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Abstract This work describes an online, non-destructive

monitoring technology for thermal spray coating processes

based on the airborne acoustic emissions (AAE) in the

booth. First, numerical simulations were carried out to

probe into the relationship between AAE signals and the

frequency spectrum generated during high velocity-oxy-

fuel thermal spray. The experimental part consisted of

spraying a plane substrate. The torch was traversed in front

of the substrate at a constant speed, 90� impact angle and

for different combinations of standoff distance and powder

feed rate. The AAE signals were acquired using a broad-

band piezoelectric sensor positioned at a fixed point near

the torch, and the experimental power spectrum of the

signal was processed and compared with model predic-

tions. A neural network-based model was implemented

capturing and representing the complex relationships

between the power spectrum of the AAE and the resulting

coating microhardness. The research outcomes demon-

strate that the sound contains detectable information asso-

ciated with spray parameters such as powder feed rate,

spray distance and the resulting coating microhardness.

The proposed technology can be used to detect process

flaws so that deviations from the optimum spraying con-

ditions can be detected and corrected promptly.

Keywords acoustic emissions � artificial neural networks �
computational fluid dynamics � HVOF � in situ monitoring �
process diagnostics � thermal spray

Introduction

Advanced control systems, based on programmable logic

controllers, digital mass flow meters and controllers, as

those used in thermal spraying equipment lead to repro-

ducible primary input parameters (gas flow rates, pressures,

feed rates, gun movement), but they are not technically

capable of monitoring the variation of the coating quality

resulting from permanent or sudden modifications and

fluctuations in the system hardware. Nozzle wear, clog-

ging, troubling in feeding lines, gas leaks, tube erosion,

etc., are not detectable by these systems but are extremely

important for practical applications.

Deviation from the optimal spraying parameters can

produce substantial variation in the quality of the applied

coating microstructure. These quality-related issues can

result in catastrophic failures or even life-threatening sit-

uations when aerospace critical components are processed.

The proposed airborne acoustic emission (AAE) monitor-

ing equipment is able to grasp even the slightest deviation

from the optimum spray conditions occurring during

spraying. This capability allows for instant response when

an abnormal change in the process is recorded. This

implies that the spray-coated parts can be protected and no

extra time will be needed for salvage rework. Listening to

the spray process and interpreting the acoustic emissions is

a simple and cost-effective solution which will be easy to

use and adopt.

At the moment, all spray monitoring systems (Spray-

Watch by Osier, Accuraspray by Tecnar and others) are
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static and they cannot be used when the torch is in motion.

These systems are vital tools for design, process opti-

mization and system calibration; however, they can only

provide stagnant diagnosis of the spray process which is

rarely the case in commercial applications. The current

technology limitations in continuous monitoring of thermal

spray processes have implications in global coating oper-

ations and quality assurance. For a long time, controlling a

multitude of complex processes with precision into the

supply chain has been a core research subject within the

aerospace OEMs who apply surface modification tech-

niques on critical engine parts. The use of a sophisticated

and reliable continuous AAE monitoring technology will

allow issues that affect coating quality, to be quickly

identified and resolved centrally—even across global

operations and into the supply chain.

Monitoring of HVOF Using Surface Contact Sensors

Research into acoustic emissions from the thermal spray

process has primarily focused on the use of sensors in contact

with the sprayed substrate tomonitor the kinetic properties of

particle deposition and the growth of coating defects such as

cracks and delamination. For example, Faisal et al. (Ref 1)

conducted successful experiments with a single contact

sensor to measure the total kinetic energy of particles

impacting the substrate. Crostack et al. (Ref 2) developed a

model relating velocity and diameter of particles to acoustic

emission amplitude. Lugscheider et al. (Ref 3) investigated

the relationship between spray angle and acoustic emissions.

Nishinoiri et al. (Ref 4) used a non-contact laser AE tech-

nique to monitor the formation of defects such as

microfracture and delamination in coatings. These methods

have shown promise in accurately monitoring the quality of

thermal spray coatings as they are being sprayed, but the

contact sensor must be carefully positioned on the substrate

and calibrated for every part being sprayed. This drastically

increases spraying time for each part and would necessitate

training operators in the use of the monitoring equipment.

These studies rely on the Raleigh waves on the substrate

surface due to particle impact, whereas the current investi-

gation focuses on the airborne acoustic emissions (sound)

produced during the HVOF process.

Welding Monitoring Using Acoustic Emissions

Technologies

Airborne acoustic emissions studies for thermal spray

process monitoring are very limited; however, in other

processes such as various welding processes (VPPAW,

SMAW, laser welding) and machining processes, acoustic

emissions are closely monitored and analyzed to give real-

time predictions about certain aspects of the outcome of the

process, or health of the hardware in use. This method has

attracted considerable research interest. Studies show that

the acoustic signal acquired during the welding process can

be used to monitor weld characteristics, such as penetration

quality (Ref 5, 6), weld pool status (Ref 7), irregularities

and stability (Ref 8) during the welding process. Detection

of defects by acoustic signal analysis is based on the

identification of the acoustic characteristics and under-

standing of several phenomena, such as weld pool oscil-

lation behavior (Ref 9), arc plasma jet pulsation, change in

arc intensity and metal transfer, which are the relevant

sources of sound generated during the welding process.

In the literature, a variety of signal processing tech-

niques, as well as neural networks and other methods, have

been used to try and distinguish useful sound from back-

ground noise. Wang et al. (Ref 9) demonstrated the use of

the short-time Fourier transform in detecting and locating

irregularities on a weld bead. Wang and Zhao (Ref 5) used

the variance of a segmented sound signal to monitor a

keyhole opening. This feature was found to give a signif-

icant correlation with keyhole size, which can be utilized to

monitor burn-through defects. Huang and Kovacevic (Ref

10) extracted the sound pressure deviation and band power

from the acoustic signal and used them as the inputs of a

neural network to establish the relation between acoustic

signal and depth of penetration in laser welding. Saad et al.

(Ref 7) calculated the power spectral density of the seg-

mented sound signal acquired from the welding process

and used it as an input for a neural network model to

distinguish the keyhole mode from the cutting mode. Grad

et al. (Ref 8) found that kurtosis (sharpness of a peak of a

frequency distribution curve) of acquired sound signals can

be used to monitor the stability of a welding process.

Thermal Spray and Sources of AAE

Thermal spraying encompasses a wide range of coating

deposition processes with the common aspects that a feed-

stock, most commonly a powder, is partially melted by a

supersonic flame (HVOF/HVAF) or plasma and propelled

toward the substrate. These heated particles form splats on

impact with the substrate, and the coating is built layer by

layer. Important parameters of thermal spray processes

include the powder feed rate, particle size, gas flow rates, fuel

to oxygen ratio (in combustion thermal spray processes),

nozzle geometry and standoff distance. Changes in these

parameters will mean changes in the resultant airborne AE,

due to changes in energy from the system being transformed

into the acoustic emissions. The jet velocity fluctuations due

to fluctuations in the combustion pressure are easily

detectable due to overall decrease or increase of dB in the

booth. In contrast, other process variables are more difficult

to detect and classify. For example, increased or decreased
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powder feed rates would mean more or less energy from the

jet being transferred to the particles for their acceleration.

These AAE variations are well hidden within a broad range

of frequencies, and their acoustic signature cannot be dis-

covered effortlessly. Furthermore, due to thermo-mechani-

cally induced stresses, the outlet diameter of a copper nozzle

may increase altering in this way the convergent–divergent

pressure ratios and consequently altering the AAE signals.

Regarding the supersonic jet noise itself, it can be monopole

where there is fluctuation in mass flow, dipole on surfaces

where the flow causes fluctuating pressure and quadrupole

from turbulent wakes. In HVOF/HVAF supersonic jets,

noise generated may be due to several reasons such as flow

separation, incident turbulence, turbulent boundary layer

and vortices in the wake region (Ref 11, 12).

Research Methodology

To assess the feasibility of this approach, a computational

fluid dynamics model was developed early in the project

aiming to simulate the gas flow and aeroacoustics of the

process. The gas flow analysis revealed the strong influence

that the PFR andSODhave on the gas dynamics of theHVOF

torch. The initial results were acquired by conducting a basic

aeroacoustics analysis. The power–frequency spectrum

during HVOF was identified, and the distinguishable

acoustic signatures were broadly categorized. The simula-

tions revealed that the PFR and SOD dominant frequencies

have their origin in different turbulent structures. As a con-

sequence, the dimensionality of the problem is relatively low

because the variables do not carry the same information. The

decision to use a shallow neural network for process moni-

toring that could benefit from this condition was made based

on theCFDpreliminary results. Under different conditions, a

more sophisticated deep learning algorithm and a larger

dataset would be necessary to unveil the complex correla-

tions hidden in overlapping data.

A series of experiments were then designed in an effort

to create a clean dataset for artificial neural network (ANN)

training. The selected target coating property in this study

is the microhardness. Microhardness is a key coating

property when high wear protection is required; however,

other properties such as porosity, corrosion, decarburiza-

tion and toughness may be equally important depending on

the mode of operation. This approach could be applied to

monitor these additional properties, provided that sufficient

experimental data are available. The research approach

flowchart is depicted in Fig. 1. The ANN model develop-

ment is summarized in Fig. 2. The selection of inputs is a

major first step toward a neural network with good gen-

eralization ability and accuracy. Instead of using unfiltered

data in the network, some data cleaning was performed

aiming to improve the ANN training and testing accuracy.

The first training dataset was devised under different PFR

conditions and a fixed SOD. In this way, the power fre-

quencies that carry input information were correlated to

different PFRs. The highly correlated power frequencies

were prioritized for later use in the final model. The second

training dataset was prepared by altering the SOD at a fixed

PFR. Similarly, the highly correlated power frequencies

were selected as primary input to the final model. Finally,

six frequency ranges for the PFR and four for the SOD

were selected leading to a total of 10 power frequencies in

the dataset. These ten inputs to the ANN model were

selected for continuous monitoring, and their correlation to

the coating microhardness was assessed. The selected

inputs in the form of power–frequency range carry infor-

mation related to the SOD and PFR. In this way, the

accuracy of the monitoring process can be maintained

when the PFR and SOD are altered during spray.

Acoustic Modeling of HVOF thermal spray
process

Geometry Model and Flow Domain Discretization

The studied spray torch is represented schematically in

Fig. 3. Fuel, oxygen and air are injected into the combus-

tion chamber, where the fuel burns and the combustion

products are accelerated downstream through the conver-

gent–divergent nozzle. For the present analysis, the nozzle

configuration comprises of an inlet throat diameter of

5.5 mm, 26 mm divergent length and outlet throat diameter

of 7.5 mm. Fine meshes are employed to the sensitive areas

such as the nozzle entrance and exit, the barrel exit and the

free jet centerline where high flow gradients are expected

and increased accuracy is required. The governing equa-

tions of flow and acoustics are solved over the grid

developed using the program Ansys FLUENT 19 Aca-

demic Edition (Ref 13). The location of the sensor in the

computational domain is shown in Fig. 1. The same

microphone location was used during the experimental

acquisition of the acoustic signals. The coordinates from

the nozzle exit are 0.055 m (x), 0.025 m (y) and 0 m (z).

Solver Settings and Boundary Conditions

The phenomena associated with sounds can be understood

and analyzed in the general framework of fluid dynamics.

ANSYS Fluent offers a method based on the Ffowcs

Williams and Hawkings (FW-H) formulation (Ref 14). The

FW-H formulation adopts the most general form of

Lighthill’s acoustic analogy and is capable of predicting

sound generated by equivalent acoustic sources. The solver
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adopts a time domain integral formulation, wherein time

histories of sound pressure, or acoustic signals, at pre-

scribed receiver locations are directly computed by eval-

uating corresponding surface integrals. It is out of this

work’s scope to probe into the mathematics of the mod-

eling work. The authors have carried out extensive mod-

eling and simulation work in the field of HVOF thermal

spray, and several validation data can be found in (Ref

11, 12). The current model predictions are validated against

experimental data in Sect. 6.1. The detailed model setup

parameters are summarized in Table 1.

Neural Network Data Modeling

In their main embodiment, artificial neural networks are

nonparametric methods used for pattern recognition inside

large datasets. They generate an outcome based on a

weighted sum of inputs which is afterward passed through

an activation function. The activation function defines the

output from the neuron in terms of its combination. Three

of the most used are the logistic, the hyperbolic tangent and

the linear functions. In this study, the logistic function has

been used with a sigmoid shape. This activation is a

monotonous crescent function which exhibits a good bal-

ance between a linear and a nonlinear behavior. A detailed

description of perceptron theory, the main component of

neural networks, can be found in the Neural Designer

software online manual by Artificial Intelligence Tech-

niques Ltd (Ref 20). Of all artificial neural network types

used in classification matters, a viable option is the mul-

tilayer perceptron (MLP) which is organized in three types

of layers: an input layer, hidden layers (usually not more

than three) and an output layer.

Artificial Neural Network Training

For this analysis, a multilayer perceptron was used to

model the AAE data from the HVOF process at Monitor

Coatings-Castolin Eutectic in the UK. Although the

Fig. 1 Research approach diagram
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number of hidden layers generally ranges between one and

three, previous studies (Ref 21) have shown that ANNs

with a single hidden layer can estimate any differentiable

function, provided that they have enough hidden units.

Moreover, a high number of layers would significantly

increase the processing time and the adjustments required

during network training. The number of nodes in the hid-

den layer was varied between a minimum of three units and

a maximum of 10 units. The analysis employed a total

number of 10 input nodes corresponding to the spectral

density of dominant frequencies when the spray distance

and powder feed rate were altered during spray. The gas

flows were fixed corresponding to maximum coating

microhardness achieved at 100 mm SOD and 1 kg/h

powder feed rate.

The weights were initialized using a uniform distribu-

tion within [- 0.5, 0.5] range. Afterward, these were

adjusted using the gradient descent method with momen-

tum rate and learning rate set equal to 0.1. The training was

Fig. 2 Artificial neural network model setup

Fig. 3 Computational fluid dynamics domain and boundary

conditions

Table 1 Aeroacoustics model setup

Solver (Ansys 19) 3D-Transient Second-order explicit-coupled, compressible

with a fixed 10-7-time step

Ref [12]

Turbulence LES Smarwoski-Lilly Ref [15]

Combustion Species/transport Eddy dissipation Ref [11, 12, 16]

Acoustics FW-H 90� to nozzle exit Ref [14]

DPM Random walk model particle

density: 5000 kg/m3
Particle size: 10 9 10-6 m Ref [17-19]
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terminated when one of the stopping criteria was reached: a

maximum number of 1000 of iterations and a variation in

the average error below 0.001 for 10 consecutive cycles.

The training was performed in a ‘‘batch’’ mode, meaning

that weights were adjusted only after presenting all training

records to the network. To reach a final approximation

model, several cycles (epochs) were performed until

meeting the aforementioned stopping conditions. Out of the

100 neural networks trained, the best in term of detection

rates on the test set was retained. The selected neural

network architecture shown in Fig. 4 is a multilayer per-

ceptron (MLP 10-3-1) for the prediction of microhardness,

containing ten nodes in the input layer, three nodes in the

hidden layer and one output node. The evolution of the

training set error was compared with the evolution of the

validation error in order to make sure that the final model is

not over-fitted, a characteristic that reduces the general-

ization capacity of the model when tested on new data. The

ANN model setup is shown in Table 2.

Experimental Apparatus

The acoustic emission monitoring apparatus comprises a

single microphone with a preamplifier in an industrial

thermal spray booth, a signal conditioning unit and a PC

for data processing.

Acoustic Signal Acquisition

The microphone was a 1/200 random incidence, high fre-

quency, high amplitude, prepolarized microphone and

preamplifier system. The microphone has a frequency

range from 4 Hz to 25 kHz and distortion limit of 160 dB

with a noise floor of 19 dBA. It was calibrated to com-

pensate for the effect of its own presence in the acoustic

field generated in the experiments. The microphone system

was 77 mm in length with a fitted grid of 13 mm diameter

and was kept in a fixed position in the coating chamber

behind a microphone windshield during spraying. The

experiments were carried out using the above data acqui-

sition setup (Fig. 5) to monitor an HVOF system developed

by Castolin Eutectic-Monitor Coatings Ltd in the UK (Ref

26, 27).

Equipment and Experimental Process

A commercially available agglomerate sintered powder of

WC- 17Co mass fraction (H.C Starck, AMPERIT 526)

(Ref 27) was used for the deposition of coatings. The

detailed chemical composition and size distribution of the

powder are presented in (Ref 28). The powder used shows

the median size to equal about 18.9 lm. The measured

particle size distribution ranges from 12.5 lm to 28.1 lm
at 10% and 90% of the cumulative, respectively.

The coatings were deposited onto steel substrates. The

substrates were grit blasted with 46 lm alumina particles at

Fig. 4 Neural network

architecture used to predict the

coating microhardness as a

function of frequency power

inputs

Table 2 Artificial neural network model parameters

Scaling method Mean standard deviation (Ref 22)

Un-scaling method Mean standard deviation (Ref 23)

Bounding layer Yes

Error method Normalized squared error

Training algorithm Gradient descent (Ref 22-24)

Activation function Hyperbolic tangent (Ref 22)

Output layer function Linear (Ref 22, 23, 25)
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a distance of 100 mm; subsequently, they were blasted

with high-pressure air and mechanically cleaned to remove

any remaining grit on the surface. The samples were

sprayed using Castolin Eutectic-Monitor Coatings (UK)

HVOF torch which has been designed and built in-house.

The process parameters for the gun were previously opti-

mized in-house using Oseir’s SprayWatch system for

achieving the best microstructure, the highest microhard-

ness and optimum deposition conditions (Ref 26, 27).

The experiments were performed with the HVOF gun

traversing linearly over the substrates using a robotic arm.

The spray angle was fixed at 90 degrees, while the SODs

and powder feed rates were altered and individually con-

trolled. This allowed for studying the influence of each one

on the generated acoustic signals inside the spray booth,

while all other parameters were held constant. The incre-

ments in spray SODs were 100 mm, 110 mm, 120 mm,

130 mm and 140 mm. The powder feed rates were varying

from 0.2 kg/h to 2 kg/h at 0.2 kg/h increments for each

individual SOD. Thus, 50 combinations of SOD and PFR

values were considered and an equal number of acoustic

signals were acquired.

Post spray, the samples were cut and polished following

a routine developed to minimize and carbide pull-outs

during polishing substituting the final stages of diamond

polish with silica abrasive of 40 nm. Cross sections of the

samples were examined under the Optical Microscope at

Monitor Coatings. The equipment is calibrated regularly as

per Monitor’s aerospace NADCAP accreditation require-

ments. The microhardness was examined with a Vickers

micro indenter (Future Tech, FM-100) under a load of

300 g (HV0.3). Ten measurements were taken per sample.

For the implementation of a prototype active monitoring

system, it was decided that the unit should be able to notify

the operator in real time. For this purpose, a preinstalled

MATLAB application has been used in conjunction with

the VSE001 (IFM electronics (Ref 29)) signal conditioning

unit (Fig. 5) to monitor the important frequency ranges that

were identified and validated in the experimental program.

These frequency ranges were used to set signal power

thresholds which, when crossed, trigger an alarm suggest-

ing a fault in the spray process.

Results and Discussions

The modeling work focuses on the airborne acoustic signal

acquisition when thermal spray powder is injected axially

in the supersonic jet. High particle concentration in the

flame results in strong coupling between the solid and fluid

phases when the Strouhal number is [ 10. The flame

temperature drops, and the momentum transfer from the

high energetic flame to the particles leads to jet velocity

profile alteration both in the axial and the radial directions.

It is expected these multiphase interactions to have an

impact on the acoustic footprint of the process; however, it

is unknown if the particle–flame interactions are

detectable and over which frequency and spectral density

range detection may occur. The underlying physics of this

process are not well documented in the literature, and our

intention is to probe into this HVOF spray characteristic. In

this study, the aeroacoustics modeling work has been val-

idated by comparing the experimental and modeling signal

Fourier transforms.

Fluid Flow and Aeroacoustics

The complicated structure of the supersonic jet (Ref 30) is

shown in Fig. 6. First, the jet boundary oscillates as the jet

gas periodically over expands and converges in its attempt

to match the ambient pressure. The gas continually over-

shoots the equilibrium position because the effects of the

boundary are communicated to the interior of the jet by

sound waves, which, by definition, travel more slowly than

the bulk supersonic flow. The characteristic paths of the

sound waves converge to form the second feature of the jet,

the network of crisscrossed shock waves or shock dia-

monds. These standing shocks alternate with rarefaction

Fig. 5 Signal acquisition unit and microphone used in this investi-

gation by IFM electronics Ltd
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fans. The gas in the jet interior expands and cools down as

it flows through the rarefaction fans and is compressed as it

passes through the shock diamonds. The jet structure

shown in Fig. 6(a) and (b) in reality does not have sharp,

stable boundaries but turbulent boundaries, where jet and

ambient gases mix. Near the orifice, where the pressure

mismatch is large, Mach reflections occur, but further

downstream the reflections are regular. The mixing layer

which grows eats its way into the supersonic core of the jet.

When the mixing layer reaches the axis of the jet the flow

is subsonic and fully turbulent. Large and small eddies are

formed in the shear layer of the gas jet. These eddies are

very small in size near the nozzle exit where they originally

form, and then become larger downstream until full dissi-

pation. Ultimately, the formation, propagation and dissi-

pation of eddies result in the jet noise.

When the powder is introduced into the flame at 5 kg/h

feed rate, the mean velocity profile is affected as depicted

in Fig. 7. To demonstrate this behavior, we provide the

evolution of the radial velocity profile of the gas in several

different axial locations in the external flow field with and

without powder in the jet. These locations are based on the

distance from the exit of the HVOF torch. It is clearly seen

that the centerline velocity decays along the axial direction

faster in the presence of the discrete phase and the jet

propagates outwards in the radial direction (Fig. 7b, d, e).

At larger standoff distance (x = 80 mm from the nozzle

exit), the velocity at the jet core is nearly half compared to

the powder free jet. Turbulent mixing with the ambient air

occurs faster attributed to the jet kinetic energy being

transferred to the particles during inflight acceleration.

While the velocity slows down in the centerline, the

boundaries of the jet are thrusted outwards as the flow is

blocked by the particle cloud confined in the axis of the jet

as shown in Fig. 7(a). Several studies (Ref 31-33) have

demonstrated the effect of supersonic jet diameter in the

aeroacoustics. Typically, a wider jet creates a shift in fre-

quencies where energy peaks occur. This is more evident in

the high-frequency range where the signal contribution

originates from the small highly energetic turbulent eddies

occurring near the nozzle exit at the jet-ambient gas

boundary. The observed faster velocity dissipation is

expected to alter the formation of large eddies downstream,

contributing to the low-frequency range as well. The

Fig. 6 (a) Image showing the

experimental supersonic jet

expansion (b) velocity contours

of the simulated supersonic jet

expansion
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modeling results suggest that an overall frequency shift of

the noise peaks should be expected due to the particle laden

flow in the jet and the consequent velocity profile

alterations.

The large eddy simulation predictions, coupled with the

FW-H noise model approach (Fig. 8), show a similar trend

as that measured experimentally. This means that the nat-

ure of the non-uniform quadrupole orientation is captured

well by the CFD simulations. The noise predictions are

found to be in good, but not perfect, agreement with the

experimental data. As expected, we have underpredicted

the noise level at high frequencies. This is due to the small

turbulent structures of the jet which are not resolved by our

mesh. However, in general, the LES-FW-H approach

demonstrates the ability to capture the spectra shape cor-

rectly. More specifically, the predicted power spectral

density is lower in the low-frequency range, higher in mid-

frequencies and lower over higher frequencies. The model

Fig. 7 (a) Image showing the powder traveling through the centerline

of the supersonic jet, (b) radial gas velocity profile at the nozzle exit,

(c) radial gas velocity profile 30 mm downstream, (d) radial gas

velocity profile 80 mm downstream, (e) velocity contours with 5 kg/h

powder feed rate

Fig. 8 Time average

spectrogram showing the

experimental and numerical

noise acquisition without a

substrate and powder in the

flame. The bold solid line shows

the experimental spectrogram

after 100 Hz bandwidth and

10 s time averaging
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accuracy can be improved by reducing the simulation time

step, increasing the simulation overall time and by refining

the mesh; however, this would require several months of

computational effort since the aeroacoustics, turbulent

combustion, compressible supersonic flow and discrete

phases are solved simultaneously in a 3-D space.

A large amount of experimental evidence suggests that

acoustic waves are strongly coupled to many mechanisms

encountered in turbulent flows. The free shear layers are

especially sensitive to acoustic waves (Ref 34). This

interaction may lead to large flow instabilities; therefore, it

is important to avoid artificial free boundary reflection of

the acoustic waves. To overcome this issue, we damp

reflected waves by numerical viscosity, using a coarse

mesh near the outlet boundaries (buffer zones). Although

this approach is effective for the elimination of reflected

waves, a coarse mesh may result in localized numerical

resolution reduction responsible for the over predicted

noise at the very low-frequency range as shown in Fig. 8.

Another distinctive feature of the process is the fragmen-

tation of power peaks over a range of frequencies. At the

early stages of this work, the numerical approach revealed

that we should be looking for energy–frequency pairs

rather than maximum or minimum amplitude over the full

range of frequencies. The same behavior was later

observed experimentally when the powder feed rates were

altered from low (1 kg/h) to high (4 kg/h) as shown in

Fig. 9. At high feed rates, the power spectral density is

lower over the frequency range up to 5000 Hz. The peak

power is observed at 15,000 Hz, while for the low powder

loading occurs at 5,000 Hz. This is in line with the fluid

flow (Fig. 7) and aeroacoustics modeling results (Fig. 9)

suggesting a jet shape change due to faster decay of the jet

core and the small jet diameter increase when powder is

present in the flame. A clearer shift of the power peaks to

the lower-frequency range is observed when the jet hits a

substrate at short standoff distances as shown in Fig. 10. At

80 mm from the nozzle tip, the jet experiences a rapid

deceleration upon impact creating large circulation zones

(vortex-induced zone) near the substrate. These large tur-

bulent structures give rise to the low-frequency power

spectrum. This effect dominates over the upstream shear

layer mixing noise. Moving the substrate to 120 mm from

the nozzle allows for more canonical jet decay, where

mixing layer structures at the mid-frequency range domi-

nate the noise generation process.

When thermal spray phenomena are examined in iso-

lation, the interpretation of the dataset is straightforward.

However, the increased complexity of data handling and

interpretation can be realized when the problem is groun-

ded to reality where the above spray conditions are com-

bined introducing variable SOD, feed rates and particle

substrate impact noise to the spray process. A powerful

instrument for disentangling the complexity of their subject

matter is required, especially when we do not possess a

clear knowledge of the dynamical relationships among

these spray factors and the resulting acoustic signals. In this

context, ANNs can help to identify the possible causes and

their peculiar combination linked to the onset of a certain

coating property by analyzing the acoustic signals.

Experimental Acoustic Data Modeling

In this section, we introduce a neural network model for the

analysis of the experimental data with the aim of finding

fundamental relationships between the target coating

properties and the emitted acoustic signals during spray.

The ten power–frequency ranges shown in Table 3 (Col-

umn 3 to Column 12) are the 10 down selected power

frequencies as detailed in Sect. 2 having had the leave-out

Fig. 9 Time average

spectrogram showing the

experimental and numerical

noise acquisition at different

powder feed rates and without a

substrate. Experimental

spectrogram at 100 Hz

incremental bandwidth and 10 s

time averaging
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technique applied and having discarded the unwanted fre-

quencies. The feature vector comprises of six peak power

frequencies highly correlated to PFR (3100-3200 Hz,

14,000-15,000 Hz, 3700-3800 Hz, 7300-7700 Hz, 10,100-

10,200 Hz and 10,800-10,900 Hz) and four peak power

frequencies carrying information predominantly for the

SOD (8200-8400 Hz, 7300-7700 Hz, 11,900-2100 Hz,

9500-9700 Hz,). The dataset of the 50 experiments/in-

stances that were described in ‘‘Equipment and Experi-

mental Process’’ was randomly split into 40 training and 10

testing/validation dataset, of size equal to 40 and 10,

respectively.

Correlation Ratios of PFR Within the Selected Frequency

Bands

A training strategy was applied to the neural network in

order to obtain the lowest possible loss. Loss value implies

how well or poorly a certain model behaves after each

iteration of optimization. The accuracy of a model is

determined after the model parameters are learned. The test

samples (data that were not used to train the ANN) are fed

to the model, and the number of mistakes the model makes

is recorded, after comparison to the true values. Then, the

percentage of misclassification is calculated. The type of

training is determined by the way in which the adjustment

of the parameters in the neural network takes place. In this

study, the quasi-Newton method is applied to adjust the

network weights in order to minimize the error (loss)

function. This method is based on Newton’s method, but

does not require calculation of second derivatives; instead,

it computes an approximation of the inverse Hessian at

each iteration of the algorithm, by only using gradient

information. As shown in Fig. 11(a), the initial value of the

training loss was 13.8196%, and the final value after 333

iterations was 0.00501855%. The initial value of the vali-

dation loss was 15.0176%, and the final value after 333

iterations was 0.922464%. The very low validation error

implies that the model can generalize to unseen data and

can distinguish between PFR and SOD contributions when

the information coexists in the dataset.

To further assess the model accuracy, a standard linear

regression analysis was carried out (Fig. 11b) between the

scaled neural network outputs and the corresponding tar-

gets for the independent testing/validation subset and three

parameters indicating the quality of the regression were

calculated. The first two parameters correspond to the

y-intercept and the slope of the best linear regression

relating scaled outputs and targets. The third parameter is

the correlation coefficient between the scaled outputs and

the targets (Ref 35). For a perfect fit (outputs exactly equal

to targets), the slope would be 1, the y-intercept would be

0, and the correlation coefficient is equal to 1. Fig-

ure 11(b) illustrates the linear regression for the scaled

output powder feed rate (PFR). The predicted values are

plotted versus the actual ones as squares. The black line

indicates the best linear fit (0.8 for this model). The gray

line indicates a perfect fit. A graphical representation of the

network architecture is depicted in Fig. 11(c). The number

of inputs is 10, the number of outputs is 1, and the single

hidden layer contains five neurons.

The dominant power peak frequencies that are highly

correlated to PFR were determined without any informa-

tion related to the SOD. For this reason, it is necessary to

assess if the highly correlated frequencies remain linked to

PFR when SOD dominated frequencies are introduced to

the dataset. This task is executed by removing one input at

a time. This shows which input has more influence in the

selected output. Figure 11(d) shows the importance of each

input. If the importance takes a value greater than 1 for an

Fig. 10 Time average

spectrogram showing the

experimental and numerical

noise acquisition at different

substrate standoff distances and

fixed powder feed rate.

Experimental spectrogram at

100 Hz incremental bandwidth

and 10 s time averaging
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input, it means that the testing/validation error without that

input is greater than with it. In the case where the impor-

tance is lower than 1, the testing/validation error is lower

without using that input. Finally, if the importance is 1,

there is no difference between using the current input and

not using it. The most important variable is the power peak

at 3100-3200 Hz range that gets a contribution of 2.89 to

the outputs followed by the peak power in the range of

14,000-15,000 Hz with the second larger contribution of

1.57. The results confirm that high correlation is main-

tained when the dataset is jeopardized with irrelevant

information (SOD in this case). Furthermore, the results are

in line with the observations in Sect. 6.1, suggesting that

the powder feed rate would affect the jet shape promoting

fast decay of the jet. The high frequency relates to the shear

layer mixing and the low frequencies are affected by the

large eddies at the jet core mixing region. As expected, the

power change in mid-frequency range is less important

(contribution close to 1) when considering PFR alone.

Correlation Ratios of SOD Within the Selected Frequency

Bands

The same approach has been used to identify the correla-

tion between the SOD and peak power frequencies when

PFR-related information is included in the neural network.

Figure 12(a) illustrates the training strategy losses in each

iteration. The initial value of the training loss was con-

siderably lower at 0.0578946, and the final value after three

iterations was 0.0578836. The initial value of the test-

ing/validation loss was 0.0382135, and the final value after

three iterations was 0.0382130. The training strategy was

implemented sequentially resulting in a much faster net-

work training. From the linear regression analysis

(Fig. 12b) of the scaled standoff distance (SOD) output, a

better linear fit was achieved (0.95), indicating that the

signals contain stronger information related to the spray

distance as opposed to powder feed rates. The predictive

neural network architecture was refined in order to mini-

mize the model loss and is shown in Fig. 12(c). The

number of inputs is 10, and the number of outputs (SOD) is

1. The complexity, represented by the numbers of hidden

neurons, is 7, and the architecture of this neural network

can be written as 10:7:1. The size of the scaling layer is 10,

and the scaling method used for this layer is the mean

standard deviation.

From the calculation of the testing/validation loss when

removing one input at a time, the most important variable

is the peak power at 8200-8400 Hz that gets a contribution

of 6.2 to the outputs. The results confirm that the strong

correlation has been maintained after the inclusion of PFR-

related frequencies in the dataset. It is evident from

Fig. 12(d) that the frequency range of interest has nowT
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moved to the low–mid-frequency range as opposed to

powder feed rate frequency range. The same has been

observed in Fig. 10 where most power peak changes occur

between 3000 and 10,000 Hz. Altering the position of the

substrate opposite to the gun results in the creation of large

vortex-induced zones near the substrate. These large tur-

bulent structures give rise to the low-frequency power

spectrum. This effect dominates over the upstream shear

layer mixing noise.

Final ANN Model Accounting for Combined Influences

on Target Microhardness

In the final stage, we can reconstruct the target, which is the

coating property, by introducing the microhardness data for

all instances under study. The preliminary analysis

demonstrated that the input power frequencies are highly

correlated to selected targets (powder feed rate and SOD).

These correlations occur over different frequency ranges,

indicating that these variables do not carry the same

information and the ANN model shall benefit from their

joint consideration. If the correlation rates were high over

the same frequency range would mean that the PFR and

SOD variables carry the same information from which the

ANN model would not benefit introducing errors to the

prediction of the coating microhardness when both spray

inputs vary.

The linear regression parameter for the scaled output

coating microhardness is illustrated in Fig. 13(a). The

intercept, slope and correlation are very similar to 0, 1 and

1, respectively, suggesting that the neural network is pre-

dicting the testing data well. The overall model accuracy is

within 3% implying that in terms of coating microhardness

the predictions may oscillate with a maximum deviation

close to 30 HV0.3. The final number of layers in the neural

network is 2, and the architecture of this neural network

can be written as 10:3:1 as shown in Fig. 13(b). The input

importance analysis suggests that the most important input

is in the range of 3100-3800 Hz that gets an average

contribution of 3 to the outputs. This is the low-frequency

range mainly associated with large eddies and the impact of

the jet on the substrate. As expected, the effect of SOD on

the coating microhardness is known to be larger compared

to the effect of small changes in the PFR.

The results suggest that there is strong combined influ-

ence when varying the SOD and PFR; thus, at least 10

frequency ranges should be monitored simultaneously in

order to get accurate prediction of the coating microhard-

ness during spray. This is more evident when examining

how the outputs vary as a function of a single input, when

all the others are fixed. This can be seen as the cut of the

neural network model along some input direction and

through some reference point. For the four predominant

power peak frequencies, the directional outputs are illus-

trated in Fig. 14.

Fig. 11 (a) Error calculations, (b) linear regression analysis, (c) ANN architecture, (d) rating of input contribution to the outcome powder feed

rate (PFR)
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These plots show the output coating microhardness as a

function of the input power at 3100-3200 Hz,

3700-3800 Hz, 8200-8400 Hz and 7300-7700 Hz. The x

and y axes are defined by the range of peak power at a

given frequency range and the coating microhardness,

respectively. For example, in the 3100-3200 Hz range the

high-power values indicate lower coating quality as

opposed to the 8200-8400 Hz range where coating quality

increases with power. The resulting noise power levels

contain information of both the PFR and the SOD which

are not given as an input to the model. During spray, both

parameters may change due to operational errors or as part

of the spray process planning. For this reason, the predic-

tive algorithm should be able to provide the key target

output under any spray condition irrespectively.

The predictive ability of the developed ANN is further

demonstrated in Fig. 15. This is the inverse of the ANN

architecture shown in Fig. 13(b). The algorithm was tested

against experimental data that were removed from the

training dataset (unseen data). The single model input is the

desired coating microhardness, and the target values are the

average power peaks in three dominant frequencies as

described earlier. The powder feed rate was kept constant

at 2 kg/h, and the standoff distance was fixed at 120 mm.

Very good agreement has been observed in all frequencies.

The largest deviation from the experimental data was found

at the lower-frequency range where noisy data originate

from the Rayleigh–Taylor instabilities that are responsible

for the axisymmetric shedding of the jet. The accuracy and

predictive capability of the model in unseen data is very

promising and can pave the way for dynamic control of the

process by iterative corrective intervention through the gas

control unit and the robotic arm. This will require larger

datasets and more advanced machine learning algorithms.

Corrective actions may include increase or decrease in the

gas flow rates, flame temperature control through stoi-

chiometric ratio adaptations and adjustment of the SOD to

achieve the desired acoustic power levels that lead to a

desired coating property. Similarly, the ANN model can be

designed and trained to account for a single user input (for

example a microhardness value) and multiple outputs (for

example the SOD and PFR) to achieve the desired coating

property as specified by the user.

Fig. 12 (a) Error calculations, (b) linear regression analysis, (c) ANN architecture, (d) rating of input contribution to the outcome standoff

distance (SOD)
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Fig. 13 (a) Linear regression analysis, (b) ANN architecture, (c) error calculations, (d) rating of input contribution to the outcome coating

microhardness (HV0.3 kg)

Fig. 14 Variation of coating microhardness (HV0.3 kg) as a function of a single power–frequency input. (a) Signal power at 3100-3200 Hz,

(b) signal power at 3700-3800 Hz, (c) signal power at 7300-7700 Hz, (d) signal power at 8200-8400 Hz
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Conclusions

The main objective of the project was to demonstrate a

methodology that could potentially lead to the design of a

simple process monitoring device based on the airborne

acoustic emissions generated during the HVOF or other

high kinetic energy processes. The results demonstrate that

intelligent sampling and QA monitoring linked to spray

processing parameters is feasible. The work was executed

in two main work packages. The first placed increased

emphasis on the numerical modeling of the HVOF process

aeroacoustics. The modeling data confirmed the presence

of unique detectable noise features that can be attributed

and correlated to several process variables, such as the

powder feed rate and the standoff distance. Most impor-

tantly, this work demonstrated that the information carried

in the raw acoustic dataset contains process variable-

specific signatures that an ANN can benefit from producing

meaningful outputs. The second work package focused on

raw data analysis and classification by implementing sev-

eral cost-effective shallow neural networks. Extensive error

analysis and validation was carried out in order to finalize

the model architecture. The ANN was trained using a rel-

atively small experimental dataset; however, the input data

were carefully selected and cleaned prior to ANN training.

The generalization and predictive capability of the model

has been successfully assessed and validated. The authors

hope that this work will motivate more research on intel-

ligent airborne noise sampling as an alternative method that

can offer improved QA and QC to our thermal spray

community.
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