelerated to supersonic velocities (500-1000 m/s) and

cooled down to temperatures that are typically around

room temperature or even lower (Ref 1). This process

enables a solid-state deposition by the kinetic energy of the

particles without melting. It fabricates coatings with unique

properties that are difficult to achieve by conventional

thermal spray technologies (Ref 2). The characterizations

of cold-sprayed coatings, such as homogeneous structure,

high density and purity, notable cohesive strength, and high

deposition rate, provide the ability to manufacture large

components (Ref 3). This permits CS technology to be a

novel additive manufacturing technology, i.e., cold spray

additive manufacturing (CSAM).

However, from the perspective of industrial applica-

tions, the CSAM technology has not yet become a mature

commercial technology by considering several fundamen-

tal and practical problems. Precise profile control is one of

the practical challenges. It facilitates the construction of

near-net-shape components and reduces property variation

caused by component profile, for instance, residual stress

(Ref 4). Mathematic formulae, especially the Gaussian

model, have frequently been used to simulate surface

profiles in CS technology. A symmetric Gaussian distri-

bution model was employed in modeling a single-track
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profile of cold-sprayed coating under different stand-off

distances by Cai et al. (Ref 5). Thirty points were picked up

from each coating profile to fit a Gaussian curve with a

constant coefficient. The simulation result can only respond

to different stand-off distances, which is inadequate to

study the CS process comprehensively. Y. Zhang et al.

employed Gaussian distribution to fit the coating profile on

spheres with different scanning azimuthal angles to predict

the coating thickness of a single-track profile (Ref 6).

Nevertheless, these works mainly focus on single-track

modeling, which supposes that the deposited surface is flat

and ignores the interaction between layers. The study by

Benenati et al. which used Tsui and Clyne’s progressive

coating deposition model to predict the profile of the

residual stresses through the thickness of the deposition

proves that the interaction between layers should be con-

sidered (Ref 4). The layer-by-layer build-up process of the

CSAM component is not a numerical superposition of

layers. The state of the previous profile will influence the

deposition process of the later track.

Apart from mathematic fitness, numerical simulation

has also been used frequently to investigate the coating

build-up process in CS. C. Chen et al. developed a 3D finite

element analysis (FEA) model to simulate the transient

coating build-up process and the heat transfer under the

influence of robot trajectory and different operating

parameters in CS (Ref 7). A numerical model based on

Gaussian distribution was constructed by Wu et al. to

evolve a 3D geometric profile in real time to predict and

evaluate the influence of the ‘shadow effect’ in CS (Ref 8).

A Gaussian distribution model was also embedded in off-

line programming software to simulate coating thickness

based on kinematic data by Chen et al. (Ref 9). Tzinava

et al. developed a simulator based on MATLAB, which can

deal with arbitrary geometry through triangle meshing and

predict the coating thickness by calculating thickness value

with each elementary triangle in the form of interpolated

lookup tables (Ref 10). Although numerical simulation

provides a model to predict as-sprayed coating thickness in

CS, it fails to study the layer-by-layer deposition process

and the interaction between layers. Therefore, a deposition

model with a new approach to predict multi-layer profiles

with acceptable accuracy is necessary.

With the rapid development and broad application of

artificial intelligence in various fields, one of its categories,

artificial neural networks (ANN), has emerged in thermal

spray technologies. An ANN model is a computing model

that can self-regulate and fit various nonlinearities in a data

series through training and learning, which results in

obtaining high-quality and efficient optimal conditions for

manufacturing processes (Ref 11). The ANN model has

been widely employed to predict coating properties and

optimize the spray process in air plasma spray (Ref 12-14),

high velocity oxygen-fuel spray (Ref 15, 16), and arc spray

(Ref 17). Meanwhile, less attention has been focused on

researching CS or profile control via the ANN model.

D. Ikeuchi et al. presented an ANN model to predict both

symmetric and asymmetric single-track profiles, which

provided fundamental research to improve geometric con-

trol for CSAM (Ref 2). However, to develop CS as a

mature commercial AM technology, the study of multi-

layer profiles is of great importance. A comprehensive

prediction of multi-layer profiles will benefit the fabrica-

tion of complex components with less post-machining and

promote the application of CSAM in industrial

applications.

In summary, this paper is dedicated to introducing an

ANN model to describe and predict the complete track of

the multi-layer profile of cold-sprayed deposits on different

substrate morphologies. The remainder of this paper is

organized as follows: ‘‘Experimental Procedure’’ section

introduces the experimental procedure; ‘‘Development of

ANN Model’’ section illustrates the data processing and the

implementation of the ANN model; ‘‘Discussion’’ section

presents and discusses the results of the experiment and

predictions of the ANN model; and ‘‘Conclusions’’ section

draws the conclusions for this study and gives perspectives

on future work.

Experimental Procedure

Pure copper powder with near-spherical morphology and

an average size of 26 lm was selected as feedstock in this

study, the details of which are referenced by Wu (Ref 3). A

grit-blasted aluminum plate was used as substrate. A

homemade CSAM system, consisting of power sources, a

high-pressure compressed gas source, a powder feeder, and

a spray gun, was employed to carry out the CS experi-

ments. An axisymmetric de Laval nozzle with an expansion

ratio of 8.3 was applied in the system, as introduced in the

reference (Ref 3). A six-axis industrial robot (ABB

IRB2400, Sweden) was applied to realize the spray tra-

jectory. A 3D profiler (LJ-V7060, Keyence, Japan) was

used to scan the coating profile online and in real time. The

3D profiler was fixed at a distance of 60 mm from the

measured surface. A laser line with a total length of 16 mm

(intervals of 0.02 mm) was used to scan and obtain the

profile data. The surface profile was measured five times,

and the average was calculated as the final profile data.

With the above-mentioned experimental setup, fifty sets

of CS experiments were conducted with different stand-off

distances, gun traverse speeds, and numbers of deposition

cycles. The stand-off distance varied from 20 to 40 mm,

and the gun traverse speed from 20 to 100 mm/s. The
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number of deposition cycles was set from 1 to 10. The CS

process parameters are listed in Table 1.

Development of ANN Model

An ANN model was developed to descript and predict the

multi-layer profile of cold-sprayed coatings on different

substrate morphologies. In this ANN model, the stand-off

distance, gun traverse speed, number of deposition cycles,

and substrate profile data were selected as inputs, while the

coating profile data served as targets.

Data Processing

The first step in modeling is to collect and pre-process data

for follow-up learning and training. A robust and suffi-

ciently large database is essential for constructing a model

that generalizes well (Ref 18). Based on the CS experi-

ment, the coatings were deposited, and the profiles were

obtained in real time by the 3D profiler. Every layer of

coating was scanned during a deposition for measuring the

profile on different substrate morphologies. The surface

with i tracks serves as the substrate for the (i?k)th deposit

profile (k is the number of the deposition cycle), as illus-

trated in Fig. 1. The initial profiles need to be trimmed to

keep length identical (412 points, interval of 0.02 mm) as

the number of effective points in each profile is different.

On the premise of ensuring the ANN model’s accuracy,

reasonable simplification is beneficial in reducing database

scale, thereby reducing the ANN model’s scale. Hereafter,

the average value of every two adjacent points in one

profile was calculated, and a new profile was formed with

simplified data. This treatment provides concise and effi-

cient data for ANN training. As a result, 330 sets of profile

data, each containing 206 points, have been collected and

used for ANN modeling.

The data required a linear transformation before being

used for modeling. In this work, the data were normalized

according to Eq 1 to fall into the range [- 1, 1] to avoid the

calculation error related to different parameter magnitudes

and ensure equal treatment from the ANN model during

training and learning (Ref 18).

XNORM ¼ 2 X � XMINð Þ= XMAX � XMINð Þ � 1 ðEq 1Þ

where XNORM is the normalized value; X is the real value;

XMAX is the maximum of the real value, XMIN is the min-

imum of the real value.

Configuring the ANN Model

For the ANN model, the stand-off distance, gun traverse

speed, number of deposition cycles (k), and 206 points of

substrate profile were selected as inputs. The 206 points of

coating profile served as targets. After normalization, the

data were randomly divided according to the data division

function of ‘‘dividerand.’’ It was then divided into three

sets: a training set, a testing set, and a validation set, with

the ratio of 70% (230 samples), 15% (50 samples), and

15% (50 samples), respectively.

The root mean square error (RMSE), which is defined by

Eq 2, has been chosen as an indicator to evaluate the

performance of models. It is for sure that the smaller the

RMSE, the better the prediction performance.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=Nð Þ
X

N

i¼1

eið Þ2
v

u

u

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=Nð Þ
X

N

i¼1

ti � aið Þ2
v

u

u

t

ðEq 2Þ

where ti is the experimental result; ai is the predicted result;

ei is the difference between the experimental result and the

predicted result; N is the number of the data sets.

Indicator R indicates the relationship between the pre-

dicted result and the actual result, which has been selected

Table 1 CS process parameters

Parameter Value

Stand-off distance (SOD), mm 20, 30, 40

Gun traverse speed (v), mm/s 20, 50, 100

Number of deposition cycle, time 1 to 10 (interval 1)

Powder feed rate, g/min 24

Fig. 1 Schematic diagram of coating deposition process
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to evaluate the regression performance of the model, as

depicted in Eq 3. Usually, the higher the correct evaluation

value R, the better the fitting result of the ANN model.

R2 ¼ 1�
X

N

i¼1

ti � aið Þ2
,

X

N

i¼1

ti � tið Þ2 ðEq 3Þ

where ti is the experimental result, ai is the predicted result,

ti is the average of the experimental result, and N is the

number of datasets.

Once the data have been allocated, the next step is to

configure the network and conduct the training of the

network. The number of neurons in the input and output

layers was set as 209 and 206 neurons, according to the

input and target numbers. However, there is no general rule

to precise the number of neurons in the hidden layers. An

ANN model with two-hidden layers was chosen in this

paper, and the number of neurons in hidden layers was

optimized and analyzed in ‘‘Discussion’’ section.

The training of the ANN model in this work was con-

ducted in a supervised manner, using the backpropagation

method in MATLAB (MathWorks, Natick, MA, the USA).

The transfer functions, including the function from the

input layer to the first hidden layer, the function between

hidden layers, and the function from the second hidden

layer to the output layer, were set as tansig, logsig, and

purelin. Scaled conjugate gradient backpropagation (train-

scg) was selected as the training function.

Fig. 2 Comparing the

performance of the ANN model

with different structures

Fig. 3 The comparison between the output and the target of ANN

model

cFig. 4 The experimental result (a1–e1) and predicted results (a2–e2)

of coating profiles deposited on a flat substrate at (SOD = 20 mm, v =
50 m/s) (a1, a2), (SOD = 30 mm, v = 20 m/s) (b1, b2), (SOD = 30

mm, v = 50 m/s) (c1, c2), (SOD = 30 mm, v = 100 m/s) (d1, d2), and

(SOD = 40 mm, v = 50 m/s) (e1, e2)
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Discussion

Optimization of Neuron Numbers in Hidden Layers

In the ANN model’s structure, the neuron numbers in both

the input and output layers are determined by the number

of the network’s input and output variables. However, there

is no general rule for determining the number of hidden

layers and number of neurons in the hidden layers. Gen-

erally speaking, the number of hidden layers and the neu-

ron number in the hidden layer are specified by considering

the accuracy of the trained model and the complexity of the

network structure. Higher accuracy with fewer hidden

layers and fewer neurons in the hidden layer is expected.

Several researchers have suggested that some formulae

relate the neuron number in the hidden layer with the

database size (Ref 19, 20). For instance, Guessasma (Ref

21) suggests that Eq 4 provided in reference (Ref 20) better

describes the case with less of the database, which is

estimated as explained in the following paragraph.

Fig. 4 continued

cFig. 5 The experimental and predicted results of coating profiles

deposited by one cycle on a curved substrate (i = 9, k = 1) at (SOD =

20 mm, v = 50 m/s) (a), (SOD = 30 mm, v = 20 m/s) (b), (SOD = 30

mm, v = 50 m/s) (c), (SOD = 30 mm, v = 100 m/s) (d), and (SOD = 40

mm, v = 50 m/s) (e)
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NH 2 NPNS

NI þ NS

;
2NPNS

NI þ NS

� �

ðEq 4Þ

where NH is the total neuron number in the hidden layers,

Np is the database size, NI and NS are the input and output

neuron size.

In the ANN model, the suitable neuron number in the

hidden layers was estimated to be between 163 and 326.

Therefore, 1009100 sets of training models, with 1–100

neurons (with an interval of one neuron) in the first hidden

layer and 1–100 in the second hidden layer, were trained to

optimize the architecture of the ANN model as shown in

Fig. 2. It illustrates that the two-hidden-layer models with

fewer neurons in the first or second hidden layer perform

worse, particularly when the second hidden layer has fewer

neurons. The simulation results indicate that a combination

of 86 neurons in the first and 54 neurons in the second

hidden layer, respectively, produces a relatively low RMSE

value of 0.02209 in the ANN model. Due to the model’s

relatively high accuracy and the reduced complexity of the

network structure, the number of hidden layers and the

number of neurons in the hidden layer for the models were

selected to be 86 neurons in the first and 54 neurons in the

second hidden layers. The number of neurons used in the

ANN model (140 neurons in total) is less than the number

estimated, which may contribute to the regular tendency of

the coating profile.

The ANN model was trained, and the network gener-

ating the minimum error within the validation set was

saved. An R of 0.9957 for the ANN model to predict the

coating profile from the process parameters and substrate

morphology was obtained. The training results demon-

strating the comparison between the targets (T, experi-

mental values) and outputs (Y, predicted values) of the

ANN model is shown in Fig. 3. The line Y = T represents

that the predicted outputs exactly match the targets. It is

clear that all the data that stand for the coating profiles are

dispersed around the line Y = T, which indicates that the

trained results rightly fit with the targets.

Analysis of the Predicted Result on a Flat Substrate

Figure 4 shows the experimental and predicted results of

coating profiles on a flat substrate. Figure 4(a1), (b1), (c1),

(d1), and (e1) displays the experimental results. In practice,

the general characteristic of CS deposits is that as the

number of deposition cycles increases, the thickness of the

coating gradually increases and becomes a typical trian-

gular profile. The reasons have been described in previous

reports (Ref 3, 8). Figure 4(a1), (c1), and (e1) shows that

stand-off distance (SOD) impacts the height of coatings.

The final coating height is 0.730 mm with a SOD of 20mm,

0.751mm with a SOD of 30mm, and 0.591mm with a SOD

of 40mm. This phenomenon can be explained by the

behavior of particle acceleration under different SODs.

Many published studies have proved that SOD significantly

affects critical particle velocity, which is one of the most

important factors in coating formation (Ref 3, 8, 22, 23).

This effect is directly reflected in the deposition efficiency

and its thickness. Also, Fig. 4(b1), (c1), and (d1) shows that

changing the gun traverse speed greatly influences the

coating height. It can be seen that the height of the coating

decreased from 1.291 mm to 0.591 mm as the gun traverse

speed increased from 20 m/s to 40 m/s. Typically, gun

traverse speed has no influence on deposition efficiency but

the amount of material deposited per unit of time. The

lower gun traverse speed means that the amount of material

deposited per unit of time will increase, resulting in a

higher coating height.

Figure 4(a2), (b2), (c2), (d2), and (e2) illustrates the

ANN model’s predicted results, which show that the ANN

model can give a precise prediction for forecasting coating

profiles at different stand-off distances, gun traverse

speeds, and numbers of deposition cycles. The coating

profile’s formation tendency is exactly the same as the

corresponding experimental result for the different process

parameters. However, the predicted result is more sym-

metrical and demonstrates a more obvious layer-by-layer

formation process as compared to the experimental result.

It is notable that in some experimental cases, the substrate

profile may be higher than the coating profile, which may

attribute to two points. On the one hand, the substrate may

be destroyed by the high-speed impact of particles. On the

other hands, the measurement accuracy of the 3D profiler

and the installation accuracy of the fixture may influence

the profile data. The ANN model’s prediction eliminates

this effect and shows an ideal coating formation process,

which may be slightly different from the actual situation

but will give a clear and simplified deposition process.

Analysis of the Predicted Result for a Curved

Substrate

The deposition of the 10th cycle (deposit) on the 9th track

(substrate), i.e., i = 9, k = 1, was selected as an example to

analyze the ANN model’s prediction for a curved substrate

with a single deposit. Figure 5 demonstrates the experi-

mental and predicted results of coating profiles deposited

on a curved substrate at different stand-off distances and

cFig. 6 The experimental and predicted results of coating profiles

deposited by multi-cycle on a curved substrate (i = 2, k = 4) at (SOD =

20 mm, v = 50 m/s) (a), (SOD = 30 mm, v = 20 m/s) (b), (SOD = 30

mm, v = 50 m/s) (c), (SOD = 30 mm, v = 100 m/s) (d), and (SOD = 40

mm, v = 50 m/s) (e)
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gun traverse speeds. As shown in Fig. 5(b), the predicted

profile rightly covers the experimental profile, producing

an average relative error of 5.91%. It indicates the pre-

dicted accuracy of the ANN model is higher when the

substrate is smoother. Figure 5(a) also displays a smooth

substrate surface, but the measurement error, which

occurred in the range of 0 mm\x\1.12 mm, results in an

average relative error of 9.66%. Although the substrate is

rough, the ANN model is still accurate with a small aver-

age relative error of 4.89% when the deposit is regular, as

proved in Fig. 5(e). It is interesting to see that the ANN

model can offset the measurement errors in the experi-

mental results. This is shown in Fig. 5(c), where the blue

line (predicted result) is more likely to be the coating for

the substrate than the red line (experimental result). It can

be concluded that the detailed profiles predicted by the

ANN model are in good qualitative agreement with the

experimental profiles. Therefore, the ANN model succeeds

in giving a prediction that can rightly reflect the ideal

coating profile on curved substrates with a single deposit.

Another example (i = 2, k = 4) was employed to examine

the predicted result of the deposition of multi-cycles on a

curved substrate, as illustrated in Fig. 6. It can be seen that

the smoother the experimental curve, the better the pre-

dicted result, as shown in Fig. 6(c), where the average

relative error is the smallest (5.18%). Similar to Fig. 5(c),

the ANN model’s ability to offset the deviation of the

experimental result caused by measurement error can be

observed in Fig. 6(b). In addition, the predicted result

appears to be the same curve after smoothing the experi-

mental result, as displayed in Fig. 6(a), (c), and (d). Gen-

erally speaking, the ANN model yields an accurate

prediction under different process parameters since the

predicted curve fits well with the experimental result.

Consequently, it can be summarized that the ANN model

precisely depicts the deposition of multi-cycles on the

curved substrate.

Conclusions

An accurate prediction for depositing layer-by-layer coat-

ing is of importance for forming complex 3D shapes in

CSAM. This study focused on data-driven ANN modeling

to predict a multi-layer profile on flat and curved sub-

strates. Instead of focusing on key features, as in previous

studies, this paper employed a large amount of profile data

to research the deposition process directly. The real-time

measurement of coating profiles contributes to the con-

struction of a large training dataset, enhancing the robust-

ness of the ANN model. The number of neurons in hidden

layers was optimized to yield the most suitable ANN

model. Analysis of the optimized ANN model shows that

the profiles predicted by the ANN model are in good

agreement with the experimental one. The comparison

between the experimental and predicted results proves that

the ANN model enabled an accurate description of profiles

on different substrate morphologies that will undoubtedly

occur in CSAM. In conclusion, the proposed ANN model

can predict multi-layer profiles with acceptable accuracy.

Therefore, it can guide and improve profile control during

CSAM to promote its application as a commercial

technology.
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