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One approach for controlling the twin wire arc spray process is to use optical properties of the particle
beam as input parameters for a process control. The idea is that changes in the process like eroded
contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through
observation of the particle beam. It can be assumed that if these properties deviate significantly from
those obtained from a beam recorded for an optimal coating process, the spray particle and thus the
coating properties change significantly. The goal is to detect these deviations and compensate the
occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for
monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an
ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by
relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathe-
matical relations between ellipse and process parameters can be defined. It will be shown that in the case
of a process disturbance through the use of an ANN-based control new process parameters can be
computed to compensate particle beam deviations.

Keywords artificial neural network, coating quality, particle
flux imaging, process control, twin wire arc spray

1. Introduction

Twin wire arc spray (TWAS) is a thermal spraying
process with high cost efficiency and high deposition rates
(Ref 1, 2). For providing a high quality coating it is nec-
essary that a TWAS process is highly reproducible, but
errors occurring during the coating process may influence
the coating quality and thus the reproducibility of the
coating results. The goal is to detect these errors and to
compensate them by adjusting appropriate process
parameters for the wire arc spray unit, i.e., the TWAS
process needs to be monitored and controlled. One ap-
proach for doing this is to observe the spray particle beam
and to detect deviations produced by process fluctuations
during the spraying process.

In general, a significant change of the shape of the
particle stream is a good indicator for a significant change
of the coating properties. For monitoring the spray parti-
cle beam, the diagnostic system PFI can be applied which

will be described in the following section. Thus, the ap-
proach for a controlling of a TWAS process is based on
controlling the shape of the particle beam. In case of a
significant change of the particle stream it has to be
‘‘corrected.’’ This can be achieved by changing the process
parameters of the wire arc spray unit. As a consequence of
this, a link between numbers describing the particle beam
(the monitored PFI data) and the process parameters is
needed, i.e., a (mathematical) model is needed.

As will be seen in one of the next sections, non-linear
dependencies can be identified between the monitored
data and the process parameters. Therefore, a linear
controller is usually not suitable for controlling the TWAS
process. Additionally, since the properties of different
TWAS units typically differ, mathematical models
describing a link between the monitored PFI data and the
process parameters typically differ, too. For these reasons,
it would be nice if a model describing the link between the
monitored data and the parameters could be found in an
‘‘easy’’ way. Hence, ANNs are used because ANNs can be
trained by a number of experiments to find this link. In
this way, it is not necessary to find an explicit model for
describing the link.

In thermal spraying, ANNs are often used for modeling
the behavior (Ref 3, 4) or for controlling atmospheric
plasma spraying (APS) processes (Ref 5-7). Examples for
a successful use of PFI in combination with ANN are gi-
ven in (Ref 3, 4). A first application of ANNs in the area
of wire arc spraying is given in Ref 8. The development of
a neural network model in conjunction with arc spraying is
also described in Ref 9 and 10.

The aim of this paper is to show that a TWAS process
can be controlled using ANN. For this purpose, an ANN-
based control is tested by artificially ‘‘disturbing’’ the
process in different ways. As it will be seen, the ANN-
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based control can compensate different kinds of process
errors. Especially, it will be seen that process errors can be
compensated the ANN was not trained for. Before the
analysis of the ANN-based control is presented, the
diagnostic tool PFI and analysis of the TWAS particle
beam by means of this diagnostic tool will be introduced.

2. Particle Flux Imaging (PFI)

PFI is a diagnostic tool which is suitable for monitoring
most thermal spraying processes, e.g., plasma spraying, arc
spraying, or high velocity oxygen fuel spraying (HVOF)
(Ref 11-13). PFI images show simultaneously the very
bright carrier medium of the spray particles close to the
gun and the less luminous particle flux in the downstream
zone as provided by a CCD (charge-coupled device)
camera. Carrier media may for example be the plasma jet
and the HVOF jet. Due to the different luminosities of the
carrier medium and the particle stream, two gray filters
with different transmissions values are used for preventing
overexposure of the CCD camera (Fig. 1).

A PFI image is generally divided into two parts, as
shown in Fig. 2. Figure 2 (above) shows the carrier med-
ium on the left-side and the particle flux on the right-side.
The image is evaluated by finding intensity contours of
constant gray scale values and fitting these lines to ellipses
(Fig. 2, below).

Each ellipse in Fig. 2 is described by five key numbers
(KN): the x- and y-position of the center point, the two
semi-axes, and the angle between the x-axis and the major
axis of the ellipse. It is also possible to use additional
numbers for characterizing an ellipse, e.g., the average
gray scale value of the pixels within an ellipse or the
number of pixels within an ellipse in the PFI image (these
values provide information about the luminosity of an
approximated area in the image).

It is assumed that a change of the spraying conditions
results in variations of the shape of the carrier medium
and the particle jet. This in turn can be detected by the

PFI system providing characteristic KN values for each
spray condition. By comparing the KN values of reference
ellipses (defined for an optimized coating process) with
ellipses for an ongoing coating process deviations from the
optimum process can be detected.

3. Process Conditions

For the investigation, the spray gun ‘‘ArcSprayJetOne’’
from the company ‘‘T-Spray’’ (Lenningen, Germany) was
used. As power source a gas metal arc welding (GMAW)
power source from the company ‘‘EWM’’ (Oelsnitz,
Germany), equipped with a second wire feeder, was ap-
plied in DC mode. For the DC process, the
adjustable parameters of the power source are the voltage
U and the wire feed rate vw (proportional to the current).
The advantage of the EWM power source is that its con-
trol acts very fast: it is able to adjust to new parameters
during the spraying process very quickly (<1 s). The
pressure P of the atomizing gas was set externally to
400 kPa. As atomizing gas, air was used and G3Si1 as
spray wire (diameter 1.6 mm). In order to obtain appro-
priate images for the PFI image analysis, the exposure
time was set to 5 s.

4. Statistical Investigation of a TWAS
Particle Stream by Means of PFI

The investigation was performed by the method design
of experiments (DOE). A full factorial 32 design including
2 repetitions for every parameter variation and addition-
ally 3 repetitions at the central point was applied (so the
full design consists of 21 parameter sets). The process
parameter variations are shown in Table 1.

In the experiments, the focus was on the following KN
values of the particle beam: the major axis a, the minor
axis b, the average gray scale value of the pixels within an
ellipse Eavg, and the number of pixels within an ellipse EN

as response variables.

Fig. 1 Operating principle of the diagnostic system PFI. A CCD
camera images simultaneously the carrier medium and the par-
ticle flux of a thermal spraying process. Due to the different
luminosities, gray filters with different transmissions values s1
and s2 are used

Fig. 2 Evaluation of a PFI image. Closed lines of constant gray
scale values are fitted to ellipses (In this example, a PFI image of
a plasma spraying process was taken for the evaluation)
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As an example for the results of the PFI measurements
in Fig. 3, a standardized Pareto chart of the influencing
parameters for the minor axis b is given. It should be
noted at this point that in a standardized Pareto chart a
standardized effect is an effect (amount of change of a
response variable caused by the variation of an input
variable) divided by its standard deviation. From Fig. 3 it
can be seen that, besides the factors U and vw, also the
factors U2, vw

2 , and UÆvw have a statistically significant
influence on the minor axis b of the particle flux ellipse.
From the statistical analysis, the regression polynomial

b ¼ �499:9mmþ 9:249
mm �min

m
vw

þ 30:43
mm

V
U � 0:8

mm �min2

m2
v2w

þ 0:2438
mm �min

m �V vwU � 0:4778
mm

V2
U2

ðEq 1Þ

with the coefficient of determination R2 = 0.9931 was ob-
tained.

For the major axis a, the average gray scale value of the
pixels within an ellipse Eavg and the number of the pixels
within an ellipse EN the regression polynomials are

a¼�2501 mmþ 117:6
mm �min

m
vw þ 160:2

mm

V
U

� 14:2
mm �min2

m2
v2w þ 2:908

mm �min

m �V vwU � 2:688
mm

V2
U2

ðEq 2Þ

with R2 = 0.9985,

Eavg ¼ �200:6� 1:700
min

m
vw þ 19:45

1

V
U

þ 0:1481
min

m � V vwU � 0:2856
1

V2
U2

ðEq 3Þ

with R2 = 0.9981 and

EN ¼ �290656þ 1224
min

m
vw þ 17846

1

V
U

� 404:73
min2

m2
v2w þ 272:49

min

m �V vwU � 290:65
1

V2
U2

ðEq 4Þ

with R2 = 0.9916.
Due to the high coefficient of determination, Eq 1-4

describe functional relations between the response vari-
ables a, b, Eavg, EN, and the process parameter U, vw very
well. This leads to the conclusion that it should be possible
to control the wire arc spraying process for the applied
GMAW power source. It should be noted that all
dependencies in Eq 1-4 are non-linear. Furthermore, in
Eq 3, a vw

2 -term is missing in comparison to the other
Eq 1, 2, and 4.

5. An Artificial Neural Network for
Controlling the TWAS Process

In the previous section it was seen that it should be
possible to control the TWAS process based on the KN
values obtained from particle flux. However, not all
dependencies between the KN values and the process
parameters are linear. This suggests that it might be
advantageous to control the spraying process with an
artificial neural network (Ref 14). For using an ANN, it is
not necessary to know an explicit mathematical model for
the relation between controlled variables and actuating
variables: ANNs can be trained to find an adequate rela-
tion. For controlling, a function from the set of controlled
variables to the set of actuating variables is needed
(Eq 1-4 describe the converse relation).

An ANN is a model that is inspired by the functional
principle of the human brain. It consists of nodes, so-called
neurons, and a network that connects the neurons. For this
research a multi-layer perceptron (MLP) was used as
ANN. An MLP consists of perceptrons (Fig. 4).

The functionality of a perceptron is as follows: Each
input (signal) pi is multiplied by its weight wi; the weighted
inputs are summed; and a bias b is added resulting in a
sum X. X is put in a transfer function f and the result is the
output Y. An MLP is feed-forward network organized in
layers L1,…, LN. The layer L1 is the input Layer; LN is the

Fig. 4 Graphical model of a perceptron

Fig. 3 Standardized Pareto chart of effects for the minor axis b
(Color figure online)

Table 1 Parameter variations for the full factorial 32

design

Process parameters Level 1 Level 2 Level 3

Voltage U, V 27 31 35
Wire feed rate vw, m/min 3 5 7
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output layer; and the other layers are called hidden layers
(Fig. 5). Only connections between Li and Li+1 exist.

The calculation of the output of an MLP is simple: for
each perceptron the output is calculated moving forward
from layer to layer starting in the input layer. To train an
MLP means to find weights and biases with a learning
algorithm so that for a set of given inputs the sum of the
squared differences between calculated and desired out-
puts is minimal. The performance of an MLP depends
very much on the number of hidden layers and percep-
trons.

For test purposes, the center point of the experimental
design was defined as an optimal process parameter set
(Uopt = 31 V, vw,opt = 5 m/min). We used this set as an
optimal parameter set because for these parameters, and
in the area near to these parameters the wire arc spray
process ran very stable. For this point, the average mea-
sured KN values are aopt = 561.3 mm, bopt = 48.5 mm,
Eavg,opt = 142, and EN,opt = 21395 which defined the refer-
ence. For each parameter, set i of the performed experi-
mental design the relative deviations Darel,i, Dbrel,i,
DEavg,rel,i, DEN,rel,i (in percent) from the optimum
parameters was obtained defined through

Darel;i ¼ ðai=aopt � 1Þ � 100 ðEq 5Þ

Dbrel;i ¼ ðbi=bopt � 1Þ � 100; ðEq 6Þ

DEavg;rel;i ¼ ðEavg;i=Eavg;opt � 1Þ � 100 ðEq 7Þ

DEN;rel;i ¼ ðEN;i=EN;opt � 1Þ � 100 ðEq 8Þ

where ai, bi, Eavg,i, EN,i are the original KN values (the
standard PFI evaluation algorithm offers relative devia-
tions as standard output when a reference ellipse is de-
fined). The results of the 21 PFI measurements are shown
in Fig. 6. For these measurements, each parameter set was
measured individually. After initiation, the process was
operated until a stable condition was reached and after-
wards, one PFI measurement was done (acquisition time
5 s).

From Fig. 6, it can be seen that the charts of Da, Db,
and DEN have comparable shapes with different heights of
the peaks. Therefore, the coefficients of correlation from
the measurement data were calculated (Table 2).

As Table 2 indicates, the different coefficients of cor-
relation are very high. This means (together with the
charts in Fig. 6) that nearly linear dependencies exist be-
tween Da, Db, and DEN. So it is sufficient to use only one
of these three KN values for controlling the TWAS pro-
cess. In order to decide which of these three values would
be the best one for controlling, the different traces of Da,
Db, and DEN were compared when the process parameter
set of the power source was set to the optimal set
(Uopt = 31 V, vw,opt = 5 m/min), Fig. 7.

Since TWAS is a thermal spraying process with a
fluctuating particle beam, the PFI values fluctuate, too.
From Fig. 7, it follows that the fluctuation for the KN
value a is the lowest. As a consequence of this, a was used
for controlling. In the case of using b or EN a large peak
like in Fig. 7 could imply a significant deviation from the
reference ellipse and be interpreted as a process error by

Fig. 5 Illustration of an MLP with one hidden layer Fig. 6 Results of the 21 PFI measurements for Da, Db, DEavg,
DEN (Color figure online)

Table 2 Coefficients of correlation for Da, Db, and DEN

Da Db DEN

Da … 0.9577 0.9591
Db 0.9577 … 0.9984
DEN 0.9591 0.9984 …

Fig. 7 Traces of Da, Db, and DEN (also the traces of vw and U
are displayed). Process parameters were set to Uopt = 31 V,
vw,opt = 5 m/min (atomizing gas pressure P= 400 kPa) (Color
figure online)
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the controlling algorithm even though the process is run-
ning smoothly. As second value, Eavg was utilized for the
process control. For training the MLP, the relative devi-
ations from the optimal parameters Darel,i and DEavg,rel,i

were used as input values for the MLP. Accordingly, the
parameters DUdiff,i and Dvw,diff,i in Eq 9 and 10 were used
as output values for the MLP.

This way, the MPL-based process control works as
follows: When relative deviations Darel and DEavg,rel from
the reference ellipse are measured, a deviation from the
optimal coating process is detected. This deviation can be
translated into changes DUdiff and Dvw,diff of the actual
process parameters Uact and vw,act which can be calculated
with the MLP. Therefore, the target process parameters
are set to new process parameters DUnew and Dvw,new in
Eq 11 and 12 in order to reach the optimal process
parameters—as detected by the PFI—again.

DUdiff;i ¼ Ui �Uopt ðEq 9Þ

Dvw;diff;i ¼ vw;i � vw;opt ðEq 10Þ

DUnew ¼ Uact � DUdiff ðEq 11Þ

Dvw;new ¼ Dvw;act � Dvw;diff ðEq 12Þ
For our investigations, we used a MLP with one hidden
layer containing 5 neurons. In order to determine this, we
investigated MLPs with maximal two hidden layers and
maximal 7 neurons per layer. For each investigation, we
used a different number of parameters sets for training the
MLP. In order to avoid overfitting, the number of
parameters sets was chosen higher than the number of
connections within the MLP. For example, a MLP with
two hidden layers and 7 neurons per layer (2 inputs, 2
outputs) contains 77 connections. Therefore, we repeated
our experimental design of 21 parameter sets four times to
get enough data for training the MLP. For testing each
MLP, we used always the same 10 parameter sets lying
within a range where the wire arc spray process ran very
stable. From all results, the MLP with one hidden layer
containing 5 neurons delivered the best results concerning
the mean squared error (MSE) and the testing data.

6. Different Tests of the ANN-Based
Control

In order to test the ANN-based control, the process was
artificially ‘‘disturbed’’ in different ways so that the par-
ticle flux ellipse differed from the reference ellipse. At
first, the initial process parameters were set to parameters
different from the optimal process parameters. Therefore,
it could be verified if the ANN-based control adjusts the
parameters back to the optimal parameters. For all per-
formed tests, no substrate was coated and the wire spray
gun was not moved.

In Fig. 8, an example of a disturbed process can be
seen. The process was disturbed by setting the initial
process parameters to U= 36 V and vw= 7 m/min.

Figure 8 shows that the optimal process parameters
Uopt = 31 V and vw,opt = 5 m/min were reached again after
the control was activated. Also, the KN values Da and
DEavg are nearly fluctuating around 0 percent, which
means that the ANN-based control for the GMAW power
source works in principle.

For a second and a third test, the process was disturbed
by setting the atomizing gas pressure P to 300 and
500 kPa, respectively (Fig. 9 and 10). The goal of this test
was to find out how the ANN-based control can com-
pensate errors it was not trained for.

Figure 9 shows that a lower pressure P= 300 kPa is
compensated by setting the voltage to U=27 V and the
wire feed rate to vw= 6 m/min. For Da and DEavg, the
value 0 percent is not reached exactly: Da is fluctuating
around �0.8 and DEavg around �0.5 percent. From Fig. 10
it can be seen that a higher pressure P= 500 kPa is com-
pensated by adjusting the voltage to U= 29.5 V and the
wire feed rate to vw= 4.5 m/min. Furthermore, Da is fluc-
tuating around �1.2 and DEavg around �0.3 percent. In
both cases, the KN values Da= 0 and DEavg = 0 of the
reference ellipse were not reached exactly with activated
ANN-based control but the new values were close to 0.

Fig. 8 Traces of Da, DEavg, vw, and U for a disturbed process
with activated ANN-based control. The control was activated
after 76 s. The initial process parameters were set to U= 36 V,
vw= 7 m/min (atomizing gas pressure P= 400 kPa) (Color
figure online)

Fig. 9 Traces of Da, DEavg, vw, and U for a disturbed process
with activated ANN-based control. The control was activated
after 30 s. The initial process parameters were set to the optimal
process parameters Uopt = 31 V and vw,opt = 5 m/min. The process
was disturbed by setting the atomizing gas pressure to
P= 300 kPa (Color figure online)
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From the experiments it is known (compare with Fig. 7)
that these deviations are in the order of ‘‘normal’’ fluc-
tuations of a PFI ellipse for a TWAS process. Therefore, it
can be stated that the reference ellipse was reached again
with new process parameters. Now the question is, if dif-
ferent process parameters leading to particle beams with
the same PFI parameters result in the same coating
properties. The goal of future investigation is to find an
answer to this.

7. Summary and Conclusion

In this paper, a method for controlling a TWAS process
was presented. This method is based on the fact that a
disturbance of the coating process results in a change of
the properties of the spray particle stream. This change of
properties can be recorded using the diagnostic system
PFI which characterizes the particle stream on the basis of
ellipses. Deviations from a reference ellipse defined for
optimal coating parameters mean a deviation from the
optimal process. Based on this, an ANN-based control was
implemented using PFI ellipses numbers as input values.

In order to obtain images suitable for the PFI image
analysis of a TWAS process, the exposure time has to be
set to approximately 5 s. For the controlling of the pro-
cess, a power source with a very quick controller is needed
because the adjustment of the new parameters needs to be
finalized before the next PFI image is acquired. If the
controller of the power source were too slow, the process
parameters would be changed too slowly and the new
recorded shape of the particle beam would not correlate to
the new parameters measured.

From different tests it can be seen that the ANN-based
control can compensate different kinds of process errors,
especially errors the ANN was not trained for: in the case
of a lower or a higher atomizing gas pressure, the control
found new values for the adjustable parameters voltage
and wire feed rate of the power source so that the refer-
ence ellipse was reached again. But actually it is not

known if particle beams with the same PFI parameters
result in the same coating properties. More investigations
are needed.
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