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Abstract Cold spraying has a potential application pro-

spect in the field of repairing and additive manufacturing.

The critical velocity of the cold spray is a key factor that

determines the adhesion of particles during the cold

spraying process, and it only depends on the particle

parameters under the same working conditions. In the

present study, the relationship between particle parameters

and critical velocity is investigated using a feature selection

method to obtain the influence weight of different particle

parameters. Based on the results of feature selection, linear

and nonlinear artificial neural networks are established to

predict the critical velocity, respectively. The results of the

feature selection show that the mechanical parameters of

the material have a higher influence weight on the critical

velocity than thermal parameters. In the prediction model,

the ANN (artificial neural network) method shows a good

prediction, and the nonlinear ANN model achieves better

generalization ability than the linear ANN model and

empirical formula with 95.24% prediction accuracy on the

original data set and 96.45% prediction accuracy on the

new data set.

Keywords ANN model � cold spray � critical velocity �
feature selection

Introduction

Cold spraying is a promising technology for coating sen-

sitive metals and composites, and it is widely used in

numerous applications, including repairing and surface

engineering. Unlike conventional thermal spraying, cold

spraying has many advantages such as lack of oxidation,

phase transformation, low operating temperature and little

heat effect in the processing, and it is especially suitable for

forming temperature sensitive materials (Ref 1, 2). In the

processing of cold spraying, the critical velocity directly

determines whether the particle can deposit on the substrate

successfully.

With the increase of particle velocity, the deposition

efficiency of powder increases gradually and coating

quality can be improved with large plastic strain due to the

larger kinetic energy of powder (Ref 3). The critical

velocity is defined as the velocity at which powder can be

deposited on the substrate successfully (Ref 4). This is also

the turning point of particles from erosion to deposition,

and the deposition efficiency is zero at this point. Later,

research showed that when the deposition efficiency

reaches about 50%, the deposition efficiency would

increase rapidly, and the variation range of particle velocity

keeps in a very narrow interval (Ref 5). At the same time,

the particle size in the spraying process is maintained at a

range rather than a quantity. Consequently, the velocity

corresponding to the deposition efficiency of 50% is widely

regarded as the critical velocity of particles. Excessive

momentum of powder will result in work hardening and

erosion of prior coating, causing the deposition efficiency
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decreasing from 100% to negative value when the particle

velocity exceeds a certain value with about 2 or 3 times

critical velocity (Ref 6). Therefore, the velocity of particle

is generally within a suitable range in spray processing.

The critical velocity of particle is affected by both

external and internal factors, and the internal factors of the

material are the main reason that determines the particle

whether can be deposited. Generally, the particle which has

a lower melting point can easily soften and deform in the

spraying processing and easily reach the critical velocity

(Ref 7, 8). Meanwhile, the hardness of the particle them-

selves also plays a key role. The higher the particle hard-

ness, the worse its deformation capacity will be. Therefore,

it is difficult to deposit on the surface of the substrate, but

easy to cause erosion and impact damage to the substrate

(Ref 8, 9). For example, Cr, W and other hard phase par-

ticles are difficult to deposit directly by cold spraying. In

addition, the degree of oxidation of particles also directly

affects the critical velocity. To rupture the oxide film and

allow the metal leak out to combine the substrate, some

kinetic energy of the particles is consumed, and it leads to a

higher critical velocity of the particle (Ref 10). Thus, it can

be seen that the factors affecting the critical velocity are

mainly the properties of the material itself, especially the

ability of plastic deformation. The external factors mainly

refer to carrier gas temperature and substrate material.

When the same material is deposited on different sub-

strates, the critical velocity required of particle for the

harder substrate is small than the soft substrate, which is

due to the larger plastic deformation of particle and easier

to form self-locking during the impacting on the harder

substrate (Ref 11). With increasing the gas temperature, the

in-flight particles can be softened further in the laval nozzle

and obtain greater plastic deformation when the particles

impact on the substrate (Ref 12). Thereby, the critical

velocity of the particle can be decreased by increasing the

gas temperature below the melting point to prevent the

material from melting in the actual forming process.

The measurement and prediction of critical velocity of

cold spraying are mainly carried out from two aspects:

experiment and numerical simulation. In the course of the

experiment, particle velocity is usually measured by the

laser pulse generated by the laser diode irradiating on the

high-speed particles, and the reflected pulse signal received

by the CCD detector is used for image data processing, and

then, the actual particle velocity is measured (Ref 13, 14).

According to the experimental results and theoretical

derivation, researchers have put forward the empirical

formula of critical velocity, including density, melting

point, tensile stress, reference temperature and other

parameters (Ref 6, 15). These formulas further explain that

the influence factors of critical velocity are mainly deter-

mined by the physical properties of the particles. On the

other hand, in view of the development of computer finite

element technology, there is an effective means to simulate

the impact behavior of high-speed particles, and the

instantaneous phenomena which are difficult to be

achieved by experiments can be observed accurately.

Assadi et al. Ref 15 established the cold spray model based

on the Lagrange method and presented that the adiabatic

shear instability (ASI) is a standard to anticipate the suc-

cessful deposition of particles for the first time. Subse-

quently, other scholars used the same method to simulate

the deposition of particles at different speeds (Ref 16). The

results show that the velocities of ASI at particle temper-

ature, equivalent plastic strain, equivalent plastic strain rate

and equivalent normal stress are very close to the critical

velocities obtained by experiments. Therefore, ASI is

widely used as a criterion for estimating the critical

velocity of cold spraying (Ref 17-19). Furthermore, in

order to avoid the drawbacks of excessive distortion of the

traditional Lagrangian method during large deformation,

the smoothed particle hydrodynamics method (SPH),

arbitrary Lagrange-Euler method (ALE) and Eulerian

method have also been widely applied in the simulation

analyses of cold spraying (Ref 20-22) based on ASI.

However, it takes a lot of time and resources to predict the

critical velocity of the particle through experiment or

simulation, and it is difficult to consider the influence law

under the joint action of many factors at the same time,

both of which have great limitations.

The aim of this paper is to propose a new method to

predict the critical velocity of particle based on machine

learning. Unlike experiments or simulations, feature

selection was first used to weigh the influence of different

material parameters on the critical velocity. Then the

critical velocity was predicted by using artificial neural

network (ANN) on the basis of the important features

selected by feature selection. Finally, the accuracy of the

prediction results was evaluated with root mean square

error (RMSE) and mean absolute percentage error

(MAPE).

Data Set and Analysis Method

To quantify the critical velocity with material parameters

and predict the critical velocity, it is of significant impor-

tance to study the contribution of each material parameter

to the critical velocity. Figure 1 illustrates the flowchart of

predicting the critical velocity. It indicates that the first step

is to collect and preprocess the data. The second step is

performing the feature analysis, including defining material

properties and calculating the contribution of each

parameter. The third step is ANN predicting. Details were

described in the following sections.
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Data Set

The critical velocity affecting whether particles can be

successfully deposited is only related to particles properties

under certain conditions of external factors (gas tempera-

ture, substrate properties, etc.). For a more comprehensive

analysis, mechanical and thermodynamic parameters of

different materials are considered as far as possible, and the

critical velocity of different materials measured under the

same experimental conditions is cited in Table 1. Specifi-

cally, the experimental conditions are particles with an

average particle size of 25 lm and a corresponding tem-

perature of 20�C. The mechanical characteristics, including

the density, modulus of elasticity, Poisson’s ratio, tensile

strength, yield strength and the bulk speed of sound, and

the thermodynamic properties, including the thermal con-

ductivity, specific heat capacity and the melting point

temperature of particle materials, are selected as feature

selection parameters. In the present study, 8 materials (8

sets of data) are considered accordingly.

As shown in Table 1, there is a great difference between

1E and 9 to 1E8 in the order of magnitude between dif-

ferent attributes of the particle, which leads to unbalanced

weight and has a great impact on the accuracy of machine

learning and. Data normalization is one of the commonly

used data preprocessing that can significantly improve the

similarity in network training, accelerate the convergence,

and improve the model accuracy (Ref 25). At present, Z-

score standardization and Min-Max Normalization are two

common normalization methods. Compared with Z-score

standardization, Min-Max Normalization has higher

applicability for the data with non-normal distribution

which adopted in this study. Using this method, data are

normalized to the interval of [0, 1] through the following

expression:

Fig. 1 The proposed flowchart for predicting the critical velocity

Table 1 Parameters and critical velocity of different material (Ref 2), (Ref 23), (Ref 24)

Materials Cu Al Al6061 Al7075-T6 Ti Ni Fe TC4

Density, tone�mm-3 8.96E-09 2.7E-09 2.7E-09 2.81E-09 4.51E-09 8.89E-09 7.89E-09 4.43E-09

Thermal conductivity, mW/mm/�C 386 220 167 155 14.63 88.5 46.5 6.7

Specific heat capacity, mJ/tonne/�C 3.83E?8 9.2E?8 8.96E?8 9E?8 5.28E?8 4.46E?8 4.52E?8 5.26E?08

Modulus of elasticity, Mpa 124000 69000 68900 71700 116000 207000 200000 110000

Poisson’s ratio 0.34 0.33 0.33 0.33 0.34 0.31 0.29 0.34

Tensile strength, Mpa 250 168 310 524 240 380 240 948

Yield strength, Mpa 100 148 276 455.9 140 167 142.45 860

Melting point, �C 1083 630 656.9 620 1649.85 1455 1535 1605

Bulk speed of sound, mm/s 3.94E?6 5.33E?6 5.24E?6 5.2E6 4.7E?6 5.06E?6 5.122E?6 5.13E?6

Critical velocity, m/s 451 482 556 658 712 574 596 1013
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x�i ¼
xi � xmin

xmax � xmin

ðEq 1Þ

where xi, xmin, xmax, xi
* denote the original, minimum,

maximum and the normalized data, respectively.

Feature Selection and Selection Methods

Feature selection is an important part of feature engineer-

ing to find the optimal feature subset. By eliminating

irrelevant or redundant features, the data dimension can be

decreased which result in a higher accuracy and better

generalization ability especially in machine vision (Ref

26, 27). Three data-driven algorithms based feature selec-

tion for screening out key features about influencing criti-

cal velocity of the material in this section, including

Gradient boosting regression tree, correlation analysis and

SelectKBest.

Gradient Boosting Regression Tree

Gradient boosting regression tree is a mainstream machine

learning algorithm for data regression problems. Different

from other algorithms (decision tree, random forest, etc.), it

uses the boosting integrated model. In the process of model

learning, the new decision tree fits the residual of a subset

of the original data set (not the original data set), which is

obtained by non-return random sampling. The randomness

often helps to improve the fitting ability of the model, and

the unextracted data can also be used as a verification set. It

should be noted that the gradient boosting regression tree

measures tree’s contribution to the predicted results

through a learning rate (Ref 28).

Gradient boosting regression tree builds the tree in this

way until the model reaches the maximum value of the

predetermined tree or adding additional trees does not

significantly affect the size of the model residuals. The

initial prediction that minimizes the loss function is

described as follows:

F0ðxÞ ¼ argmin
c

Xn

i¼1

Lðyi; cÞ ðEq 2Þ

where n is the number of input variables, yi is the observed

values, c is the predicted value, and L is the loss function.

Furthermore, the residual of each sample is expressed as

the deviation of the loss function relative to the predicted

value, which can be determined by the following formula:

rimðxiÞ ¼ � oLðyi;Fm�1ðxiÞÞ
oFm�1ðxiÞ

ðEq 3Þ

where r is the residual, m is the number of tree , xi is the

input values, and i is the number of samples. By modeling

the pseudo residual, the weighting factor cm that can be

used to build next tree hm(x) is given by:

cm ¼ argmin
c

Xn

i¼1

Lðyi;Fm�1ðxiÞ�cmhmðxiÞÞ ðEq 4Þ

Finally, making a new prediction for each sample

according to the previous learning situation, the predicted

value Fm xð Þ can be defined as follows:

FmðxÞ ¼ Fm�1ðxÞ þ cmhmðxÞ ðEq 5Þ

SelectKBest

For the sample data set, SelectKBest algorithm, labeled as

SKB, could select the most maximum relevance feature

based on the mutual information between the features and

labels. It takes two parameters as input arguments, k and

the score_func, to estimate the relevance of every feature.

K is the number of properties that need to be preserved.

Score_func uses functions to score the features in the

dataset and arranges them in order from high to low, such

as chi2 and f_classif for classification problems and f_re-

gression and mutual_info_regression for regression prob-

lems (Ref 29, 30). In this paper, the algorithm adopts the

scoring function of f_regression and retains all attributes.

f_regression can be described as follows:

ri ¼
ðxi � xÞTðy� yÞ
stdðxiÞstdðyÞ

ðEq 6Þ

where ri is the sample correlation coefficient that reflects

the importance of the input and output data sets , xi and y

are the input values and output values, x and y are their

respective averages, std is the standard deviation of the

data.

Correlation Analysis

Correlation analysis is used to quantify the association

between two variables and the range of correlation coeffi-

cient from -1 to 1. The larger the correlation coefficient is,

the more related the two variables are. When the correla-

tion coefficient is greater than 0, it means that there is a

positive correlation between the two variables; otherwise,

there is a negative correlation (Ref 31). In this study, the

positive and negative affection between material parame-

ters and critical velocity is ignored and the correlation

coefficient can be calculated as follows:

r ¼ absð E½ðX � EXÞðY � EYÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX � EXÞ2EðY � EYÞ2

q Þ ðEq 7Þ
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EX ¼
XN

i¼1

Xi=N ðEq 8Þ

EY ¼
XN

i¼1

Yi=N ðEq 9Þ

where r is the linear correlation coefficient, EX and EY

represent the mean values of X and Y, respectively.

The above three algorithms are, respectively, used to

train the normalized data set. In order to consider the

influence of different situations as far as possible, 6 sets of

data (75% data) are selected as the training set and 2 sets of

data (25% data) as the verification set each time, in a total

of 28 (C6
8) cases. The influence weight of each parameter is

obtained by weighted averaging of the 28 results of each

method. Finally, parameters with the influence weight of

less than 0.2 are ignored, while remaining parameters are

used to quantify the critical velocity. Figure 2 illustrates the

flowchart of the abovementioned feature.

Fig. 2 Flowchart of the feature

analysis method

Fig. 3 The flowchart of the

ANN method for calculating the

critical velocity
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The Method of Artificial Neural Network

In recently, the ANN is widely applied in a variety of fields

due to the good nonlinear fitting ability and this fitting

ability is dependent on the number of hidden layers, neu-

rons and hidden functions (Ref 32-34). In the model

learning, the weights and bias can be updated through the

back propagation algorithm to ensure the error between the

actual value and predict value is minimum. The mathe-

matical principle of ANN can be simply expressed by

Eq. (10).

ypredict ¼ f2½W2 � f1ðW1 � X � B1Þ � B2� ðEq 10Þ

ypredict is the predict value, X is the input value, f1 and f2
are the transport functions of the hidden layer and the

output layer, respectively, W1 and W2 are the weight matrix

of hidden layer and the output. B1 and B2 are the bias

matrix of hidden layer and the output. Through formula

calculation, the corresponding results ypredict can be pre-

dicted by the input data X.

For the predicted results, the loss function is also needed

to measure the accuracy of the model. The mean square

error (MAE) of Eq. (11) is a common loss function.

Fig. 4 Parameters influence weight based on feature selection (a) gradient boosting regression tree, (b) correlation analysis, (c) SelectKBest

analysis, (d) weighted average results
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J ¼ 1

N

XN

i¼1

ðypredict � yactualÞ2 ðEq 11Þ

ypredict is the predict value, yactual is the actual value, N is

the number of the train data. In the actual training process,

it is key to reduce the value of loss function as much as

possible.

Although the ANN has a great fitting performance,

underfitting and overfitting are frequent problems in the

actual modeling process. To overcome this phenomenon,

the cross-validation method which is effective for small

sample analysis is used and also can avoid the noise

problems caused by small samples. Similar to feature

selection, in the cross-validation, 75% data are set as

training data, while the remaining 25% data are set as the

validation data. Meanwhile, the number of hidden layers,

neurons of each hidden layer and the activation function

should be optimized in the data processing to reduce the

simulation error between the actual value and the predicted

value.

Figure 3 shows the flowchart of the ANN method for

predicting the critical velocity. In this paper, all the codes

are implemented with Python syntax, and the platform is

Jupyter Notebook. The third-party tool library including

the tensorflow and sklearn is adopted feature selection and

critical velocity prediction.

Fig. 5 MAE of nonlinear ANN

errors under different

parameters

Fig. 6 The structure of ANN

model: (a) linear ANN model

(b) nonlinear ANN model
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Results and Discussions

Material Parameters Contribution Analysis

and Selection

Figure 4 shows the schematic diagram of the influence

weight of material parameters based on different feature

selection algorithms. The mechanical parameters are

marked in green, while the thermodynamic parameters are

marked in purple. Figure 4a-c shows the results of gradient

boosting regression tree, correlation analysis and

SelectKBest algorithm, respectively. To unify the results of

the three algorithms, weighted averaging is carried out and

the results are shown in Fig. 4d.

It is obvious that the weight distribution results of the

gradient boosting regression tree with the impurity index of

MSE and the SelectKBest with the impurity index of

f_regression are in good agreement. The yield strength and

tensile strength representing the plastic mechanical prop-

erties of materials show a higher influence weight on the

critical velocity which is close to 1. The influence of

thermal conductivity and melting point representing the

thermodynamic properties of materials is second. Although

the results calculated by correlation analysis is slightly

different, the overall trend remained consistent. From the

weighted average results, the influence weight of

mechanical property parameters is higher than that of

thermodynamic property parameters as a whole. This

indicates that the deposition of particles during cold

spraying mainly depends on the physical properties of

particles, while thermal softening has an auxiliary effect.

As mentioned above, the deposition mechanism of cold

spraying can be revealed from the perspective of feature

selection.

Through the result of feature selection, the feature

parameters with influence weights more than 0.2 are

selected. Therefore, five parameters including tensile

strength, yield strength, thermal conductivity, melting point

and bulk speed of sound were selected as input properties

for subsequent predictions.

Critical Velocity Prediction

After feature selection, five features, including tensile

strength, yield strength, thermal conductivity, melting point

and bulk speed of sound, are selected as the inputs, and the

critical velocity is set as the output for the ANN. The linear

ANN structure is simple and does not contain hidden lay-

ers. In contrast, the nonlinear ANN structure needs to

consider the effects of the hidden layers and the activation

function on the model. Figure 5 shows the influence of

different number of hidden layers, number of hidden nodes

and activation function on the accuracy of the data model

(measured by MAE). The smaller the bubble point is, the

better the model effect is. As shown in Fig. 6, when the

activation function is sigmoid, the number of hidden layers

is 1, and the number of hidden nodes is 3, the model has the

highest accuracy.

Fig. 7 The trend of verification

loss and accuracy with iterations

under two ANN models
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Figure 6 shows the structure of the linear and nonlinear

ANN model which is determined through the analysis and

testing according to the step in Figs. 3 and 5. In the linear

ANN model, all the inputs are directly connected with the

output, and the activation function of the output layer is

linear (y=x). Figure 6b shows that the structure of nonlinear

ANN model. Moreover, to make the model converge faster,

the Adam optimizer function is set in both linear and

nonlinear ANN model.

Figure 7 shows the trend of verification loss and veri-

fication accuracy based on two ANN models. Compared

with linear ANN model, the nonlinear ANN model shows a

faster convergence rate and a higher accuracy which indi-

cates that the relationship between critical velocity and

material properties is nonlinear. When the number of

iterative steps is 2000, the model tends to be stable, the

verification loss is maintained at 0.04, and the accuracy is

as high as 0.95. In the same case, the linear ANN network

needs to continue to iterate to 2000 steps, and the corre-

sponding verification loss and accuracy are 0.5 and 0.8,

respectively. With the iterative step increased, the error of

the network is increased, and the model have the phe-

nomenon of overfitting.

Furthermore, in order to take into account the coverage

of all cases, for 8 sets of data sets, 6 groups (75%data) are

taken as training sets, and the remaining 2 groups (25%-

data) are taken as verification sets. Therefore, there is a

total of 28 (C6
8) cases. Linear ANN and nonlinear ANN

models are used for prediction, and the results are shown in

Fig. 8. As for the prediction of the training set, it is shown

in Fig. 8a that the prediction points on the linear ANN are

more concentrated above the auxiliary lines, indicating that

Fig. 8 Training and validation results from ANN model
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the overall prediction results are too large and the accuracy

is poor. In the nonlinear ANN model in Fig. 8b, the pre-

diction point is uniformly located on the auxiliary line,

showing a good prediction effect. In the prediction of the

verification set, it can be seen from Fig. 8c that the dis-

persion of the prediction points under the linear model is

more obvious, and the overall error is less than ±40%,

which is obviously different from that of the training set,

and the generalization effect of the model is not ideal.

Although the error of the nonlinear model has also

increased significantly, most of the errors are kept within

±20% in Fig. 8d. Compared with the linear model, it has

better fitting and generalization ability in the performance

of the data set, which also means that the particle param-

eters have strong nonlinear relationship with the critical

velocity.

In order to illustrate the feasibility of the nonlinear

neural network in predicting the critical speed of the cold

spray, two evaluation methods including RMSE and

MAPE are used to evaluate the prediction results, which

were calculated by Eqs. (12) and (13).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðy�i � y
ðiÞ
p Þ2

s
ðEq 12Þ

MAPE ¼ 100%

n

Xn

i¼1

y�i � y
ðiÞ
p

y�i

�����

����� ðEq 13Þ

Where n is the number of predicted values, yi
* and yp

(i) are

the i-th target and predicted responses, respectively.

Table 2 shows the prediction results of 28 cases under

the nonlinear neural network and the prediction value

corresponding to each result in detail. The average of

MAPE and RMSE of all cases is 7.14% and 45.81,

respectively, which all remain within a small range without

obvious underfitting and overfitting behaviors.

Furthermore, in order to count the prediction results of

the critical velocity of each material, the above results are

extracted and the mean value is taken as the final predicted

Table 2 Prediction results of

nonlinear ANN model
Material Predictive value/m�s-1 Actual value/m�s-1 MAPE RMSE

Cu Al 403.572 452.9724 451 482 0.082692539 39.3193077

Cu Al6061 468.0094 569.5101 451 556 0.031006862 15.3597594

Cu Al7075-T6 475.3049 632.3074 451 658 0.04646888 25.0084134

Cu Ti 325.7997 620.844 451 712 0.202816993 109.50918

Cu Ni 608.6009 624.8924 451 574 0.219055236 117.106977

Cu Fe 356.4125 627.1658 451 596 0.131009967 70.4205257

Cu TC4 507.403 1013.158 451 1013 0.062608932 39.8831305

Al Al6061 461.929 561.0212 482 556 0.025335944 14.629695

Al Al7075-T6 464.1785 646.6868 482 658 0.027083683 14.9263892

Al Ti 428.0935 578.6936 482 712 0.149533594 101.677175

Al Ni 456.9325 607.9305 482 574 0.055559761 29.8299809

Al Fe 461.4932 610.0997 482 596 0.033101246 17.5973184

Al TC4 449.4987 1034.264 482 1013 0.044210705 27.4636237

Al6061 Al7075-T6 558.7439 634.8046 556 658 0.020093224 16.5160099

Al6061 Ti 563.3604 650.3599 556 712 0.049905647 43.8957873

Al6061 Ni 567.1922 600.116 556 574 0.03281406 20.091161

Al6061 Fe 572.5392 613.99 556 596 0.029965682 17.2798422

Al6061 TC4 569.6713 1004.148 556 1013 0.016663611 11.5166208

Al7075-T6 Ti 639.6517 653.6134 658 712 0.054944333 43.276187

Al7075-T6 Ni 634.0784 589.0515 658 574 0.031288586 19.9848754

Al7075-T6 Fe 626.9616 614.9173 658 596 0.039455679 25.7026185

Al7075-T6 TC4 625.1174 910.2581 658 1013 0.075698459 76.2796437

Ti Ni 633.8714 619.5113 712 574 0.094509579 63.9349381

Ti Fe 591.5832 554.0055 712 596 0.119792612 90.1768789

Ti TC4 627.3362 897.6833 712 1013 0.116373368 101.158083

Ni Fe 684.3267 668.4807 574 596 0.156909398 93.3419599

Ni TC4 601.6243 1020.903 574 1013 0.027963578 20.3169201

Fe TC4 614.0001 998.3538 596 1013 0.022329864 16.409058

Average / / / / / 0.071399715 45.8075735
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value. In order to facilitate comparison with other studies,

an additional empirical formula for calculating critical

velocity proposed by Assadi et al. Ref 3 is added. The final

result is shown in Fig. 9, and the numerical part is the

average error of the critical velocity of each material. It can

be seen from the predicted results of the model that except

that the Ti error is as high as-12.59%, the critical velocity

prediction errors of other materials are kept in single digits,

of which Cu has the lowest prediction error of -0.38%. By

contrast, the predicted results using empirical formulas are

significantly larger, in which the material TC4 with the

largest predicted error is as high as -25.74%. Except for

Al7075-T6, all the predictions are inferior to those of the

nonlinear neural network. Without considering the influ-

ence of positive and negative errors, the average error of

each material is 4.76% by nonlinear ANN, and the corre-

sponding prediction accuracy is 95.24%. The error and

accuracy of the empirical formula are 14.38% and 85.62%,

respectively. The prediction accuracy of the nonlinear

ANN is nearly 10% higher than that of the empirical for-

mula, which shows that the model has good learning and

prediction effect under small sample data.

In order to verify the prediction accuracy of the model

on new materials, two sets of 316L and Nb data are added

as prediction indexes as shown in Table 3. All the 9 data in

Table 2 are used as the training set of the nonlinear ANN,

and the new two sets of data are used as the prediction. The

final results are shown in Fig. 10. From the prediction

results of the two metals, the average prediction error is

3.55% and the corresponding accuracy is 96.45%. The

overall prediction accuracy is slightly higher than the

previous data set, and this means that the nonlinear ANN

can still guarantee good accuracy even at the prediction of

critical velocity about new materials.

Fig. 9 The results are predicted

by nonlinear ANN model and

formula

Table 3 New material data samples predicted by nonlinear ANN model (Ref 2)

Materials Thermal conductivity, mW/

mm/�C
Tensile strength,

Mpa

Yield strength,

Mpa

Melting point,

�C
Bulk speed of sound,

mm/s

Critical velocity,

m/s

316L 16.3 515 205 1380 4912000 675

Nb 272 300 150 2468 3480000 564
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Conclusion

In the present study, an artificial neural network with the

feature selection method is used to predict the critical

velocity of the cold spray. Moreover, the influence weight

of each parameter of materials is calculated based on the

feature selection method, and the parameters which have

higher influence on the critical velocity are set as the inputs

of ANN to predict the critical velocity with different

materials. The main conclusions are summarized as

follows:

(1) The method based on machine learning with feature

selection is proposed to predict the critical velocity

of the cold spray. It is observed that the proposed

method has a high accuracy and short time cost for

predicting the critical velocity for pure metal and

alloy materials and the best ANN model are

established.

(2) Feature selection analysis shows that the parameters

that make great contribution to the critical velocity

are mechanical parameters, especially those repre-

senting plastic deformation, followed by thermal

parameters. The results show that the effect of large

plastic deformation on the critical velocity of

materials is greater than that of thermal softening.

(3) Compared with the linear neural network and

empirical formula, the nonlinear ANN model has

higher prediction accuracy and fault tolerance. In the

original data set, the prediction accuracy can reach

95.24%, and in the new data set, it can reach

96.45%, which shows that the model has good

learning and generalization ability for small data

samples.
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