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Recently, water-based lubricant has received extensive attention with the enhancement of environmental
awareness and economic considerations. A series of novel c-AlOOH/h-BN composites were successfully
prepared by simple hydrothermal method and employed as additive to improve tribological behaviors of
water-based lubricant. The morphologies of c-AlOOH nanoparticles were influenced in different alkaline
environments, which could be attributed to the formation of Al-triethylamine (Al-TEA). Furthermore,
when the quantity of BN is same, the granular c-AlOOH nanoparticles under TEA condition owing to a
smaller size presented the better anti-friction property. The dispersibility and stability of BN in water were
improved via loading AlOOH nanoparticles onto BN. Compared with pure BN, the nanocomposites can be
stable in water for 24 h. The tribological behaviors were studied by four-ball tribological machine, the
results showed that obtained samples exhibited outstanding anti-friction and anti-wear properties both in
pure water and in water-glycol (mass ratio is 55%:45%) lubricant.

Keywords c-AlOOH/h-BN, anti-friction, anti-wear, composites,
water-based lubricant

1. Introduction

Friction and wear have caused various problems such as
unnecessary energy wastage, environmental pollution, equip-
ment damage and so on (Ref 1-4). Therefore, controlling
friction and wear are treated as a crucial strategy for protecting
the environment and improving energy efficiency (Ref 5, 6).
Recently, many materials like lubricants were designed and
used to reduce the friction and wear (Ref 7-11). Thereinto,
synthetic oil and mineral oils are difficult to degrade in nature
as oil lubricant (Ref 12). Compared with the oil lubricants,
water-based lubricants have many unique advantages like high
compatibility with the environment, low cost and good
environmental compatibility (Ref 13, 14). However, water-
based lubricant has poor tribological properties, which can be
effectively improved by introducing functional additives to
water-based lubricant. Lubricant additives improve the bearing
capacity and oxidation resistance, reduce friction and reduce
wear (Ref 15). Xiong et al. (Ref 16) synthesized N-containing
heterocyclic imidazoline compounds which improved tribolog-
ical performances of the water-glycol.

Two-dimensional (2D)-layered materials incorporating gra-
phene, transition metal dichalcogenides (TMDs), MXene

(Ti3C2) and hexagonal boron nitride (h-BN) have drawn
enormous attention because of the excellent tribological
behaviors (Ref 17-19). Additionally, BN has become a
promising candidate in tribological filed owing to its splendid
thermal conductivity performance, chemical stability, electrical
insulation property and low friction coefficient. BN mainly
consisted of B and N atoms which are connected via strong
covalent bond. The layers of h-BN are connected by weak Van
der Waals forces, making it easier to shear along base surface of
wafer layer structure under sliding pressure (Ref 20, 21).
During the process of slide, h-BN can enter the contact rubbing
areas and then avoid the direct contact of friction pairs, friction
and wear are effectively reduced (Ref 22-24). However, BN is
poorly dispersed in water-based lubricants, which remains a
challenge (Ref 25).

Many inorganic nanoparticles possess small particle size so
that they can fill with micro-roughness (Ref 26). In the
meantime, nanoparticles may precipitate and form protective
film ascribed to the high surface energy, they also owe the
effect of repairing or self-repairing on the worn surfaces (Ref
27). Metal oxide nanoparticles have been proved to have good
anti-friction effect. Wang et al. (Ref 28) successfully synthe-
sized Fe3O4 with different morphologies (nanospheres, nano-
wires and nanosheets), which can effectively improve its
tribological properties when used as an additive to liquid
paraffin. Zhao et al. (Ref 29) used the hydrothermal method to
prepare water-soluble CuO nanoparticles with different mor-
phologies (nanobelt, nanorod and spindle). As a water-based
lubricant additive, CuO nanoparticles can enter the friction
surface to form a friction protective film, which can prevent the
direct contact of the friction pair. In addition, dispersing the
nanoparticles onto the 2D-layered material can improve the
agglomeration of the nanoparticles. At the same time, the
dispersibility of 2D-layered materials was improved in the
lubricant (Ref 30).
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Herein, we successfully prepared a series of novel c-
AlOOH/h-BN composites employed the simple hydrothermal
methods to load the c-AlOOH nanoparticles onto the h-BN.
The structures and surface morphologies of c-AlOOH/h-BN
samples were verified by FTIR, XRD, SEM and TEM. Then,
the tribological properties of c-AlOOH/h-BN samples were
studied as additives in water and water-glycol, respectively. In
consequence, this paper provided a feasible strategy for
preparing water-based lubricant additives.

2. Experimental Sections

2.1 Materials and Reagents

Hexagonal boron nitride (h-BN) was bought from Tianyuan
Chemical Research Institute. Potassium hydroxide (KOH),
aluminum nitrate hydrate (Al(NO3)3Æ9H2O), triethylamine
(TEA) and sodium citrate were gained from Sinopharm
Chemical Reagent Co. Ltd. Cetyltrimethyl ammonium bromide
(CTAB) was obtained from Beijing Aoboxing Biotechnology
Co. Ltd. All chemicals were analytic grade and for direct use.

2.2 Preparation of c-AlOOH/h-BN

The sodium citrate and CTAB (molar ratio 1:2) were
dissolved into 70 mL deionized water and then stirred for
20 min. Then, 3.5 g of Al(NO3)3Æ9H2O was added to the
solution and stirred until it completely dissolved. The 0.18 g,
0.26 g, 0.35 g, 0.48 g and 0.7 g of h-BN powders were
dispersed to the above solution and ultrasonicated for 3 h; then,
dispersed solution A was obtained. Finally, the KOH and TEA
were used to provide alkaline environment, respectively.

The 2.35 g of KOH was dissolved in 5 mL deionized water
and added to the dispersed solution A. After stirring at 50 �C
for 45 min, the mixtures were transferred to the 100 mL PTFE
reactors and heated at 180 �C for 15 h. After the reaction
finished, the products were washed with deionized water and
ethanol. The c-AlOOH/h-BN (1-5) samples were obtained after
drying at 60 �C for 12 h in the oven. The pure c-AlOOH (1)
nanoparticles were prepared under the same condition without
BN. The reactions in hydrothermal process are as follows:

Al3þ þ 3OH� ! Al OHð Þ3 ðEq 1Þ

Al OHð Þ3! AlOOHþ H2O ðEq 2Þ

The appropriate amount of TEA was slowly added to the
dispersed solution A until the pH reached 11. After stirring at
room temperature for 30 min, the mixture was transferred to the
100 mL PTFE reactors and heated at 190 �C for 20 h. After the
reaction finished, the products were washed with deionized
water and ethanol. The c-AlOOH/h-BN (6-10) samples were
obtained after drying at 60 �C for 12 h in an oven. The pure
AlOOH (2) nanoparticles were gained using the method. The
reactions in hydrothermal process are as follows:

Al3þ þ TEA ! Al� TEA½ �3þ ðEq 3Þ

Al� TEA½ �3þþ3OH� ! Al OHð Þ3þTEA ðEq 4Þ

Al OHð Þ3! AlOOHþ H2O ðEq 5Þ

2.3 Characterization

The chemical bonds of pure h-BN, c-AlOOH and c-AlOOH/
h-BN composites were investigated by Fourier transform
infrared spectra (FTIR, TENSOR-27, Perkin Elmer, USA);
the KBr was used as the matrix (4000-400 cm-1). Phase and
crystallization of prepared composite materials were surveyed
by X-ray diffraction analysis (XRD, AXIS D8, Bruke, Ger-
many). Scanning electron microscopy (SEM, SU8000, JEOL,
Japan) was employed to investigate the surface morphology of
composites. Transmission electron microscopy (TEM, JEM-
2100, JEOL, Japan) was used to further confirm the size and
morphologies of the composites.

2.4 Tribological Test

The tribological behaviors of water and water-glycol (mass
ratio 55%:45%) with c-AlOOH/h-BN (1-10) were characterized
via tribological test. Water-based lubricants with c-AlOOH/h-
BN (1-10) additives were prepared at concentration 0.03, 0.06,
0.09, 0.12 and 0.15 wt.%. The average COF was obtained by
using a four-ball friction tester (MMW-1A, Jinan Yihua,
China). The friction pair was consisted by an upper ball, three
lower balls (U = 12.7 mm, GCr15). Before the test started, the
steel balls were cleaned by acetone ultrasonic for 30 min to
remove surface contamination. Then, 8 mL of lubricant was
added until the friction surfaces could be covered. The
tribological performance tests were proceed at room tempera-
ture with 100 N load and test duration of 30 min; rotation speed
was set to 120 r/min. The morphologies and WSD of three
bottom balls were observed by YW MS2300D optical micro-
scope with ± 0.01 mm accuracy. All tribological tests were
repeated three times to obtain mean value under the same test
conditions.

3. Results and Discussion

3.1 FTIR Analysis

The FTIR spectra of h-BN and c-AlOOH nanoparticles and
c-AlOOH/h-BN (1-10) are shown in Fig. 1. The characteristic
peaks at 3300 and 3086 cm�1 belong to symmetric and
asymmetric stretching vibrations of Al-OH. The shoulder peak
of 1165 cm�1 is related to symmetric and asymmetric bending
vibrations of Al-OH. The tensile vibration absorption peak of
Al-O-Al was located at 1070 cm�1. The peaks at 742, 619 and
492 cm-1 were associated to the vibration of AlO6 octahedron
modes, which corresponded to torsional vibrations, stretching
vibration and bending stretching vibration of Al-O, respectively
(Ref 31-33). The 1632 cm�1 belongs to bending vibrations of
O-H (surface adsorbed H2O molecule) (Ref 34). The peak of
1369 and 816 cm�1 was ascribed to the in-plane stretching
vibration absorption peak of BN and out-of-plane bending
vibration absorption peak of BN (Ref 35, 36), respectively. As
the BN addition increased, the characteristic peaks intensity of
BN gradually increased, while peak intensity of c-AlOOH

Journal of Materials Engineering and Performance



gradually decreased, which indicated that the loading of c-
AlOOH particles on the surface of h-BN would be influenced
by quantity of BN.

3.2 XRD Analysis

Figure 2 exhibited XRD patterns of h-BN, c-AlOOH, c-
AlOOH/h-BN (1-10) samples. As the figure shown, the peaks
at 2h = 14.28�, 28.15�, 38.55�, 49.19�, 55.17� and 64.9� could
be observed, which were corresponded to the crystal plane
diffraction peaks of (020), (120), (031), (220), (151) and (002)
of orthorhombic structure c-AlOOH (JCPDS card no. 021-
1307), respectively (Ref 34, 37). The characteristic diffraction
peaks at 2h = 26.79�, 41.69�, 43.84� corresponded to (002),
(100), (101) three diffraction crystal planes of h-BN (JCPDS
No. 34-0421), respectively (Ref 36, 38, 39). XRD results are
consistent with FTIR spectra, indicating that c-AlOOH is
successfully loaded onto h-BN.

3.3 Morphology Analysis of c-AlOOH/h-BN (1-10)

Figure 3 showed the SEM pictures of the c-AlOOH
nanoparticles and c-AlOOH/h-BN (1-10) composites. The h-
BN demonstrated stacked sheet structure with a diameter of
about 8-10 lm, while c-AlOOH particles under different
alkaline conditions all presented nanoscale size. There are

obvious differences in morphology, c-AlOOH (1) nanoparticles
exhibited thin nanosheet structure and were prone to agglom-
erate randomly in Fig. 3(a), but c-AlOOH (2) nanoparticles
showed granular morphology of agglomeration (Fig. 3g). The
surface of c-AlOOH/h-BN (1-10) samples became obviously
rough than pure BN sheet, indicating that the c-AlOOH
nanoparticles were successfully loaded on the BN sheet.
Indeed, the c-AlOOH nanoparticles were more uniformly
distributed and relatively more dispersed on the BN sheet in
contrast to pure AlOOH. Meantime, the size and morphology
of AlOOH nanoparticles did not change significantly even
loading on BN. Additive amount of BN only has an effect of
loading capacity of the c-AlOOH nanoparticles on BN sheet.

For c-AlOOH/h-BN (1-5) composites, distribution of c-
AlOOH was gradually altered from multi-layer packing to
single layer as the amount of BN increased. The c-AlOOH
nanoparticles achieved the optimum dispersion in AlOOH/h-
BN (4) sample (Fig. 3e). As the amount of BN further
increased, the quantity of AlOOH (1) nanoparticles loading on
BN decreases. It could be attributed that the number of
nanoparticles is not sufficient to support their formation of
single-layer distribution over more BN sheets. The distributed
condition of c-AlOOH nanoparticles on BN in c-AlOOH/h-BN
(6-10) samples could be observed (Fig. 3g-l). Similarly, c-
AlOOH nanoparticles could be loaded on BN sheet as addition

Fig. 1 FTIR spectra of (a) h-BN, c-AlOOH (1), c-AlOOH/h-BN (1-5) and (b) h-BN, c-AlOOH (2), c-AlOOH/h-BN (6-10)

Fig. 2 XRD patterns of (a) h-BN, c-AlOOH (1), c-AlOOH/h-BN (1-5) and (b) h-BN, c-AlOOH (2), c-AlOOH/h-BN (6-10)
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of BN and evenly dispersed on the surface of BN. The c-
AlOOH (2) particles were in an optimal state of dispersion at
the Fig. 3(K). As the amount of h-BN continued to increase, the
c-AlOOH nanoparticles which loaded on BN sheets decrease.
SEM pictures confirmed that c-AlOOH was successfully loaded
on BN sheets, and different bases had a great impact on
morphology of AlOOH nanoparticles. The addition of BN did

not change the size and morphology of nanoparticles, but
dispersion state was affected with the amount of BN addition.

Figure 4 showed TEM images of c-AlOOH (1), c-AlOOH
(2), c-AlOOH/h-BN (4) and c-AlOOH/h-BN (9) samples. As
shown in Fig. 4(a), c-AlOOH (1) nanoparticles were irregular
folded sheet with the diameter of about 100 nm. Due to the
different orientations of each sheet, the particle clusters

Fig. 3 SEM images of (a) c-AlOOH (1), (b-f) c-AlOOH/h-BN (1-5), (g) c-AlOOH (2) and (h-l) c-AlOOH/h-BN (6-10)

Fig. 4 TEM images of (a) c-AlOOH (1), (b) c-AlOOH/h-BN (4), (c) c-AlOOH (2) and (d) c-AlOOH/h-BN (9)
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presented a two-dimensional sheet stacking state. After loaded
on BN (Fig. 4b), c-AlOOH (1) nanoparticles were orderly
distributed to BN surface with the single layer, which is in
accordance with Fig. 3(e). The morphology of c-AlOOH (2)
nanoparticles presented long granular structure with the single
particle length of about 20 nm, which shown in Fig. 4(c).
Similarly, it can be clearly found in Fig. 4(d) that the particles
were evenly distributed on the BN sheet.

3.4 Dispersion and Stability Analysis

Figure 5 showed the dispersion of composites at the
concentration of 0.06 wt.% in water-based lubricant. It could
be observed that the composites were relatively evenly
dispersed in the water-based lubricant at first. After 12 h, all
the other c-AlOOH/h-BN (1-5) samples agglomerated and
settled completely except c-AlOOH/h-BN (3) in the water. The
c-AlOOH/h-BN (6-10) agglomerated and settled completely in
the water after 24 h, because of the c-AlOOH (2) have smaller
size in comparison with c-AlOOH (1). The c-AlOOH/h-BN (1-

10) agglomerated and settled completely in the water-glycol
after 24 h. The prepared samples all presented the excellent
dispersibility.

3.5 Tribological properties in different lubricants

Figure 6(a-b) displayed the average COFs of c-AlOOH/h-
BN (1-10) composites additives with the concentration of 0.03-
0.15 wt.% at 100 N loading. The average COFs of the c-
AlOOH/h-BN (1-10) were all lower than that of pure water,
which indicated c-AlOOH/h-BN (1-10) samples have signifi-
cant friction-reducing property in water as lubricant additives
(shown in Fig. 6). At the same time, it is not difficult to find that
the average COFs of the c-AlOOH/h-BN (1-10) samples
decreased first and then increased as the concentration
increased. According to Fig. 6(a), when the additive concen-
tration of c-AlOOH/h-BN (2) sample in water was 0.12%, the
average COF value reached minimum which was 0.250. The
average COF was reduced by 37.58% than pure water, which
showed the best anti-friction effect in c-AlOOH/h-BN (1-5)

Fig. 5 The optical pictures of (a-b) c-AlOOH/h-BN (1-10) in water and (c-d) c-AlOOH/h-BN (1-10) in water-glycol at the concentration of
0.06 wt.%
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samples. In c-AlOOH/h-BN (6-10) samples, c-AlOOH/h-BN
(10) exhibited the best anti-friction effect. c-AlOOH/h-BN (10)
had the minimum average COF value of 0.241 at the additive
concentration 0.09 wt.% (shown in Fig. 6b), which is 41.20%
lower than that without additive in this serious of composites.

The average WSDs of c-AlOOH/h-BN (1-10) additives are
showed in Fig. 6(c-d), which showed a similar trend to the
average COF. The average WSDs of c-AlOOH/h-BN (1-10)
were also less than that of pure water, indicating c-AlOOH/h-
BN (1-10) samples have outstanding anti-wear property as
lubricant additives. The average WSDs of c-AlOOH/h-BN (4)
at concentration 0.12 wt.% reached the minimum value of
0.382 mm, which was reduced by 30.54% compared with the
average WSD in pure water. According to the Fig. 6(d), the
average WSDs of c-AlOOH/h-BN (10) reached the minimum
value of 0.374 mm, which was 32.06% lower than the average
WSD in pure water, which showed excellent anti-wear effect.

Figure 7 displayed the average COFs of c-AlOOH/h-BN (1-
10) composites containing the concentration of 0.03-0.15 wt.%
in the water-glycol (mass ratio 55%:45%) at 100 N loading. It
could be known that the average COFs of the c-AlOOH/h-BN
(1-10) were completely less than that of lubricant, which
suggested c-AlOOH/h-BN (1-10) additives show outstanding
anti-friction behavior in lubricant. In the meantime, it worth
noting that the average COFs of the c-AlOOH/h-BN (1-10)
samples presented the trend of first decreasing and then
increasing. When additive concentration of c-AlOOH/h-BN (1)
sample in water-glycol was 0.09 wt.%, the average COF value
reached minimum which was 0.0936 (Fig. 7a). Compared with
the water-glycol, the average COF was reduced by 55.44%,

which showed the best anti-friction effect in c-AlOOH/h-BN
(1-5) samples. As could be seen in Fig. 7(b), c-AlOOH/h-BN
(10) had the minimum COF value of 0.0972 at the additive
concentration 0.12 wt.% in the c-AlOOH/h-BN (6-10) samples.
Compared with lubricant, the COF was reduced by 53.72%,
exhibiting the best anti-friction effect in c-AlOOH/h-BN (6-10)
samples.

The average WSDs of c-AlOOH/h-BN (1-10) additives in
water-glycol are demonstrated in Fig. 7(c-d) with different
concentrations at 100 N loading. Fig. 7(c) showed that the
average WSDs of c-AlOOH/h-BN (1-10) were all smaller than
that of water-glycol, exhibiting the outstanding anti-wear
behavior of c-AlOOH/h-BN (1-10) samples as lubricant
additives. The average WSDs of c-AlOOH/h-BN (5) at
concentration 0.12 wt.% reached the minimum value of
0.333 mm, which was reduced by 39.45% compared with the
average WSDs in pure water-glycol. According to Fig. 7(d), the
average WSDs of c-AlOOH/h-BN (6) reached the minimum
value of 0.344 mm, displaying splendid anti-wear performance.
Average WSDs was 37.45% lower than the average WSD of
water-glycol.

The wear surface morphologies of c-AlOOH/h-BN (4) and
c-AlOOH/h-BN (10) are exhibited in Fig. 8 at 0.03-0.15 wt.%
concentration. The friction surface has many grooves and
scratches after pure water lubrication, which was caused by the
poor strength of the protective film formed by water on the
friction surface (Fig. 8a). When c-AlOOH/h-BN (4) and c-
AlOOH/h-BN (10) were used as additive of water, the wear
scar of the friction surface was significantly relieved in various
degrees. The wear scar obviously became shallower, and the

Fig. 6 Average COFs of (a) c-AlOOH/h-BN (1-5), (b) c-AlOOH/h-BN (6-10), average WSDs of (c) c-AlOOH/h-BN (1-5) and (d) c-AlOOH/h-
BN (6-10) in water
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worn surface became smoother. Meanwhile, the WSD was all
obviously reduced, which was consistent with the trend shown
in Fig. 6(c-d).

Figure 9 demonstrated the worn surface morphologies of c-
AlOOH/h-BN (5) and c-AlOOH/h-BN (6) at 0.03-0.15 wt.%

water-glycol concentration. According to Fig. 9(a), the grooves
and scratches improved compared with pure water, which was
attributed to addition of glycol. After c-AlOOH/h-BN (5) and c-
AlOOH/h-BN (6) were added to the lubricant, the wear scar of
the friction surface was shallower and the surface became

Fig. 7 Average COFs of (a) c-AlOOH/h-BN (1-5), (b) c-AlOOH/h-BN (6-10), average WSDs of (c) c-AlOOH/h-BN (1-5) and (d) c-AlOOH/h-
BN (6-10) in water-glycol

Fig. 8 Wear surface micrograph of (a, g) water, (b-f) c-AlOOH/h-BN (4) and (h-l) c-AlOOH/h-BN (10) in water
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smoother. Meanwhile, the variation trend of the WSD is
consistent with Fig. 7(c-d).

Figure 10 displayed comparison of average COF values of
c-AlOOH/h-BN composites at the same BN addition amount.
According to Fig. 10, the average COF of c-AlOOH/h-BN
prepared under TEA is basically less than c-AlOOH/h-BN
prepared under KOH when addition quantity of BN is same.
This may be caused that the BN enters the frictional pairs at the
beginning and then penetrates into the grooves which formed

the protective films because of the intrinsic lamellar structure
(Ref [40-42]). Subsequently, the direct contact of friction
surfaces was avoided. The rich -OH groups provided by c-
AlOOH render the composites to better adsorb on the surface of
friction, causing the protective film more complete. Further-
more, c-AlOOH nanoparticles further improve the dispersion
and stability of h-BN in water-based lubricant, which makes
protective film more stable on the friction pair. The addition of
nanoparticles also improved the bearing capacity of 2D

Fig. 9 Wear surface micrograph of (a, g) water-glycol, (b-f) c-AlOOH/h-BN (5) and (h-l) c-AlOOH/ h-BN (6) in water-glycol

Fig. 10 Average COF of c-AlOOH/h-BN under the same amount of h-BN
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materials, the excellent anti-friction and anti-wear properties of
composites may be ascribed synergistic effect of nanoparticles
and 2D layer material on the frictional interfaces (Ref [43-45]).
Therefore, when BN quantity is same, c-AlOOH nanoparticles
plays a decisive role in friction. c-AlOOH (2) has smaller size
and granular morphology, resulting in the easier access to the
friction surface and possessing the smaller average COF.

Table 1 shows the Comparison of Reduction of average
COF for different composites. Through comparison, it can be
seen that composites synthesized by us showed better anti-
friction effect in the water-based lubricant.

4. Conclusion

In conclusion, a series of c-AlOOH/h-BN samples were
successfully synthesized by hydrothermal method. Morpholo-
gies of the c-AlOOH nanoparticles were adjusted by using
KOH and TEA to provide different kinds of OH�, respectively.
The obtained c-AlOOH/h-BN samples could be used as water-
based lubricant additive because the c-AlOOH possessed the
abundant -OH group. Meantime, all c-AlOOH/h-BN compos-
ites could significantly improve the anti-friction and anti-wear
properties of water-based lubricant. The tribological properties
depend on the synergistic lubrication between c-AlOOH and h-
BN, the uniform dispersion of c-AlOOH on the surface of the
BN is also beneficial to the formation of a stable friction
protective film.
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