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In this research a new analytical model was developed to predict which of the deformation mechanisms
consisted of buckling or upsetting is occurred in the laser forming of thin sheet. The model was based on
determining the critical temperature change, at which the buckling phenomenon is started. The effects of
several factors such as sheet dimensions, laser power, laser beam diameter, scanning velocity, and the
material properties including thermal expansion coefficient, thermal conductivity, and the heat capacity, on
the governing mechanism were investigated. Numerical simulations of the laser forming process were also
performed using a finite element model (FEM) of the process. The latter model was verified by the
experimental results published in the literature. The FEM, as well as, the analytical model demonstrated
that by increase in the sheet thermal conductivity or decrease in laser scanning velocity, the occurrence of
buckling phenomenon is promoted. Comparison of the analytical model predictions with the FEM results
showed an excellent agreement.
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1. Introduction

During the last two decades laser forming process has been
considered as a new and suitable technique to manufacture the
contoured parts, without external forces, from the sheet
materials. It allows automation of manufacturing processes in
the aerospace, automobile, and shipbuilding industries (Ref 1-
3). The technique offers various engineering advantages
compared to common forming processes. The known advan-
tages consist of design flexibility, manufacture of complex
shapes, and possibility of rapid prototyping (Ref 4-8). In this
process, external forces and dies are not necessary, and various
shapes can be produced (Ref 9-11). When the sheet material is
subjected to the laser irradiation, because of the absorption of

laser energy, the temperature in the sheet is increased leading to
the generation of thermal stress in the sheet. So laser irradiation
has a thermo-mechanical coupling effects that can be used in
laser processing applications (Ref 12-14).

To control the deformation of a metallic sheet during the
laser forming, the dominant mechanism of deformation should
be detected. The mechanism is identified by the temperature
field in the sheet which is affecting by the dimensions of the
sheet, as well as, the laser parameters such as the laser spot
diameter, scanning velocity, scanning path, and the laser power
(Ref 15-19). The three main mechanisms of deformation
proposed so far are the temperature gradient mechanism
(TGM), buckling mechanism (BM), and upsetting mechanism
(UM) (Ref 20-23). These mechanisms are illustrated in Fig. 1.
As it is seen there is a temperature gradient in the sheet
thickness in the TGM while in the other two mechanisms the
temperature through the thickness is nearly constant. Hence, in
order to identify the deformation mechanism, the temperature
field should be evaluated. This has generally been carried out
by the thermal analysis computer software based on the finite
element method or the simplified theoretical formulae (Ref 21,
24, 25). Therefore, from the results of temperature analysis, if
there is a temperature gradient along the thickness, one can be
sure that TGM is the dominant mechanism but if no temper-
ature gradient exists, the temperature analysis is not sufficient
to distinguish which of the other two mechanisms (UM and
BM) shall be dominant. The dominant mechanism depends on
many factors such as sheet thickness, sheet material, scanning
velocity, power of laser, etc. In the conditions with similar
process parameters, the sheet is thinner in BM than in UM.
However, the TGM is dominant in the different process
parameters and the thickness of the sheet in this process cannot
be compared with the two other mechanisms. In UM, the
geometry of the sheet inhibits the buckling due to the increased
moment of inertia and the metal sheet is mainly reduced in
width and increased in thickness inducing plane strain defor-
mation in the sheet (Ref 21, 26). Moreover, in UM, a negligible
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bending deformation takes place while in BM there is a
considerable bending deformation (Ref 27). In some industrial
cases only the plane strain deformation needs to be carried out,
so in these cases the UM must be dominant. On the other hand,
in many industrial applications, the aim of laser forming is to
achieve a bending deformation. In such cases either the BM or
TGM must be applied because as mentioned earlier, in UM the
bending deformation is negligible. However, as in thin sheets,
the temperature through the thickness direction is nearly
constant, thus, the TGM should not occur. Here this question
arises that in laser forming of thin sheet which of the remaining
mechanisms (UM or BM) is likely to occur? On the other
words, in laser forming of thin sheet, detecting the dominant
mechanism between the probable two mechanisms (UM and
BM) is necessary to control the deformation of the sheet during
the laser forming. In order to answer to that question, in some
published works it has been expressed that if the width of the
heated area by the laser beam is much larger than the plate
thickness, the BM is dominant (Ref 28-30). However, it will be
shown for the first time, by a new analytical and numerical
analyses carried out in present work, that there are other factors
such as the dimensions, thermal, and mechanical properties of
the sheet and the laser beam diameter, power, and scanning
velocity which can affect the dominant deformation mecha-
nism. Therefore, the aim of this research is to predict the
dominant deformation mechanism in laser forming of thin sheet
and to predict the effects of process parameters on the position
of the boundary between BM and UM. To verify the analytical
model, the predicted results are compared with the published

experimental data, as well as, the results achieved from a finite
element analysis based on the ABAQUS software.

2. Modeling

2.1 Analytical Model

In order to establish the analytical model, the following
assumptions were made:

1) The initial sheet is stress-free, thin, and isotropic flat with
thickness h, width 2b, and length 2L; lying in the x-y plane (x
along the length and z through the thickness direction).

2) The sheet is a thin sheet with length to width ratio greater
than 5.

3) At the boundaries, at y ¼ �b, no torque and force is
applied.

4) The thermal strains in the y and z directions were
neglected.

5) The sheet is suddenly heated and the variation of
temperature due to laser scanning, in the longitudinal direction
of the sheet, is ignored.

6) The plate width is much larger than the laser beam
diameter.

It should be mentioned that the thin sheet usually refers to a
sheet with a thickness smaller than 1 mm. It has been reported
by Shen et al. (Ref 4) that the dependence of the laser
parameters and material properties on the average temperature
change in the heated area is:

Fig. 1 The schematics of the laser forming mechanisms
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DT ¼
4PAK 1� exp � 1

2
qCush
K

� �� �

q2C2u2s h
2d

ðEq 1Þ

where K, q, and C are the coefficient of thermal conductivity,
density, and heat capacity of the sheet material, us the laser
scanning velocity, and A is the absorption coefficient of the
sheet material. P and d are the laser power and laser beam
diameter, respectively.

In our work, the laser beam was assumed to be a Gaussian
beam. Therefore, it was reasonable to define the thermal strain
imposing to the sheet due to laser beam irradiation as:

ethx ¼ a � DT � exp �8 � y
2

d2

� �
ðEq 2Þ

where a is the thermal expansion coefficient, y is the -y
direction in the cartesian coordinate system, and DT is the
average temperature change which can be represented by Eq 1.
For a given sheet geometry, by controlling the laser parameters,
the magnitude of imposed average temperature change can be
increased. By increasing the average temperature change, the
strain energy in the sheet is enhanced and the plate is stretched
along its length. This stretching is continued until the stored
strain energy in the sheet becomes enough for the occurrence of
buckling. Using the Hook�s law, the elastic energy per unit
volume (U) is equal to (Ref 31):

U ¼ E

2 � ð1� m2Þ �
Z

V
eex

2 þ eey
2 þ 2 � m � eex � eey þ 2�ð1� mÞ � eexy

2
� �

dx � dy � dz

ðEq 3Þ

where E is the young modulus, m the Poisson ratio, eex and eey the
normal elastic strains in the x and y directions, respectively, and
eexy the elastic shear strain. The total strain component is equal
to the sum of elastic and thermal strain components. Hence:

ex ¼ eex þ ethx ; ey ¼ eey þ ethy ; exy ¼ eexy þ ethxy ðEq 4Þ

Using the Kirchhoff assumptions (Ref 31), it is easy to show
that:

ex ¼ ex þ z � kx; ey ¼ ey þ z � ky; exy ¼ exy þ z � kxy ðEq 5Þ

where k and e notations represent the middle plane strains and
curvatures, defined by Eq 6 and 7, respectively.

kx ¼ � @2w

@x2
; ky ¼ � @2w

@y2
; kxy ¼ � @2w

@x@y
ðEq 6Þ

and

ex ¼
@u

@x
þ 1

2
� @w

@x

� �2

; ey ¼
@v

@y
þ 1

2
� @w

@y

� �2

; exy

¼ 1

2
� @v

@x
þ @u

@y
þ @w

@x
� @w
@y

� �
ðEq 7Þ

where u and v are the in-plane displacement components in the
x and y directions, respectively and w is the displacement in the
z direction (lateral displacement). These components belong to
the middle plane of the sheet. The internal forces per unit length
(N) and moments per unit length (M) acting on the edges of an
element dx � dy are related to the internal stresses using the
following relations (Ref 32):

Nx ¼
Z h=2

�h=2
rxdz;Ny ¼

Z h=2

�h=2
rydz;Nxy ¼

Z h=2

�h=2
rxydz

ðEq 8Þ

and

Mx ¼
Z h=2

�h=2
rx � z � dz;My ¼

Z h
2

�h
2

ry � z � dz;Mxy ¼
Z h=2

�h=2
rxy � z � dz

ðEq 9Þ

Taking the first variation of the elastic energy functional, Eq
3, setting it to zero, and using Eq 5 to 7, the following relations
are achieved:

@Nx

@x
þ @Nxy

@y
¼ 0 ðEq 10Þ

@Nxy

@x
þ @Ny

@y
¼ 0 ðEq 11Þ

D � @4w

@x4
þ @4w

@y4
þ 2 � @4w

@x2@y2

� �
þ kx � Nx þ 2 � kxy � Nxy þ ky � Ny

� �
¼ �Mth

ðEq 12Þ

where D, the bending stiffness, is equal to:

D ¼ E � h3
12 � ð1� m2Þ ðEq 13Þ

and Mth is a function relating to the thermal strains components
as:

Mth ¼ E

1� m2
� r h=2�h=2

@2�ethx
@x2

þ m � @
2�ethx
@y2

þ
@2�ethy
@y2

þ m �
@2�ethy
@x2

þ ð1� mÞ �
@2�ethxy
@x@y

Þ � zdz
 !

ðEq 14Þ

Considering the Airy stress function, U, the internal forces
per unit length are:

Nx ¼
@2U
@y2

;Ny ¼
@2U
@x2

;Nxy ¼ � @2U
@x@y

ðEq 15Þ

Equation 15 satisfies the equilibrium Eq 10 and 11. Then,
Eq 12 becomes:

D � @4w

@x4
þ @4w

@y4
þ 2 � @4w

@x2@y2

� �

� @2w

@x2
� @

2U
@y2

þ @2w

@y2
� @

2U
@x2

� 2 � @
2w

@x@y
� @

2U
@x@y

� �
¼ �Mth

ðEq 16Þ

The compatibility equation can be expressed as (Ref 32):

@2

@y2
@u

@x

� �
þ @2

@x2
@v

@y

� �
� @2

@x@y

@u

@y
þ @v

@x

� �
¼ 0 ðEq 17Þ

Using the Eq 4 to 7, the integration in z direction from the
both sides of Eq 17 leads to:

@4U
@x4

þ @4U
@y4

þ 2 � @4U
@x2@y2

� �
þ E � h � @2w

@x2
� @

2w

@y2
� ð @

2w

@x@y
Þ
2

 !

¼ �Nth

ðEq 18Þ
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where Nth is a function relating to the thermal strain
components as:

Nth ¼ E �
Z h=2

�h=2

@2ethx
@y2

þ
@2ethy
@x2

� 2
@2ethxy
@x@y

 !

dz ðEq 19Þ

For a thin sheet with length to width ratio greater than 5, it is
reasonable to assume that the sheet length is infinite along its
length (the x direction) (Ref 33). Since the edges of the sheet at
y ¼ �b are free, the Nxy and Ny at y ¼ �b are zero. Moreover,
as the sheet length is much larger than its width, the variation of
the internal forces in the y direction may be ignored. This
means:

@Ny

@y
¼ @Nxy

@y
¼ 0 ðEq 20Þ

Referring to Eq 10, 11, and 20 one can conclude that:

@Nx

@x
¼ @Nxy

@x
¼ 0 ðEq 21Þ

According to Eq 21, @Nx

@x ¼ 0. Thus, Nx depends only on y
direction. Since

@Nxy

@x ¼ @Nxy

@y ¼ 0, so, Nxy must be constant and
as Nxy at the boundary is zero, it is deduced that at any point in
the sheet, Nxy is zero. Similarly, according to Eq 20, Ny only
depends on x direction. Further, at y ¼ �b, Ny must be zero for
all the x values. Therefore, Ny does not depend on the x
direction. Hence, at any point in the sheet Ny is equal to zero
and in term of the Airy stress function one can write:

@2U
@x2

¼ @2U
@x@y

¼ 0 ðEq 22Þ

As in the boundaries, at y ¼ �b, no torque and force is
applied, the boundary conditions can be defined as (Ref 34):

@2w

@y2
þ m � @

2w

@x2

� �
¼ @3w

@y3
þ ð2� mÞ � @3w

@x2@y

� �
¼ 0; aty ¼ �b

ðEq 23Þ

It is assumed that ay ¼ axy ¼ 0 and ax 6¼ 0, where, ax, ay
and axy are the thermal expansion coefficients. It was shown in
section 3 that this assumption produces a negligible error. With
regard to this assumption:

ethy ¼ ethxy ¼ 0 ðEq 24Þ

Since the sheet is thin, therefore, there is no temperature
gradient in the z direction. The laser beam is assumed to be a
Gaussian beam with a heat flux density expressed by (Ref 28):

q ¼ 8 � A � P
p � d2

� expð�8 � x
2 þ y2

d2
Þ ðEq 25Þ

where q is the heat flux density, A the absorption coefficient, P
the laser power, and d the laser beam diameter. For simplifi-
cation, it is assumed that the sheet is suddenly heated. Thus, the
variation of the physical quantities in the x direction is ignored.
Therefore, it is reasonable to define the thermal strain in the x
direction as Eq 2.

The term @2w
@x@y at boundaries is zero and in the other areas it is

small compared with the other curvatures. Thus, its squared can
be ignored and Eq 16 and 18 are converted to Eq 26 and 27,
respectively.

D � @4w

@x4
þ @4w

@y4
þ 2 � @4w

@x2@y2

� �
� @2w

@x2
@2U
@y2

� �
¼ 0 ðEq 26Þ

@4U
@y4

þ E � h � @2w

@x2
� @

2w

@y2
þ @2ethx

@y2

� �
¼ 0 ðEq 27Þ

Because of the fact that the length to width ratio of the sheet
is large, the variation of the curvatures in the x direction is
small, so:

@kx
@x

¼ @ky
@x

¼ @kxy
@x

¼ 0 ðEq 28Þ

Further one can show that (Ref 35):

@kx
@y

¼ @kxy
@x

ðEq 29Þ

@ky
@x

¼ @kxy
@y

ðEq 30Þ

Eq 28 to 30 infer that kx and kxy are constant. Hence, the z
displacement of the middle plane is defined as:

w ¼ � 1

2
� kx � x2 � kxy � x � yþ FðyÞ ðEq 31Þ

The magnitude of kxy is small; therefore, Eq 31 can be
rewritten as:

w ¼ � 1

2
� kx � x2 þ FðyÞ ðEq 32Þ

Substituting Eq 32 in Eq 27, and considering the fact that at

the early stages of buckling, kx and
@2F
@y2 are small, their product

can be ignored and Eq 27 is converted to Eq 33.

@4U
@y4

þ E � h � @
2ethx
@y2

¼ 0 ðEq 33Þ

Where ethx is determined by Eq 2. Solving Eq 33 by considering
that

R b
�b

@2U
@y2 dy ¼ 0 (no external forces are acting on the edges),

yields:

@2U
@y2

¼ �E � h � a � DT � e�8�y
2

d2 þ
ffiffiffiffiffiffi
2p

p

8
� E � h � a � DT � d

b

� erf 2
ffiffiffi
2

p b

d

� �

ðEq 34Þ

Substitution of Eq (32) and (34) into Eq (26) leads to:

D � @
4F

@y4
þ kx � �E � h � a � DT � e�8�y

2

d2 þ
ffiffiffiffiffiffi
2p

p

8
� E � h � a � DT � d

b
� erf 2

ffiffiffi
2

p b

d

� �� �
¼ 0

ðEq 35Þ

To solve the above equation, according to Eq (23) and (32),
the boundary conditions are:

@2F

@y2
� m�kx

� �
¼ @3F

@y3
¼ 0; at y ¼ �b ðEq 36Þ

Assuming
R b
�bF yð Þdy ¼ 0 (for simplification), the solution

of Eq (35) with these boundary conditions is:
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F yð Þ ¼ 1� m2ð ÞaDTkxd
64h2

�

d d2 � 16y2
� �

e�8�y
2

d2 � 4
ffiffiffiffiffiffi
2p

p

b
y2erf

2
ffiffiffi
2

p
b

d

� �
6b2 þ y2
� ��

þ
ffiffiffiffiffiffi
2p

p
yerf

2
ffiffiffi
2

p
y

d

� �
3d2 þ 16y2
� ��

� kx 1� m2ð ÞaDTd
61440bh2

�
ffiffiffiffiffiffi
2p

p
erf

2
ffiffiffi
2

p
b

d

� �
1440b2d2 � 4608b4 þ 45d4
� ��

þbd 600d2 � 5760b2
� �

e�8�y
2

d2

�
þ kxm

y2

2
� b2

6

� �

ðEq 37Þ

After deformation, the internal moment cannot be calculated
by Eq (9) and this equation should be modified to Eq (38) as
below:

Mx ¼
Z h=2

�h=2
rx zþ wð Þdz ðEq 38Þ

Using the Hook�s law and regarding the Kirchhoff�s
assumptions, Eq (38) is converted to Eq (39) (Ref 31).

Mx ¼ D kx þ mky
� �

þ Nxw ðEq 39Þ

Since there is no external moment, so:
Z b

�b
Mxdy ¼ 0 ðEq 40Þ

Substituting Eq (15) and (32) in Eq (39) yield to:

Mx ¼ D � kx � m
@2F

@x2

� �
þ @2U

@y2
� F yð Þ � 1

2
kxx

2

� �
ðEq 41Þ

According to Eq (41), the integration of Mx in the y
direction can be expressed as:
Z b

�b
ðMxÞdy ¼

Z b

�b
ðD � ðkx � m

@2F

@x2
Þ þ @2U

@y2
� ðF yð Þ

� 1

2
kxx

2ÞÞdy ðEq 42Þ

But as no external forces are acting on the edges of the
sheet:

r
b
�b

@2U
@y2

� � 1

2
kx � x2

� �
dy ¼ � 1

2
kx � x2

� �
� r b�b

@2U
@y2

dy ¼ 0

ðEq 43Þ

Substituting Eq (43) in Eq (42) yields to:
Z b

�b
ðMxÞdy ¼

Z b

�b
ðD � ðkx � m

@2F

@x2
Þ þ @2U

@y2
� F yð ÞÞdy

ðEq 44Þ

Substituting Eq (34) and (37) in Eq (44) and getting the
integration yields to:

Z b

�b
MxdyMxdy ¼

ffiffiffiffiffiffi
2p

p
m

61440
EkxhDTad 5120b2 � 960d2

� �� �
erf

2
ffiffiffi
2

p
b

d

� �

þ m
8

EkxhbDTad
2

� �
e�8b

2

d2

þ 1� m2ð Þp
61440bh

Ekxa
2DT 2d2 45d4 � 2304b4 þ 1440b2d2

� �� �
erf

2
ffiffiffi
2

p
b

d

� �2

þ
ffiffiffiffiffiffi
2p

p
1� m2ð Þ

61440h
Ekxa

2DT2d3 1020d2 � 2880b2
� �� �

erf
2
ffiffiffi
2

p
b

d

� �
e�8b

2

d2

� 1� m2ð Þ
32h

Ekxba
2DT 2d4

� �
e�16b

2

d2

�
ffiffiffi
p

p
1� m2ð Þ
64h

Ekxa
2DT 2d5

� �
erf

4b

d

� �
þ Ekxh3b

6

ðEq 45Þ

Assuming that b > d it can be inferred that:

e�8�b2
d2 ’ 0 ðEq 46Þ

erf 2
ffiffiffi
2

p b

d

� �
’ 1 ðEq 47Þ

Substituting Eq (46) and (47) in Eq (45) yields to:
Z b

�b
Mxdy ¼

ffiffiffiffiffiffi
2p

p
m

61440
EkxhDTadð5120b2 � 960d2Þ
� �

þ ð1� m2Þp
61440bh

Ekxa
2DT2d2ð45d4 � 2304b4 þ 1440b2d2Þ

� �

�
ffiffiffi
p

p
ð1� m2Þ
64h

Ekxa
2DT 2d5

� �
þ Ekxh

3b

6

ðEq 48Þ

As there is no external moment, so,
R b
�bMxdy ¼ 0. Hence

from Eq (48) it can be inferred that:
ffiffiffiffiffiffi
2p

p
m

61440
EkxhDTadð5120b2 � 960d2Þ
� �

þ ð1� m2Þp
61440bh

Ekxa
2DT2d2ð45d4 � 2304b4 þ 1440b2d2Þ

� �

�
ffiffiffi
p

p
ð1� m2Þ
64h

Ekxa
2DT 2d5

� �
þ Ekxh

3b

6
¼ 0

ðEq 49Þ

Equation (49) is a quadratic equation in terms of the
temperature change at the start of buckling, which we call it as
the critical temperature change, DTcr. Thus, solving this
equation in term of DT and extracting the positive root of
DT , the critical temperature change, Eq (50), is achieved:

DTcr ¼
2:344h2

abd
�

56:4ðd=bÞ2 � 300:795�
ffiffiffiffi
Q

p

47:124ðd=bÞ4 � 567:185ðd=bÞ3 þ 1507:964ðd=bÞ2 � 2412:743

ðEq 50Þ

where

Q ¼ �28981:192ðd=bÞ4 þ 3:871�105ðd=bÞ3 � 1:063�106

� ðd=bÞ2 þ 1:737�106

ðEq 51Þ
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To solve Eq (40), the poison ratio was taken as 0.3 and the
sheet width was assumed to be much larger than the laser beam
diameter. As DTcr in Eq (50) is the temperature change at the
start of buckling, it indicates the dominant deformation
mechanism in the laser forming of thin sheet. Indeed, if it is
considered that the UM and BM are separated by a boundary,
the amount of DTcr can represent such boundary, i.e. if the
temperature change due to the laser beam (DT) exceeds DTcr,
the BM is dominant. On the other words, if the temperature
change is lower than this value, the UM will be dominant.
However, If UM is dominant the bending angle of the sheet is
zero but if the BM is dominant the final bending angle, h(in
radian), is determined as (Ref 36):

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36ar0AP

qCEush
2

3

s

ðEq 52Þ

where E, r0 and P are the young modulus, the flow stress of the
heated region and the laser power, respectively.

It should be noted that Eq (50) has been derived based on
elastic deformation, but the deformation condition in laser
forming process is elastic-plastic. Regarding the three following
reasons the elastic assumption assumed in this work leads to
reasonable results in detecting the dominant deformation
mechanism in the laser forming of thin sheet. The first reason
is based on the fact that the heated region is small, so, if
yielding takes place, it occurs in a very narrow region and thus
it has a little effect on the critical temperature change.
Moreover, the assumption of elastic deformation presents an
upper bound for the critical temperature change compared with
the elastic-plastic deformation, so, for DT >DTcr one can be
sure that the BM is dominant. Further, in some cases, when the
temperature change reaches the critical value, all the points of
the sheet are still in elastic region. Therefore, regarding these
three reasons, Eq (50) may also be applied with a good
approximation for the localized elastic-plastic deformation of
the sheet occurring in the laser forming process. These reasons
are verified in section 3.

It should be mentioned that although we ignored the
variation of temperature in the longitudinal direction of the
sheet in the calculation of the buckling critical temperature
change ðDTcrÞ but we considered it indirectly by calculating the
average temperature change ðDTÞ using Eq (1). For example,
laser scanning velocity is an important parameter that affects
the variation of temperature in the longitudinal direction of the
sheet. By comparing Eq (1) and (50), it appears that the laser
scanning velocity is not presented in Eq (50) but it exists in Eq
(1). It means that however laser scanning velocity is not
presented in the buckling critical temperature change expres-
sion, but using Eq (1), laser scanning velocity is considered as
an important parameter for determination of laser deformation
dominant mechanism. Therefore, by increasing the laser
scanning velocity, the average temperature change decreased,
and bucking occurrence was postponed. In section 3 of the
paper, it is shown that the assumptions made to establish the
analytical model are reasonable and produce small errors.

2.2 Finite Element Model

To verify the analytical model predictions, a finite element
analysis was also performed using the ABAQUS software. The
linear perturbation method was employed to study the buckling
modes. A temperature field according to Eq (2) was applied to

the sheet as a predefined field and after the buckling analysis;
the first positive Eigen value was extracted as the buckling
critical temperature change. The ABAQUS software was used
to perform the finite element analysis. The material was
considered as an isotropic material and in addition to the x
direction, a thermal expansion was also considered in other
directions.

In the analyses, a 3D rectangular deformable shell was
employed. The sheet was laid in the x-y plane while the x
coordinate was along the length and the z coordinate in the
thickness direction of the sheet. In order to apply the condition
of an infinite sheet along the x direction, the length to width
ratio equal to 5 was chosen in the analyses. The S4R element
being a standard, linear, and quad element for the shell family
was used to conduct the analyses. To reduce the total CPU time
needed for the analyses, small meshes in the heat affected zone
and large meshes in other regions were employed. In general,
small meshes were used to achieve more accurate predictions.

In the analyses any boundary condition eliminating the rigid
body motion is suitable. Due to the fact that at the beginning
stages of buckling, there are symmetries about the x and y axes,
so all displacements and rotations of the central node is zero.
This boundary condition eliminated any rigid body motion in
the analyses. In such condition, the central node coincides with
the origin of coordinate axes.

Post buckling analysis was also performed to prove the
elastic deformation assumption is applicable to the elastic-
plastic deformation of the sheet. By conducting the post
buckling analysis, we could predict the stress distribution in the
specimen. In view of stress distribution in the sheet, we could
show that three reasons expressed in the last paragraph of
section 2.1 were reasonable. For the geometrically nonlinear
static problems involving buckling or collapse behavior, the
static Riks method is a convenient method to study the buckling
behavior of the specimen. In order to employ the modified Riks
method in the ABAQUS software, we introduced an imper-
fection and performed the post buckling analysis. The first
positive Eigen mode resulting from linear perturbation method
was taken as the dominant mode. Half of the sheet thickness
was used as its associated scale factor (Ref 37). The results of
the post-buckling analysis are presented in section 3.

3. Model Verification

In order to verify the finite element analysis, the FEM results
were compared with the experimental results derived from (Ref
38). The derivation procedure is described in Appendix A. Two
types of sheets were considered; the first type is made of carbon
steel with a ¼ 11:6 � 10�6ð1KÞ, K ¼ 45ð W

m�KÞ, C ¼ 481ð J
kg�KÞ and

the second type of a stainless steel with a ¼ 17:1 � 10�6ð1K),
K ¼ 18 W

m�K
� �

and C ¼ 481ð J
kg�KÞ. The sheet width was

2b = 100 mm and the width to length ratio equals 2. Exper-
imental results relating to the 7 different cases presented in
Table 1 were chosen for comparison with the FEM results.

Figure 2 shows the occurrence of buckling for different
values of temperature change and laser scanning velocity for
the carbon steel sheet. The filled points represent the experi-
mental situations that buckling occurs and the non-filled points
show the conditions that it is not prevailed. The lines being
parallel with the scanning velocity axis depicts the buckling
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critical temperature change (predicted by the FEM) for the
cases presented in Table 1. According to the Finite element
analysis, it can be inferred that if a point stays above the
appropriate critical temperature change, buckling should occur
and if that point locates below the respective critical temper-
ature, buckling should not occur. Referring to Fig. 2, at the
points shown by A, B and C notations, the FEM predictions are
not valid. As it is seen the positions of point B and C are close
to their respective critical temperatures change; hence, the lack
of correct predictions for these points may be attributed to the
assumption of independency of material properties on temper-
ature change in the FEM analysis. Since for point A, the
temperature change is high; therefore, the assumption makes a
significant error.

In Fig. 3 the occurrence of buckling predicted by the FEM is
compared with the experimental results for the stainless steel

sheet. As it is seen, in point D, the FEM prediction is not true.
Similar to the carbon steel sheet, the lack of correct prediction
for this point can be attributed to the assumption of indepen-
dency of material properties to the temperature change in the
FEM. According to Fig. 2 and 3, if the temperature change is
not close to the critical temperature change, the Finite element
analysis is suitable for prediction of the critical temperature
change at which the buckling is occurred.

Now it should be exhibited that the elastic deformation
assumption used for the prediction of the critical temperature
change is justified. To achieve this purpose, we should define
effective stress first. The von Mises effective stress is a critical
parameter used to assess whether an isotropic and ductile
material will yield or deform permanently under complex
loading conditions. The von Mises effective stress can be
expressed as (Ref 39):

Table 1 The laser parameters and sheet thickness used for the studied cases

Case Laser beam diameter, mm Laser power, W Thickness, mm Sheet material DTcr(from the FEM analysis)�C

1 7 300 0.75 Carbon steel 1072.5
2 10 300 0.75 Carbon steel 792.25
3 10.6 500 0.75 Carbon steel 756.4
4 10.6 600 0.75 Carbon steel 756.4
5 7 300 0.75 Stainless steel 727.51
6 7 500 0.75 Stainless steel 727.51
7 10 750 1.5 Stainless steel 2122.7

Fig. 2 Comparison of the experimental and FEM results representing the occurrence of buckling for the carbon steel sheet. The experimental
results were extracted from (Ref 38)
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r2v ¼
1

2
½ r11 � r22ð Þ2 þ r22 � r33ð Þ2 þ r11 � r33ð Þ2 þ 6ðr212

þ r213 þ r223Þ�
ðEq 53Þ

where rv is the von Mises effective stress, and r11, r22, r33,
r12, r13, r23 are components of the stress tensor.

Figure 4 shows the effective stress (von Mises stress) versus
the displacement of a point (x = 0.2 m, y = 0, z = 0) resulting
from the post buckling analysis produced by applying a
gradually increasing predefined temperature field. The position
of the point in the sheet, point B, is shown in Fig. 5. The
selected point is in the region of the maximum Mises stress.
The predefined temperature field is related to a laser process
using a laser beam diameter of 5 mm. The sheet material was
assumed as an isotropic carbon steel material with Young
modulus of E = 200 GPa and thermal expansion coefficient of
a ¼ 11:6 � 10�6ð1KÞ. The sheet dimensions were; 2b = 90 mm
in width, 2L = 450 mm in length, and h = 0.6 mm in thick-
ness. Referring to the figure, at early stages, the increase in
lateral displacement is low but after point A, it increases
suddenly. It means that this point coincides with the start of the
buckling phenomenon. If a material has a high yielding stress,
for example higher than 450 (MPa), from Fig. 4 it can be
inferred that buckling starts in the elastic region and so the
elastic deformation assumption is valid in our analysis.

Figure 5 shows a post buckling Mises stress contour of the
deformed sheet at the start of buckling (point A in Fig. 4). It is
observed that only in a narrow region the stress is high enough
for plastic deformation to occur. Therefore, according to the

results in Fig. 4 and 5, the three reasons expressed in section 2
are acceptable and the elastic deformation assumption made in
the analytical model is justified.

4. Discussion

Referring to Eq (1) and (50), the parameters such as the
specimen size, material properties and laser forming process
parameters can affect the occurrence of buckling in laser sheet
forming process. In the following sections, the effects of these
parameters on the boundary separating UM from BM are
discussed.

4.1 Effect of Specimen Size

The length, width, and thickness of the sheet can affect the
critical temperature change at which the buckling deformation
is started. Figure 6 shows the dependence of critical temper-
ature change on the thickness of a sheet with dimensions of
b = 30 mm, d = 5 mm, L = 150 mm, and thermal expansion
coefficient of a ¼ 11:6 � 10�6ð1KÞ. It is noted that the critical
temperatures change predicted by the FEM model are the same
as those predicted by Eq (50). The figure indicates that with
increasing the thickness of the sheet, the critical temperature
change for starting the buckling is increased. This is because
with increasing the thickness, the moment of inertia is increased
and thus the occurrence of buckling in the sheet is prevented.

Figure 7 depicts the effect of sheet width on the critical
temperature change. Again the FEM and analytical results are

Fig. 3 Comparison of the experimental and FEM results representing the occurrence of buckling for the stainless steel sheet. The experimental
results were extracted from (Ref 38)

Journal of Materials Engineering and Performance



coincided completely. It is observed that with the increase in the
sheet width, the critical temperature change is decreased. The
reason to this behavior is that with the increase in sheet width,
more constraints are applied to the heated region enhancing the
occurrence of buckling. The agreement between the FEM

predictions and the analytical results indicates that the assump-
tions made to develop the analytical model are reasonable.

In the analytical model, it was assumed that the sheet length
is much larger than its width. Figure 8 shows the effect of
length to width ratio on the prediction of critical temperature

Fig. 4 Effective stress versus lateral displacement at the point (x = 0.2m, y = 0, z = 0)

Fig. 5 The plot of effective stress (Mises stress) contour for a long sheet subjected to a predefined temperature field. Point B shows the
position of the selected node
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change by the analytical model. For a sheet with length to width
ratio greater than 5, the sheet may be assumed as an infinite
sheet. Referring to the figure, by increasing this ratio, the
analytical predictions exhibit a better agreement with the FEM
predictions. Therefore, the analytical model is applicable to the
length to width ratio greater than 5.

4.2 Effect of Material Properties

Regarding Eq (50) the only material property affecting the
critical temperature change is the thermal expansion coefficient.
So, the other material properties such as the thermal conduc-
tivity, heat capacity, and density of the sheet material do not

Fig. 6 Critical temperature change versus thickness for d = 5 mm,
b = 30 mm, L = 150 mm, and a ¼ 11:6 � 10�6ð1KÞ

Fig. 7 Effect of sheet width on the critical temperature change for
h = 0.6 mm, d = 5 mm, and a ¼ 11:6 � 10�6ð1KÞ

Fig. 8 The effect of changing the sheet length to width ratio on the critical temperature change predicted by the analytical model and FEM
analysis. The values of other parameters are h = 0.6 mm, b = 30 mm, d = 5 mm, and a ¼ 11:6 � 10�6ð1KÞ
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change the critical temperature change. However, according to
Eq (1), they affect DT and in turn the occurrence of the
buckling phenomenon. Figure 9 shows the effect of thermal
expansion coefficient on the critical temperature change. As it
is observed the critical temperature change decreases with
increase in thermal expansion coefficient. This is due to the
increase in the imposed thermal strain by increasing the thermal

expansion coefficient. It is noted that the critical temperature
change is in agreement with the prediction of FEM analyses.

Figure 10 indicates the shift of the interface separating BM
from UM to the left by decrease in thermal expansion
coefficient. On the other word with decrease in thermal
expansion coefficient, the possibility of buckling is reduced.

Figure 11 shows the shift of the boundary separating the BM
from UM to the left because of the increase in specific heat
capacity. According to this figure, the region at which BM is a
dominant deformation mechanism is reduced with increase in
specific heat capacity because with increase in heat capacity,
the thermal diffusivity of material is decreased, therefore, the
temperature change imposing to the specimen is reduced.

Figure 12 demonstrates the effect of thermal conductivity on
the boundary separating BM from UM. It is observed that with
increase in thermal conductivity, because of increase in thermal
diffusivity, the imposed temperature change to the specimen is
increased, so, the possibility of buckling occurrence is
enhanced.

4.3 Effects of Laser Forming Process Parameters

Laser beam diameter has a direct effect on critical temper-
ature change but the parameters such as the laser power, scan
velocity, and laser beam diameter affect DT and consequently
the occurrence of buckling. With increase in laser power and/or
decrease in laser scan velocity, more heat is imposed to the
specimen causing DT to increase which in turn promote the
occurrence of buckling.

Figure 13 exhibits the effect of laser beam diameter on the
critical temperature change. With increasing the beam diameter,
the heat affected zone becomes wider and so a more internal

Fig. 9 Dependence of critical temperature change on thermal
expansion coefficient, d = 5 mm, b = 30 mm, L = 150 mm and
h = 0.6 mm

Fig. 10 The shift of the position of interface separating BM and UM to the left, arising from the decrease in thermal expansion coefficient
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Fig. 11 The shift of position of the boundary separating BM from UM to the left due to increase in specific heat capacity of sheet material

Fig. 12 Dependence of the boundary separating BM from UM on thermal conductivity
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force is produced. This leads to a decrease in critical
temperature change. But according to Eq (1), with increase in
the beam diameter, DT is reduced, so, the occurrence of
buckling is postponed. Thus, the effect of laser beam diameter
on both DTcr and DT must be considered simultaneously.
Referring to Fig. 14, it is observed that the position of the
boundary separating BM from UM does not change with
variation of laser beam diameter. This means that decrease in

both DTcr and DT compensates the effect of each other, so, the
boundary does not move.

Figure 15 exhibits the effect of laser power on the position
of the boundary. Increase in the laser power result in
enhancement of heat input to the specimen, so, the area at
which the BM is dominant is increased.

Figure 16 demonstrates the effect of change in laser
scanning velocity on the boundary separating BM from UM.
From this figure it can be inferred that with increase in scanning
velocity, the possibility of buckling is decreased. This is due to
the decrease in heat input to the specimen arising from the
increase in scanning velocity.

5. Conclusions

In this research, a new analytical model was developed to
predict the position of the boundary separating the buckling and
upsetting mechanisms in laser forming of thin sheet. To verify
the analytical model, its results were compared with the results
of a finite element model. It is shown that although the
analytical model is based on the assumption of elastic
deformation, also it is applicable to the elastic-plastic defor-
mation occurring in the laser forming process. The effects of
several factors such as the sheet dimensions, laser power, laser
beam diameter, laser scanning velocity, the material properties
including thermal expansion coefficient, thermal conductivity,
and the heat capacity of material on the dominant mechanism
were also assessed. The following conclusions can be made
from the results:Fig. 13 Effect of laser beam diameter on critical temperature

change, h = 0.6 mm, b = 30 mm, d = 5 mm, and a ¼ 11:6 � 10�6ð1KÞ

Fig. 14 Effect of laser beam diameter on the position of the boundary
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Fig. 15 Effect of laser power on the position of the boundary

Fig. 16 The effect of scanning velocity on the position of the boundary separating BM from UM
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1. By increase in thermal conductivity and/or decrease in
heat capacity, the heat input to the specimen is increased and
the possibility of the buckling phenomenon in the sheet is
increased.

2. Increase in laser power and/or decrease in laser scanning
velocity, leads to the increase in the heat input to the sheet, so,
the occurrence of buckling is promoted.

3. By increase in the sheet width, a lower critical temper-
ature change is predicted due to the increase of surrounded
materials. Also increase in the sheet thickness raises the critical
temperature change because of raising the moment of inertia of
the sheet.

4. With increase in thermal expansion coefficient, a higher
thermal strain is imposed to the specimen; therefore, the
possibility of buckling phenomenon is increased.

5. The analytical model predicts more reasonably the effects
of the mentioned parameters when the length to width ratio of
the sheet is greater than 5.
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Appendix A: The Derivation Procedure of Experi-
mental Results

In (Ref 38) the buckling mechanism has been studied and
the variation of bending angle versus the laser scanning
velocity has been plotted. Regarding the plot, we assumed that
at low bending angle, no buckling deformation takes place. On
the other words, at noticeable bending angle, the buckling
deformation occurs. So, the existence or lacking the buckling
for each scanning velocity is obtained. In our work, for each
experimental case presented in Table. 1, the laser scanning
velocities have been specified from (Ref 38). Then, using the
values of the process parameters presented in the table, the
appropriate temperature changes were determined by Eq (1).
Using these data, Fig. 2 and 3 were constructed to present the
dependence of the temperature change on the laser scanning
velocity, as well as, the possibility of the occurrence of
buckling phenomenon.
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