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In this study, an investigation on the impacting behavior of cold-sprayed particles using the Eulerian
formulation available in ABAQUS/Explicit was conducted with typical copper material. The results
show that a jet cannot be formed at an impact velocity less than about 290 m/s, while a continuous jet
composed of both particle and substrate materials begins to initially form at about 290 m/s and a
maximum equivalent plastic strain plateau can be found, which could be the approximate critical
velocity. In addition, the jet presents discontinuities and the splashing causes the loss of material as the
impact velocity exceeds the velocity extent of 290-400 m/s. Therefore, through theoretical analysis of the
jet morphology, the Eulerian model could provide a prediction of the critical velocity.
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1. Introduction

In cold spraying (CS) (also termed kinetic spraying),
solid powder particles (generally 5-50 lm in diameter) are
injected into a gas stream at the inlet of a converging/
diverging de-Laval-type nozzle to attain high velocity
before impacting upon a substrate. If the velocity exceeds a
so-called critical velocity, a transition from erosion or
rebound to deposition occurs. In other words, sufficient
kinetic energy must be available to plastically deform the
solid material and/or disrupt the surface oxide films to
achieve deposition (Ref 1-3). This critical velocity depends

not only on the type of spray material, but also on the
powder quality, particle size and impact temperature. In
addition, from the view of simulations, a controversial
viewpoint appears that a successful bonding between the
particle and substrate requires adiabatic shear instability
(ASI) occurring at the local interface. Assadi et al. (Ref 4)
initially put forward that the occurrence of ASI corre-
sponded to the critical velocity obtained by using the
ABAQUS software with the Lagrangian formulation. Fol-
lowing Assadi et al. (Ref 4) and Grujicic et al. (Ref 5),
Schmidt et al. (Ref 6) further improved the Lagrangian
model with the consideration of the effects of particle size
and heat conduction and proposed the erosion velocity and
the minimal particle impact velocity necessary to produce
ASI. Undoubtedly, this Lagrangian model can obtain
abundant deformation information, i.e., shape, tempera-
ture, stress and strain. Although the Lagrangian model
could manifest the ASI phenomenon and quantitatively
describe the critical velocity, still the dependence of simu-
lation outputs on the element distortion could not be
ignored considering the extensive plastic deformation and
large shear strain gradient in CS. Based on this, the
LS-DYNA (Ref 7-9), the smoothed-particle hydrodynamics
(SPH) method (Ref 10) used by Li et al. (Ref 11) and the
Eulerian method (Ref 12) were employed to ameliorate the
issues associated with the severe mesh distortion. The sim-
ulation outputs of these methods presented comparable
deformation features with the experiments. But the lack of
steep change of plastic strain associated with ASI proposed
by Assadi et al. (Ref 4) would not facilitate understanding the
bonding mechanism in CS and quantitatively describing the
critical velocity.

As for the Eulerian method, the overall mesh can be
considered as two overlapping meshes, consisting of a
background spatial mesh, which is fixed in space, and
material, which can flow through the fixed mesh (Ref 13).
Therefore, it can avoid the extreme distortion of elements,
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and the Eulerian formulation on the impacting behavior is
necessary due to the clearly extensive plastic deformation
involved in CS.

Some examples of its applications can be found in
hypervelocity impact (Ref 14) and powder forming pro-
cesses (Ref 15). In addition, Yin et al. (Ref 12) pointed out
that the particle deformation behavior calculated by the
Eulerian method was more comparable to the experi-
ments than that determined by the Lagrangian method.

Therefore, in the present study, an Eulerian model was
developed to investigate the impacting behavior of CS
particles, attempting to reveal the critical velocity and
explore the bonding mechanism in CS.

2. Model Description

2.1 Finite Element Method

The impacting behavior of a copper particle on a copper
substrate was simulated using an explicit FEA program
ABAQUS/Explicit with the Eulerian formulation available
in Version 6.8 (Dassault Systèmes Simulia Corp., Provi-
dence, Rhode Island, United States). A three-dimensional
model was established, for the only available Eulerian ele-
ment is the three-dimensional, 8-node element EC3D8R in
ABAQUS/Explicit (Ref 16). A slice with a thickness of
1 lm was cut from the middle of the entity model and
simplified as a symmetric geometry to reduce computa-
tional cost (Ref 5). Therefore, as shown in Fig. 1, a 1/2
symmetric model including a semicircular particle with
20 lm in diameter and a rectangular substrate (having a
width four times the particle diameter and a height three
times) was adopted. The meshing was conducted with a
mesh size of 0.2 lm (a meshing resolution of 1/100dp).

2.2 Material Property and Other Parameter
Settings

The material flow behavior of the Cu particle and
substrate was described by the Johnson-Cook plasticity
model (Ref 17). The flow stress r is a function of strain
hardening, strain rate hardening and temperature soften-
ing and expressed as follows:

r ¼ ðAþ BenÞ 1þ C ln 1þ
_e
_e0

� �� �
1� T � Troom

Tmelt � Troom

� �m� �

ðEq 1Þ

where e and _e are the strain and strain rate, respectively, _e0

the reference strain rate, Troom the reference temperature,
Tmelt the melting point. A, B, n, C and m the constants
dependent on material. These constants for Cu are
90 MPa, 292 MPa, 0.31, 0.025 and 1.09 (Ref 4, 18),
respectively.

A linear Mie-Gruneisen equation of state (EOS) was
employed for the elastic behavior of Cu. The linear Us-Up
Hugoniot form is defined as (Ref 16):

p ¼ q0C2
0g

ð1� SgÞ2
1� C0

2
g

� �
þ C0q0Em ðEq 2Þ

where, g = 1 � q/q0 is the nominal volumetric compressive
strain, q0 the initial density, q the current density, C0 the
bulk speed of sound, C0 the material constant named
Gruneisen�s gamma, S the linear Hugoniot slope coeffi-
cient, Em the internal energy per unit reference specific
volume. The variables C0, S and C0 used for Cu are
3940 m/s, 1.49 and 2.02 (Ref 12), respectively.

2.3 Governing Equations

The conservative equations in the Eulerian description
are written using the spatial time derivative. The mass,
momentum and energy equations are (Ref 19):

dq
dt
¼ �q

@u

@x
ðEq 3Þ

dE

dt
¼ 1

q
rij
@u

@x
ðEq 4Þ

du

dt
¼ 1

@q
@ry

@x
ðEq 5Þ

where q is the density, r the Cauchy stress, u the material
velocity and E the total energy per unit volume. The total
energy E is the sum of the kinetic energy and the internal
energy e

E ¼ 1

2
qu � uþ e ðEq 6Þ

2.4 Boundary Conditions

The Eulerian model was divided into three parts: Cu
particle, Cu substrate and void. In the present model, the
bottom and right surfaces of the substrate were completely
fixed. The particle/substrate impact process was also

Fig. 1 (a) Symmetric model and computational domain of Cu
particle (20 lm) impinging on Cu substrate under the Eulerian
frame and (b) the enlarged view of elements around the particle
with a meshing resolution of 1/100dp. Note that void material was
used for other region
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assumed to be an adiabatic process according to Assadi
et al. (Ref 4). All calculations were carried out assuming
that both the particle and substrate are initially at room
temperature (25 �C). Finally, the elements experiencing the
maximum equivalent plastic strain (PEEQ) during impact
were monitored by a Python script code for outputs.

3. Results and Discussion

3.1 Evolution of Particle and Substrate
Shapes at 310 m/s

A typical evolution of the particle and the substrate
shapes at an initial velocity of 310 m/s is shown in
Fig. 2(a)-(e). These figures show that as the particle/sub-
strate contact time increases, the particle aspect ratio
(height-to-width) decreases, while the substrate crater
depth and width increase. Additionally, it can be found
from Fig. 2(a) at the impact time of 5 ns that a narrow
interfacial region has experienced intensive deformation

and accordingly the interfacial temperature rises. It is
interesting to note that the maximum PEEQ and TEMP
zones are concentrated on the surrounding of the contact
zone rather than at the center of initial impact point. As
the particle impact progresses, a jet composed of both the
particle and substrate materials is formed at the particle/
substrate interface and the particle has flattened to form a
lens-like shape, as shown in Fig. 2(b). Subsequently, more
particle and substrate materials are squeezed out to form
the jet. The typical evolution of the jet with the impact
time is shown in Fig. 2(c)-(e). Figure 2(f) shows evolutions
of the maximum PEEQ and TEMP with the impact time.
From this figure, it can be found that similar to literature
(Ref 11), the ASI is not clearly detected solely by the
occurrence of a steep change of the temperature and
plastic strain evolution.

3.2 Effect of Impact Velocity

Many experimental observations show that the particle
deformation is a strong function of the impact velocity
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Fig. 2 Evolutions of equivalent plastic strain (PEEQ, left side) and temperature (TEMP, right side) of a 20 lm Cu particle impacting
upon a Cu substrate at the impacting velocity of 310 m/s at the impacting times: (a) 5 ns, (b) 10 ns, (c) 20 ns, (d) 30 ns, (e) 40 ns and (f)
evolutions of the calculated maximum PEEQ and TEMP with the impact time
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(Ref 20-22). The crater volume and the flattening ratio of
particles increase significantly with increasing the impact
velocity (Ref 22). The calculated results are consistent with
these experimental observations. Figure 3 shows the sim-
ulated contours of PEEQ after impacting at different
velocities. Some conclusions could be clearly observed that
the particle has deformed more extensively with increasing
the velocity from 200 to 700 m/s; consequently, the depth
of the crater and the flattening ratio of particles are
increased. Detailed examination of the calculated outputs
reveal that, at relatively low impact velocities such as 200-
280 m/s as shown in Fig. 3(a)-(c), the maximum PEEQ
zones are trapped by the particle and substrate materials.
When the impact velocity increases to about 290 m/s, the

high strain zone is extruded in a plasticized state to form a
jet as shown in Fig. 3(d). Subsequently, the jet gets elon-
gated with the increase of velocity as shown in Fig. 3(e)-(i).
However, with the impact velocity further increasing, the
jet is no longer continuous and a material fracture at the jet
front is observed as shown in Fig. 3(j)-(l).

3.3 Discussion on the Bonding Mechanism
in Cold Spraying

The particle/substrate bonding in CS is presumed to be
the result of extensive plastic deformation and related
phenomena at the interface. Thus the bonding mechanism
can be comparable to explosive welding, where the

Fig. 3 Simulated contours of PEEQ after impacting of a 20 lm Cu particle upon a Cu substrate at different impacting velocities: (a)
200 m/s, (b) 250 m/s, (c) 280 m/s, (d) 290 m/s, (e) 300 m/s, (f) 310 m/s, (g) 320 m/s, (h) 330 m/s, (i) 400 m/s, (j) 500 m/s, (k) 600 m/s and (l)
700 m/s
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formation of a jet at the interface is often considered as a
criterion for a successful bonding (Ref 4). Assadi et al.
(Ref 4) also pointed out that the calculated results using
the Lagrangian method clearly illustrate the formation of
a jet at the interface for the particle impacting on a rigid
substrate and less prominently for the same material
substrate; however, the jet prominently depends on the
mesh and its onset could occur over a wide range of
impact velocities, thus making the criterion ineffective
(Ref 4). The jet formation obtained using the Eulerian
method may be a manifestation for the critical velocity
due to the independence of the Eulerian method on the
mesh. The next step would be to obtain a more precise
evaluation of the particle impact velocity corresponding to
the jet formation. The results calculated above in Sect. 3.2
(as shown in Fig. 3) outline a window of conditions for this
to take place.

As the impact velocity is in the range of 200-280 m/s
(see Fig. 3a-c), a jet cannot be observed and the maximum
PEEQ zone is surrounded by the particle/substrate inter-
face, in other words, a relatively large deformation force is
impeded, which could be a ‘‘spring back’’ force that may
break up the initial partial bonding. The corresponding
experimental phenomena could be that this particle
rebounds from the substrate or creates a crater as shown
in Fig. 4(a) (Ref 23), and the observation of non-adhering
particles leaving craters in the substrate without any
indication of a jet was also found by Assadi et al. (Ref 4).
Therefore, bonding conditions are not achieved, and a jet
could not be formed.

As the impact velocity increases to about 290 m/s, a jet
composed of the particle and substrate material com-
mences being formed as shown in Fig 3(d). Both the
experiments (Ref 23) and Assadi et al. (Ref 4) found that
as a particle adhered to the substrate, an obvious jet
presented in the periphery of the adhered particle as
shown in Fig. 4(b). In addition, different critical velocities
for Cu particles measured by the simulations and corre-
sponding experimental methods have been reported as
580 m/s (Ref 4), 500 m/s (Ref 6) and 550 m/s (Ref 18) for
a 25 lm diameter particle through using the Lagrangian
method. Other experiments have reported critical veloci-
ties of 570 m/s (Ref 24), 550 m/s (Ref 25) and 640 m/s

(Ref 26) with the oxygen content of 0.1, 0.2 and
0.336 wt.%, respectively. It has been argued that the oxide
film can explain the discrepancies in the critical velocity
(Ref 7). Moreover, both Kang et al. (Ref 27) and Li et al.
(Ref 28) concluded that a higher feedstock oxygen content
would lead to a higher critical velocity. Besides, the pre-
vious results reported the critical velocity of 310 m/s with
the oxygen content of 0.02 wt.% (Ref 7) and the critical
velocity of 300 m/s for a 20 lm Cu particle impacting on
the copper substrate by extrapolating the shear instability
velocity to a zero meshing size (Ref 7, 8). Therefore, it is
rationally predicted that the velocity of 290 m/s could be
the critical velocity, since the oxide films were not con-
sidered in the present study. Correspondingly, the jet
formation may be a manifestation of a successful bonding.
Subsequently, when the impact velocity is in the range of
about 290-400 m/s, the elongating jet shown in Fig. 3(e)-
(i) may tamp the bonding of the particle and substrate.

As the impact velocity surpasses the range of 290-
400 m/s as shown in Fig. 3(j)-(l), the jet is no longer con-
tinuous and the jet splashing causes the loss of material.
This phenomenon is consistent with the experimental
results obtained by Schmidt et al. (Ref 6). Figure 5 shows
the comparison of the simulated deformation patterns
with the experiment observations in the literature (Ref 6).
It indicates that the simulated deformation patterns are
consistent with those of the experimental observations,
which validates the reliability of the present Eulerian
model. Additionally, the experimental phenomena of
obvious cracks and erosion caused by the high velocity
could be characterized by the non-continuous jet as shown
in Fig. 5(c) and (d). The strong erosion would be gener-
ated as the impact velocity exceeds the upper-limit
velocity for particle deposition. Therefore, the jet splash-
ing may be a forecasting of the erosion limit and hydro-
dynamic penetration.

On the other hand, according to Assadi et al. (Ref 4),
the critical velocity is the onset of ASI which is manifested
by a jump in strain and temperature. Figure 6(a) shows
the evolution of maximum PEEQ with the impact time at
several typical impact velocities. It can be seen from
Fig. 6(a) that, at the early impact process, the maximum
PEEQ increases with the impact time and subsequently

Crater

(a) (b)

Fig. 4 (a) Surface morphology of Cu particles impinging on Cu substrate showing deposited particles and craters and (b) a single impact
at high magnification (Ref 18)
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reaches a steady state for all the impact velocities. No
phenomenon associated with ASI can be clearly detected
solely by the occurrence of a steep change of plastic strain

evolution as similar to the literature (Ref 11). However,
Zener and Holoman (Ref 29) explained ASI to be ther-
moplastic instability, which means the growth and decline

Fig. 5 Comparison of simulated shapes of a 20 mm Cu particle impacting on 20 steel substrate with macro pictures of cross-sections of
20 mm Cu ball impacting on low carbon steel plate (Ref 6) with velocities: (a) 350 m/s, (b) 600 m/s, (c) 750 m/s, (d) 1000 m/s and (e) 1450 m/s
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of plastic strain hardening and adiabatic thermal soften-
ing. The latter theory can be reflected in the present
Eulerian model as shown in Fig. 6. Figure 6(b) shows the
effect of impact velocity on the steady maximum PEEQ,
which offers a window of conditions for studying the
deformation characteristics. Firstly, as the impact velocity
is less than 290 m/s, the steady maximum PEEQ increases
linearly with the velocity, which suggests that the plastic
strain hardening dominates the local deformation process.
Secondly, the steady maximum PEEQ almost plateaus at
the velocity range of 290-400 m/s, which could suggest a
‘‘dynamic balance’’ between the plastic strain hardening
and adiabatic thermal softening, resulting in a stable
plastic impact process. Thus the transition velocity could
be the critical velocity, e.g., 290 m/s in the present model.
Finally, the steady maximum PEEQ continues to increase
with further increasing the velocity. The jet splashing
begins at about 450 m/s and becomes severe at a velocity
higher than 700 m/s compared with the erosion velocity of
about 930 m/s in the literature (Ref 6). As the jet splashing

has arisen, the balance is broken by the increased impact
velocity and the plastic impact may have transferred to
hydrodynamic penetration until material damage in the
form of the jet caused intense erosion, thus the transition
point velocity, e.g., 400 m/s in the present model, could be
the upper limit velocity.

4. Conclusions

The present work demonstrates the deformation pro-
cess of a 20 lm diameter copper particle impacting on the
same material substrate in CS using the Eulerian formu-
lation available in the ABAQUS software. The effect of
the impact velocity on the outputs for Cu were explored.
Based on these results, the critical velocity could be
defined as that which supports the initial formation of a jet
during the impact process. In addition, as the impact
velocity continuously increased, the jet was no longer
continuous and the jet splashing caused the loss of mate-
rial. Overall, the Eulerian model could provide a predic-
tion of the impact velocity through theoretical analysis of
the jet morphology.
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