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The high-temperature deformation behavior of laser powder bed fabricated (LPBF) AlSi10Mg alloy was
investigated using an isothermal hot compression test over a wide range of deformation conditions (150-
300 �C and 0.01-1 s21). Different phenomenological models, namely the Johnson–Cook model, modified
Johnson–Cook, strain-compensated Arrhenius equation, modified Zerilli–Armstrong model, modified
Fields–Backofen model and artificial neural network (ANN) with feed-forward back propagation learning
algorithm, were used for predicting the flow stress dependency on strain, strain rate, and temperature. The
accuracy of the predictive capability of these models was determined using different statistical parameters
such as correlation coefficient (R), average absolute relative error, and root mean square error. The
modified Fields–Backofen model and strain-compensated Arrhenius model were identified as the best-
suited models for predicting the flow stress behavior of additively manufactured AlSi10Mg, with an average
error of 3.3% and 3.9% and correlation coefficient of 0.96 and 0.97, respectively. The ANN model exhibited
the highest accuracy in predicting the hot deformation behavior of LPBF-fabricated AlSi10Mg, with an
average error of 0.5% and a correlation coefficient of 0.99.

Keywords additive manufacturing, AlSi10Mg, artificial neural
network, flow stress, hot deformation

1. Introduction

Additive manufacturing (AM), or 3D printing, is an
emerging net-shape manufacturing technology used to produce
highly critical components. It is particularly valuable for low-
volume productions and mass customization in industries such
as aerospace, automotive, and biomedical (Ref 1-3). Laser
powder bed fusion (LPBF) is one of the most widely used metal
additive manufacturing techniques due to its capability to
provide high surface finish, excellent accuracy and highly
dense components. This process ensures better mechanical
properties and functional properties due to the fine microstruc-
ture obtained from the high thermal gradient of additive
manufacturing (Ref 4-8). Aluminum silicon alloys (Al-Si
alloys) such as AlSi10Mg and AlSi12 are widely used in
various industries due to their high specific strength, excellent

processability, and low cost (Ref 9, 10). The Al-Si alloys have
been extensively used to fabricate components for elevated
temperature applications, such as automotive engine blocks,
due to their excellent mechanical properties at elevated
temperatures (Ref 11). The high temperature mechanical
properties of additively manufactured samples can help to
identify and design components for elevated temperatures.
However, studies on the high-temperature mechanical proper-
ties of additively manufactured materials are very scarce in the
literature, and the hot compression behavior of the additively
manufactured AlSi10Mg alloy has not been reported so far.
Furthermore, the high temperature performance of the additive
sample can also be utilized to optimize the post-processing
techniques based on hot working for additive manufacturing.

The hot working processes are one of the most prominent
post-processing routes for additively manufactured alloys (Ref
12). The hot working of additively manufactured samples leads
to improvement in the mechanical properties and reduction in
the inherent defects present in the additive sample, such as
porosity and lack of fusion (LOF). (Ref 13-15). These post-
processing techniques are unsuitable for applications involving
highly complex geometry, such as topology-optimized samples
and internal lattice structures. The hot working process can
improve the additive sample’s mechanical properties, leading to
a lighter design. Several deformation-based post-processing
techniques have been explored by researchers for additively
manufactured Al-Si alloys. P. Snopiński et al. (Ref 16) have
investigated the effects of high temperature equi-channel
angular pressing (ECAP) on additively manufactured Al-
Si10Mg and observed increased strength and ductility. Simi-
larly, Ali Hosseinzadeh et al. (Ref 17) have investigated the
effect of the combination of multi-pass equal channel angular
extrusion/pressing (ECAP) and selective laser melting on
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AlSi12 alloy and observed an increase of 11% in ultimate
tensile strength (UTS) and 55% in ductility after four passes of
ECAP. The processing parameters of additively manufactured
metals for hybrid or post-processing techniques can be
optimized using high temperature flow behavior.

The flow stress behavior of the additively manufactured Al-Si
alloys can be predicted using different constitutive models.
Several models have been developed for predicting the depen-
dence/sensitivity of flow stress on the strain, strain rate, and
temperature, such as the Johnson–Cook model (Ref 18, 19),
modified Johnson–Cook (Ref 20), strain-compensatedArrhenius
equation (Ref 21-23), Zerilli–Armstrongmodel (Ref 24), Fields–
Backofen model (Ref 25), and artificial neural network (ANN)
(Ref 26-28). The constitutive models for predicting the flow
stress behavior of the materials are broadly classified into three
types: (a) phenomenological model, (b) physics-based models,
and (c) ANN (Ref 29, 30). The physics-based model usually
offers better predictive capability compared to the phenomeno-
logical model. The phenomenological model uses a much lower
number of coefficients and is easier to implement than the
physics-based models. Various studies have been performed on
cast alloys to use these models and predict the strain rate, strain,
and temperature-dependent high deformation behavior. The JC
model and modified JC models have been used to predict the hot
deformation behavior of additively manufactured Ti-6Al-4V
(Ref 31, 32). The hot deformation behavior of additively
manufactured FeCr alloy has been explored using the Johnson–
Cook and modified Johnson–Cook models. The strain-compen-
sated Arrhenius equation has been used to accurately predict the
flow stress behavior in several alloys such as 17-4 PH steel, hot-
rolled eutectoid steel, and extruded Mg-10Li-1Zn alloy (Ref 33-
35). Similarly, theANNmodel has been used to predict additively
manufactured titanium alloys. The training of the network to
accurately predict untested data requires a substantial amount of
data (Ref 13), (Ref 31). Several other models are also being
utilized to predict the flow stress behavior in the additively
manufactured alloy, such as the Fields–Backofen model used to
study the hot deformation behavior of Ti6Al4V alloy fabricated
by a directed energy deposition (Ref 32). Considering that the
deformation behaviors of additively manufacturing AlSi10Mg
alloys are different from that of traditional alloys due to unique
microstructure and the potential lightweight applications of
AlSi10Mg alloy. The high temperature performance of the
additively manufactured AlSi10Mg needs to be studied in detail.

However, studies on the deformation behavior and constitutive
modeling of additive manufacturing AlSi10Mg alloy at elevated
temperatures are very scarce in the literature.

The current research is focused on examining the hot
deformation behavior of the additively manufactured AlSi10Mg
alloy using isothermal hot compression testing using a Gleeble
3500 thermomechanical simulator. The experimental data were
utilized to evaluate different constitutive models for predicting
the flow stress in intermediate strain rates and temperatures. The
results obtained were examined and compared using different
statistical parameters, such as the coefficient of correlation (R),
absolute average relative error (AARE) and root mean square
error (RMSE), to provide an insight into the flow behavior of
AlSi10Mg alloy fabricated using additive manufacturing route.

2. Experimental Procedure

The AlSi10Mg samples were printed using an ‘‘EOS M280
DMLS machine.’’ The samples were printed in the vertical
orientation (as shown in Fig. 1a) using a meander scanning
strategy, where the scan direction is rotated by 67� after each
pass, as depicted in Fig. 1(b). The parameters used for the
current study are shown in Table 1. The cylindrical samples of
12 mm 9 8 mm ðuÞ were machined from the additively
manufactured sample as per ASTM E209 (Ref 36). The
isostatic hot compression test was performed on the ‘‘Gleeble
3500 thermo-mechanical simulator.’’ The test was performed at
four different temperatures (150, 200 , 250, and 300 �C) and
three different strain rates (0.01 , 0.1 , 1 s�1).

The predictive capability/accuracy of different phenomeno-
logical models and artificial neural network (ANN) was
evaluated and compared using different statistical parameters
such as coefficient of correlation (R), average absolute relative
error (AARE), and root mean square error (RMSE). These
parameters are described using the following equation (Ref 37):

AARE ¼ 1

N

XN

i¼1

rp � rexp
rexp

����

����� 100 ðEq 1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1

rp � rexp
� �2

s
ðEq 2Þ

Fig. 1 (a) Specification of compression sample (all units are in mm), (b) Scanning strategy used for printing, (c) Procedure for hot compression
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R ¼
Pi¼N

i¼1 riexp � �rexp
� �

rip � �rp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼N

i¼1 riexp � �rexp
� �2 Pi¼N

i¼1 rip � �rp
� �2

r ðEq 3Þ

�rexp and �rp are the mean value of rexp(experimental flow
stress) and rp(flow stress predicted by different models),
respectively. These parameters are calculated through a term-
by-term comparison of predicted and experimental stress. The
abbreviations used in the current study are shown in Table 2.

3. Results and Discussion

The flow stress behavior of additively manufactured alloy in
different strain rates and temperatures is shown in Fig. 2. The
flow stress increases linearly in the initial region with an
increase in the strain, followed by softening, leading to a
decrease in the flow stress. The effect of deformation conditions
on flow stress can be observed using peak stress under different
deformation conditions. The distribution of the peak stress is
shown in Table 3. The peak stress increases with an increase in
strain rate and a decrease in temperature. The stress–strain data
from the uniaxial compressive test can be used to determine the
material constants of different constitutive models. These
constitutive models can be used to determine the flow stress
for intermediate deformation conditions (strain rate and tem-
perature). Different phenomenological models and artificial
neural network (ANN) were employed to analyze and predict
the flow stress behavior of the additively manufactured

AlSi10Mg: (a) the Johnson–Cook (JC) model, (b) modified
Johnson–Cook (m-JC) model, (c) strain-compensated Arrhe-
nius equation (SCAE), (d) modified Fields–Backofen (m-FB)
model, and (e) modified Zerilli–Armstrong (m-ZA) model.

3.1 Initial Microstructure

Figure 3 shows the initial microstructure of the additively
manufactured AlSi10Mg alloy. The microstructure of the as-
built sample shows a fine cellular structure with a cell size of
597 ± 145 nm. The cell size was evaluated using the line
intercept method using ‘‘ImageJ software.’’ The zoomed image
of the region of interest (ROI) of Fig. 3(a) is shown in Fig. 3(b).
The Mg-rich precipitates (Mg2Si) were observed at the edge of
the cellular network. The detailed characterization of the
precipitates is discussed in our previous studies (Ref 6, 38).
These precipitates can have a stabilizing effect on microstruc-
tural features at elevated temperatures. The precipitates or
second phase particles pin the grain boundaries at elevated
temperatures and restrict grain growth by the Zener pinning
phenomenon. The combined effect of the small grain size of the
additively manufactured sample and the pinning effect of
precipitates might be responsible for the high peak strength at
elevated temperatures, as shown in Table 3.

3.2 Johnson–Cook Model (JC)

The Johnson–Cook model is one of the oldest and most
widely used phenomenological models used for predicting the
flow stress/plastic stress of material under a variety of
temperatures and strain rates. The original Johnson–Cook
model is shown in Eq. 4 (Ref 39).

r ¼ Aþ Ben½ � 1þ Cln
_e
_e0

� 	
 �
1� T � T ref

Tmelt � T ref

� 	m
 �

ðEq 4Þ

Here, A, B, C, n, and m are material constants, and r and e
are flow stress and the corresponding plastic strain. _e0 is the
reference strain rate, and T ref , Tmelt are reference and melting
temperatures (873 K (Ref 40)), respectively. The Johnson–
Cook model consists of elements correlating the flow stress
with strain hardening, strain rate hardening, and thermal
softening in the material. The form of the Johnson–Cook
model (JC consists of three independent terms in multiplica-
tion) suggests that these three effects are independent. Hence,
the JC model can give an accurate prediction for the materials
where the interdependency of strain rate and temperature is
minimal.

In the current study, the reference temperature and strain rate
were chosen as 423 K (150 �C) and 0.01 s�1; respectively.
The procedure for determining the Johnson–Cook parameters is
described below. At reference strain rate and reference tem-
perature, the JC equation reduces to:

r ¼ Aþ B�n or r� A ¼ B�n ðEq 5Þ

Table 1 Process parameter used for printing

Laser power, W Scan speed, mm/s Hatch spacing, mm Layer thickness, lm Preheat temperature, �C

370 1300 0.19 30 300

Table 2 List of abbreviations used in the current study

Abbreviation Full form

ANN Artificial neural network.
AARE Average absolute relative error.
RMSE Root mean square error.
LPBF Laser powder bed fusion.
AM Additive manufacturing.
LOF Lack of fusion.
ECAP Equal channel angular pressing.
UTS Ultimate tensile strength.
JC Johnson–Cook model.
m-JC Modified Johnson–Cook model.
SCAE Strain-compensated Arrhenius

equation.
ZA Zerilli–Armstrong.
m-ZA Modified Zerilli–Armstrong.
m-FB Modified field Backofen.
ROI Region of interest.
FCC Face-centered cubic.
BCC Body-centered cubic.
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Here ’A’ is the 0.2% yield strength at the reference
temperature and reference strain rate. Taking natural logarithms
on both sides

ln r� Að Þ ¼ lnBþ n:ln� ðEq 6Þ

The slope of the linear regression between lnðr� AÞ and ln�
gives material constant n, and the y-intercept gives lnB. The
constants B and n are evaluated as 69.4 MPa and 0.0463,
respectively.

At reference temperature,

r ¼ Aþ B�nð Þ 1þ Cln
_�

_�0

� 	� 	

r ¼ Aþ B�nð Þ 1þ Cln
_�

_�0

� 	� 	

r
Aþ B�nð Þ ¼ 1þ Cln

_�

_�0

� 	� 	 ðEq 7Þ

The relationship between r
AþB�nð Þ and ln _�

_�0

� �
is shown in

Fig. 4(a). The slope of linear regression with a y-intercept of 1
gives us the constant C.

Similarly, at the reference strain rate,

r ¼ Aþ Ben½ � 1� T � T ref

Tmelt � T ref

� 	m
 �
or 1� r

Aþ Ben½ �

¼ T � T ref

Tmelt � T ref

� 	m

ðEq 8Þ

Taking natural logarithms on both sides:

ln 1� r
Aþ Ben½ �

� 	
¼ m:ln

T � T ref

Tmelt � T ref

� 	
ðEq 9Þ

The relationship between ln 1� r
AþBen½ �

� �
and ln T�T room

Tmelt�T room

� �

is shown in Fig. 4(b). The slope of the linear regression with a
y-intercept of 0 gives us the constant ’m.’ The constants for the
Johnson–Cook model are summarized in Table 4.

The comparison between the experimental and predicted
flow stress of the selective laser-melted AlSi10Mg under
different stress rates and temperatures is shown in Fig. 5. It can
be observed that the predictive capability of the Johnson–Cook
model on the flow stress of AlSi10Mg alloy in the current study
is low.

3.3 Modified Johnson–Cook Model (m-JC)

The original JC model assumes that the thermal softening of
the material is independent of the strain rate and strain
hardening effect. However, it can be observed from flow stress
behavior in the current study that the thermal softening changes
with the strain rate. This coupling effect of strain rate on
thermal softening was included in the modified JC model as
follows: (Ref 41, 42)

r ¼ A1 þ B1�þ B2�
2

� �
1þ C1ln

e
e0

� 	
 �

exp k1 þ k2ln
_�

_�0

� 	� 	
T � T refð Þ


 � ðEq 10Þ

At the reference strain rate (0.01 s�1) and reference
temperature (150 �C)

r ¼ A1 þ B1�þ B2�
2

� �
ðEq 11Þ

Second-order polynomial regression was used for the plot
between r and � as depicted in Fig. 6(a), and the coefficient of
the polynomial regression gives constants A1;B1; andB2. The
values of constants A1;B1; andB2 are obtained as 276.3, 150.7,
and � 270 MPa, respectively.

At reference temperature,

Fig. 2 Flow stress behavior at different temperatures for a strain rate of 0.01 s�1, (b) 0.1 s�1, (c) 1 s�1

Table 3 Peak stress for different strain rates and
temperatures

Strain rate, s�1

0.01, MPa 0.1, MPa 1, MPa

Temperature, �C 150 �C 295 355 380
200 �C 256 312 330
250 �C 215 239 260
300 �C 139 164 200
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r ¼ A1 þ B1�þ B2�
2

� �
1þ C1 ln

e
e0

� 	
 �

r
A1 þ B1�þ B2�2ð Þ ¼ 1þ C1 ln

e
e0

� 	
 � ðEq 12Þ

The linear regression between r
A1þB1�þB2�2ð Þ and ln e

e0

� �
with a

y-intercept of 1 was plotted for different strain rates (0.01 s�1,
0.1 s�1 and 1 s�1), and the slope of the linear regression gives
constant C1. The average slope of the linear fitting curve (C1) is
0.049.

r

A1 þ B1�þ B2�2ð Þ 1þ C1ln
e
e0

� �h i

¼ exp k1 þ k2ln
_�

_�0

� 	� 	
T � T refð Þ


 �
ðEq 13Þ

Taking logarithms on both sides,

ln
r

A1 þ B1�þ B2�2ð Þ 1þ C1ln
e
e0

� �h i

0
@

1
A

¼ k1 þ k2ln
_�

_�0

� 	� 	
T � T refð Þ ðEq 14Þ

The coefficients obtained for the modified Johnson–Cook
model are shown in Table 5. The modified Johnson–Cook
model shows better accuracy compared to the original John-
son–Cook model. This higher accuracy might be accredited to
the incorporation of the coupling effect of strain rate and

temperature in the modified Johnson–Cook model. Figure 7
depicts the comparison of experimental and predicted stress–
strain curves using a modified JC model. The modified
Johnson–Cook model shows a better fit compared to the
original JC model.

3.4 Strain-Compensated Arrhenius Equation (SCAE)

Arrhenius model is the most widely used model for
predicting the flow behavior of material for high stress. The
Arrhenius model defines the correlation of flow behavior with
strain rate and temperature, using different equations for
different ranges of stress. According to the Arrhenius model,
the relationship between flow stress, temperature, and strain
rate can be defined using power law for low-stress range,
exponential law for high-stress level, and hyperbolic sine
function for all stress, as shown in Eq. 15 and 16 (Ref 43).

_� ¼ A:F rð Þ:exp � Q

RT

� 	
ðEq 15Þ

where

F rð Þ ¼
rn1 ; ra< 0:8

exp brð Þ ra> 1:2
sinh anð Þf gn for all r

8
<

: ðEq 16Þ

Here ’Q’ is the activation energy (kJmol�1), and R is the
universal gas constant (8.314 J mol�1 K�1). _e is strain rate
(s�1), r is flow stress (MPa), and T is the absolute temperature
(K). A; n1; b; n; and a are material constants.

Taking natural logarithms on both sides:

ln_� ¼
lnA1 þ n1lnr� Q

RT ; for ra< 0:8

lnA2 þ br� Q
RT ; for ra> 1:2

nA1 þ nln sinh arð Þð Þn� Q
RT ; for all r

8
><

>:
ðEq 17Þ

The slope of the plot between ln_� and lnr gives us constant
n1, whereas the slope of the plot between ln_� and r gives us
constant b as shown in Fig. 8. The ratio of b to n1 is constant a.

Fig. 3 Initial microstructure using dark field image with region of interest (ROI), (b) dark field of ROI and (c) bright field image

Table 4 Coefficient of Johnson–Cook model

A, MPa B, MPa C n m

Value 227.8 69.4 0.0463 0.153 0.801
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These constants were evaluated for each strain, ranging from
0.06 to 0.6.

n1 ¼
@ln_e
@lnr

; b ¼ @ln_e
@r

; and a ¼ b
n1

ðEq 18Þ

Similarly, the activation energy is evaluated from the slope
of the linear regression between ð1=TÞ and ln½sinhðarÞ� using
the following equation:

Q ¼ R
@ln_e

@ln sinh arð Þ½ �

� 	
@ln sinh arð Þ½ �

@ð1=TÞ

� 	
ðEq 19Þ

The constant n, A is evaluated using the Zener–Hollomon
parameter evaluated using the following equation:

Z ¼ _eexp
Q

RT

� 	
¼ A sinh arð Þ½ �n ðEq 20Þ

lnZ ¼ lnAþ nlnsinhðarÞ ðEq 21Þ

The slope of linear regression between lnZ and lnsinhðarÞ
gives us constant n, and the y-intercept gives the constant lnA.

The original Arrhenius equation does not consider the effect
of the strain on the prediction of flow stress. The effect of
strain, such as strain hardening, is a significant component of
the flow stress, and hence, the strain-compensated Arrhenius
equation (SCAE) was used. The material constants of the
Arrhenius equation were assumed to be a polynomial function
of the strain. The material constants were calculated for ten
incremental strain values. This approach of defining the
material constant in terms of strain is unique compared to the
other models, which have a constant value of coefficients. The
order of the polynomial was varied from 3 to 6, and the
minimum error value was chosen as the final value. The AARE
for 3rd, 4th, 5th, and 6th order polynomials is 4.2, 5.4, 4.1, and

Fig. 4 Parameter calculation for the Johnson–Cook model

Fig. 5 Comparison between experimental and predicted stress–strain curves by Johnson–Cook model (a) 0.01 s�1, (b) 0.1 s�1, (c) 1 s�1

Table 5 Modified Johnson–Cook model constants

A1, MPa B1, MPa B2, MPa C1 k1 k2

Value 276.3 150.7 �270 0.049 �0.00504 0.000123

Journal of Materials Engineering and Performance



6.1, respectively. Hence, the 5th-order polynomial with a
minimum AARE value was chosen, and the polynomial fit with
the corresponding R2 is shown in Fig. 9. The coefficients for the
sixth-order polynomial fit of the material are listed in Table 6.

a ¼ A0 þ A1eþ A2e
2 þ A3e

3 þ A4e
4 þ A5e

5

n ¼ B0 þ B1eþ B2e
2 þ B3e

3 þ B4e
4 þ B5e

5

Q ¼ C0 þ C1eþ C2e
2 þ C3e

3 þ C4e
4 þ C5e

5

lnA ¼ D0 þ D1eþ D2e
2 þ D3e

3 þ D4e
4 þ D5e

5 ðEq 22Þ

The Zener–Hollomon parameter can be defined using
Eq. 20.

The flow stress using the Arrhenius equation can be defined
by Eq.23

r ¼ 1

a
Z

A

� 	1=n

þ 1þ Z

A

� 	2=n
( )1=2

2
4

3
5 ðEq 23Þ

Fig. 6 (a) Second-order polynomial regression at reference temperature and reference strain rate (b) Y �
1 ¼ r

A1þB1�þB2�2ð Þ versus ln e
e0

� �
relation

curve, Y �
2 ¼ ln r

A1þB1�þB2�2ð Þ 1þC1 ln e
e0

� �h i

0

@

1

A versus T � Tref for three strain rates of (c) 0.01 s�1 (d) 0.1 s�1 (e) 1 s�1, and (f) k1 þ k2ln _�
_�0

� �

versus ln _�
_�0

� �
plot

Fig. 7 Comparison between experimental and predicted stress–strain curves by modified Johnson–Cook model (a) 0.01 s�1; (b) 0.1 s�1, (c) 1
s�1
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Figure 10 shows the comparison between experimental and
predicted flow stress behavior using the Arrhenius equation.
The flow stress predicted using the Arrhenius equation shows a
larger error at low strain, but the overall prediction is in good
agreement with the experimental observation.

3.5 Modified Fields–Backofen (m-FB) Model

The original Fields–Backofen equation describes the rela-
tionship of flow stress with strain and strain rate as r ¼ ken _em,
where k is the stress coefficient, n is the strain hardening
exponent, and m is the strain rate sensitivity index. This
equation has been modified to extend its modeling ability for

thermal softening at elevated temperatures. This modified
equation can be expressed as (Ref 44)

r ¼ ken _emexpðbT þ seÞ ðEq 24Þ

b is the material constant, and s is the softening ratio. Taking
logarithms on both sides of the equation:

lnr ¼ lnk þ nlneþ m:ln_eþ bT þ se ðEq 25Þ

The parameters n;m; and b were calculated using the slope
of the linear regression between lnr� lne, lnr� ln_e, and
lnr� T , respectively.

n ¼ @lnr
@lne

; m ¼ @lnr
@ln_e

; and b ¼ @lnr
@T

ðEq 26Þ

The constants of the equation were correlated with the
deformation temperature and strain rate as follows:

k ¼ k1 þ K2ln_eþ K3=T

n ¼ n1 þ n2ln_eþ n3=T ðEq 27Þ

m ¼ m1 þ m2=T

The variation of constant n, with different strain rates and
temperatures, is shown in Fig. 11(a). The constants

Fig. 8 Parameter calculation for SCAE

Table 6 Parameter for strain-compensated Arrhenius
equation

Q, kJMol�1 a, MPa�1 n ln Að Þ

A0 ¼ 210:1 B0 ¼ 0:043 C0 ¼ 11:45 D0 ¼ 27:47
A1 ¼ �214:72 B1 ¼ �0:331 C1 ¼ �187:1 D1 ¼ 4:075
A2 ¼ 1203:7 B2 ¼ 1:244 C2 ¼ 1537:3 D2 ¼ 178:14
A3 ¼ �2622:1 B3 ¼ �2:382 C3 ¼ �4680:5 D3 ¼ �515:76
A4 ¼ 2187:25 B4 ¼ 2:43 C4 ¼ 6113:8 D4 ¼ 384:94
A5 ¼ �267:3 B5 ¼ �1:027 C5 ¼ �2901:4 D5 ¼ �16:98
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n1; n2; andn3 were obtained from the regression method.
Similarly, the constants m1; andm2 were obtained by perform-
ing the linear regression between the parameter m and (1/T), as
shown in Fig. 11(c).

K0 ¼ lnk þ mln_eþ bT ; and hence lnr ¼ K0 þ nlneþ se

ðEq 28Þ

For e ¼ e�1, ln re�1ð Þ ¼ K0 � nþ se�1 and for e ¼ e�2,
ln re�2ð Þ ¼ K0 � 2nþ se�2. Subtracting ln re�2ð Þ from ln re�1ð Þ
we get:

s ¼ 1

e�1 � e�2
� ln

re�1

re�2

� 	
� n

� 

ðEq 29Þ

The values of s at different temperatures and strain rates are
calculated using experimental data. The coefficient for the m-
FB model is shown in Table 7. Figure 12 shows the
experimental and predicted flow stress–strain curve using
modified Fields–Backofen model. The m-FB model shows
excellent predictive capability for a wide range of deformation
conditions (strain, strain rate, and temperature).

3.6 Modified Zerilli–Armstrong (m-ZA) Model

Zerilli–Armstrong (ZA) model is a semi-empirical model for
predicting the flow stress in the material. ZA model is
developed according to the dislocation mechanism prevalent

in metallic materials during plastic deformation. As per ZA
model, the flow model is divided into thermal and athermal
components.

r ¼ rth þ ra ðEq 30Þ

Here, raandrth are the athermal activation and thermal
activation flow stress, respectively. The unique characteristic of
this model is that each material structure type has a different
expression due to the different strain-controlling mechanisms.
The thermal activation flow stress for FCC and BCC material is
given as (Ref 45):

rth ¼
C1en exp �C3T þ C4Tlne�ð Þf g; for bcc material

C0 þ C2 e0:5 �C3T þ C4Tlne�ð Þ
� �

; for fcc material

�

ðEq 31Þ

Fig. 9 Sixth-order polynomial fit for Q, n, ln(A), and alpha

Fig.10 Comparison between experimental and predicted stress–strain curves by strain-compensated Arrhenius model (a) 0.01 s�1, (b) 0.1 s�1,
(c) 1 s�1

Table 7 Modified Field Backofen model parameter

K1 K2 K3 n1 n2

Value 42238.1 �1611 �13526860 0.048711 �0.0084
n3 m1 m2 b s

Value �22.4 0.132 0.000216 �0.00787 �0.330
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An additional term C0 is added to include the effect of
athermal component and the effect of yield stress on grain size.
Hence, the original Zerilli–Armstrong model for different types
of metals can be expressed as:

r ¼ C0 þ C1en exp �C3T þ C4Tlne�ð Þf g þ C5en; for bcc material
C0 þ C2 e0:5 �C3T þ C4Tlne�ð Þ

� �
; for fcc material

�

ðEq 32Þ

The original Zerilli–Armstrong model considers the effect of
the dislocation mechanism but fails to correlate the flow stress
with the deformation condition (strain rate and temperature).
This can severely limit the predictive capability of the original
ZA model. Samantaray et al. (Ref 46) modified the ZA model
to include the effect of thermal softening, strain rate hardening,
and strain hardening. The modified Zerilli–Armstrong model is
expressed as follows: (Ref 47)

r ¼ C1 þ C2e
nð Þexp � C3 þ C4eð ÞT� þ C5 þ C6T

�ð Þlne�f g
ðEq 33Þ

T� ¼ T � T ref and e� ¼ _e= _e0

Here, C1;C2;C3;C5;C6; andn are material constants. Taking
natural logarithm on both sides, the equation becomes:

lnr ¼ ln C1 þ C2e
nð Þ � C3 þ C4eð ÞT � þ C5 þ C6T

�ð Þlne�

ðEq 34Þ

For reference strain rate (0.01 s�1), equation (34) can be
expressed as:

lnr ¼ ln C1 þ C2e
nð Þ � C3 þ C4eð ÞT � ðEq 35Þ

The slope and y-intercept of the linear regression between
lnr� T� is S1 ¼ C3 þ C4e , and Y 1 ¼ ln C1 þ C2enð Þ. An
example of the linear fit between lnr and T* for the strain value
of 0.1 is shown in Fig. 13(a). The equation for intercept Y 1 can
be rearranged as:

lnðexpY 1 � C1Þ ¼ lnC2 þ nlne ðEq 36Þ

The slope and y-intercept of the linear regression between
S1 and e give us constant C3 and C4 as shown in Fig. 13(b).
Similarly, the slope and y-intercept of the linear regression
between the lnðexpY 1 � C1Þ; and lne give us constant C2, and
n as shown in Fig. 12(c). C1 is the yield strength of the material

at reference strain rate (0.01 s�1) and reference temperature
(150 �C). The slope of the plot between lnr and lne� is
S2 ¼ C5 þ C6T

�ð Þ. The slope is plotted with T�, the slope of
the S2 versus T� gives us C6, and the y-intercept gives us C5.
The parameters evaluated for m-ZA model are shown in
Table 8. Figure 14 depicts the comparison between experimen-
tal stress and flow stress predicted using the m-ZA model. The
m-ZA model shows excellent predictive capability at elevated
temperatures. However, the prediction capability for interme-
diate temperature is poor.

3.7 Artificial Neural Network (ANN)

ANN or artificial neural networks are data-driven and
nonlinear statistical models that can recognize and predict the
complex relationship between the input and output data set. The
ANN model consists of a processing unit called a neuron, and
each neuron in the hidden layer represents one independent
variable. The predicted flow stress was determined with the
help of the feed-forward back propagation and Levenberg–
Marquardt (L-M) training algorithm. The L-M algorithm is a
very efficient algorithm for optimizing complex nonlinear
problems. The back-propagation mechanism optimizes the
solution by minimizing the RMSE (root mean square error)
between experimental and predicted flow stress. The RMSE
was chosen as an objective function instead of R2 because the
higher value of R2 does not necessarily correspond to better
performance of the model. R2 can be biased toward the higher
or lower end of the distribution (Ref 48). Hence, RMSE, which
is an unbiased parameter, is preferred over R2 as the objective
function.

The schematic diagram of the ANN structure for flow stress
prediction is shown in Fig. 15(a). The strain, temperature, and
strain rate were taken as the input variable, whereas the flow
stress was taken as the output variable. The input dataset was
randomly divided into three datasets: a training dataset (used
for fitting the model), a validation dataset (used for fine-tuning
the parameter during training), and a test dataset (used for
unbiased evaluation of the final model fit). The training, test,
and validation set were set as the 75:15:10 portion of dataset.
The input variable is combined to form a new, complex variable
in the hidden layer. The number of optimal hidden neurons
depends on the nature and complexity of the optimization
problem. The number of neurons in the hidden layer of a neural

Fig. 11 (a) Variation of parameter n with different strain rates and temperature, (b) linear fit of lnr� ln_e curve, and (c) linear fit between
parameter m� ð1=TÞ curve
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network can greatly affect the predictive capability of the ANN
model. If the number of neurons is very low (the architecture is
too simple), the resulting ANN network will not have sufficient
capability for accurate prediction. On the other hand, if the
number of hidden layers is too complex, the model can be
overfitted, and the model may not converge. Hence, the
optimum number of hidden layers was minimized using the
trial-and-error method; the number of neurons in the hidden
layer was varied from 1 to 60, and the minimum mean square
error (MSE) value was chosen as the final value (33 neurons).
The distribution of the MSE with no of neurons in the hidden
layer is shown in Fig. 15(b).

MSE ¼ 1

n

Xn

i¼1

ei � cið Þ2 ðEq 37Þ

Before training the neural network, the input and output data
should be normalized in the range of 0.1 to 0.9 to improve the
convergence speed and accuracy of the ANN model. For this
purpose, the following equation was used: (Ref 49)

XN ¼ 0:1þ 0:8� X � Xmin

Xmax � Xmin

� 	
ðEq 38Þ

Here, XN is the normalized data, XminandXmax are minimum
and maximum values of data, respectively, and X is the original
data. The ANN computations were performed using the neural
network toolbox in ‘‘MATLAB R2022b’’ software. The optimal
epoch (one pass through input–output pair during training) was
observed to be approximately 700.

The flow behavior of additively manufactured AlSi10Mg
alloy over a wide range of strain rates and temperatures is
predicted using optimal parameters. The predictive capability of
the ANN model for training, validation, and test set is shown in
Fig. 15(c), (d), and (e), respectively. Figure 16 shows good
agreement between experimental and predicted flow stress

using the ANN model. The ANN model shows excellent
capability in predicting the effect of thermal softening, strain
rate hardening, and strain hardening on the flow stress behavior
of laser powder bed fusion fabricated AlSi10Mg.

4. Discussion

4.1 Prediction Capability

The prediction capability of different models was analyzed
and compared using average absolute relative error (AARE)
and coefficient of correlation. The distribution of AARE in
different models for the whole range of deformation conditions
(temperature and strain rate) is shown in Fig. 17. The Johnson–
Cook (JC) model was observed to be the least suited model for
predicting the hot deformation behavior. JC model shows very
poor accuracy at high-temperature range (250-300 �C), with
maximum AARE reaching 23.8%. The average AARE and R2

were observed to be 8.4% and 0.904, respectively. The JC
model consists of three independent terms predicting the effect
of strain hardening, thermal softening, and strain rate harden-
ing. The JC model suffers from poor prediction capability in the
materials with strong interdependency of strain rate and
temperature. This might be the reason behind the poor accuracy
of the original JC model in current study. The experimental
stresses are correlated with predicted stresses using different
models and are shown in Fig. 18. The red line shows the perfect
prediction by the model. The modified Johnson–Cook (m-JC)
and modified Zerilli–Armstrong (m-ZA) models have shown a
maximum average absolute relative error (AARE) of 9.8% and
8.2%, respectively. Additionally, they exhibit an average
AARE of 5% and 5.1%, respectively, along with R2 values of
0.946 and 0.932, respectively. The higher accuracy of the m-JC

Fig. 12 Comparison between experimental and predicted stress–strain curves by modified Fields–Backofen model (a) 0.01 s�1, (b) 0.1 s�1,
(c) 1 s�1

Table 8 Parameter for modified Zerilli–Armstrong model

C1, MPa C2, MPa C3 C4 C5 C6 n

Value 227.8 62.65 0.0052 0.000728 0.0341 0.000244 �0.110
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Fig. 13 Linear fit between (a) lnr and T* for a strain of 0.1, (b) slope S1 and e, (c) lnðexpI1 � C1Þ and lne, (d) lnr and ln_e for temperature of
150�C, and (d) slope S2, and T*

Fig. 14 Comparison between experimental and predicted stress–strain curves by modified Zerilli–Armstrong model (a) 0.01 s�1, (b) 0.1 s�1,
(c) 1 s�1
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and m-ZA models compared to the original JC model might be
attributed to the coupled effect of temperature and strain rate in
both models. The modified Fields–Backofen model (m-FB) and
strain-compensated Arrhenius equation (SCAE) were the best-
suited phenomenological models for predicting the hot defor-

mation behavior of additively manufactured AlSi10Mg. m-FB
and SCAE models show similar accuracy, with m-FB offering
slightly better accuracy compared to the SCAE (maximum
AARE of 5.6% in SCAE compared to 6.4% in m-FB, and
average AARE of 3.3% in m-FB compared to 3.9% in SCAE).

Fig. 15 (a) schematic diagram of the ANN model, (b) Variation in RMSE with no of neuron in the hidden layer, the predictive capability of
ANN for (c) Training set, (d) test set, (e) validation set

Fig. 16 Comparison between experimental and predicted stress–strain curves by modified Zerilli–Armstrong model (a) 0.01 s�1, (b) 0.1 s�1,
(c) 1 s�1
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The ANN network offers better prediction capability compared
to the phenomenological model. The AARE and R2 value of the
ANN network were observed to be 0.5% and 0.999, respec-
tively. The ANN network offers the unique advantage of not
having any pre-defined mathematical model, and hence, it can
be precisely fitted for the individual problem. However, the
ANN network cannot provide any insight into the flow stress
behavior during hot deformation.

4.2 Interpolation and Extrapolation Capabilities

The interpolation refers to the capability of the model to
predict the flow stress within the input range of the model,
whereas the extrapolation refers to the prediction capability of
the model outside the training range of the model. The capacity
of models to perform interpolation and extrapolation of
experimental data is crucial for minimizing the time and
experimental resources. The investigation into the interpolation
accuracy involved training different models at strain rates of
(0:01s�1; 0:1s�1; and 1s�1) and temperatures of (150 �C,
250 �C, and 300 �C); the models were subsequently tested
for their ability to predict the flow stress behavior at strain rates
of (0:01s�1; 0:1s�1; and 1s�1) and a temperature of 200 �C.
Similarly, the extrapolation accuracy was assessed by training
the models at strain rates of 0:01s�1; 0:1s�1; and 1s�1ð Þ, and
temperature of (150 �C, 200 �C, and 250 �C), and subse-
quently testing the models for strain rate of
0:01s�1; 0:1s�1; and 1s�1ð Þ, and a temperature of 300 �C. The

prediction capability of different models for extrapolation and
interpolation is shown in Fig. 19.

The accuracy for interpolation is good for both phenomeno-
logical models and the ANN model, and the ANN model has
better interpolation capabilities compared to the phenomeno-
logical models. On the other hand, the extrapolation capabilities
of the ANN were observed to be poor compared to the
phenomenological models such as SCAE and m-FB. The
extrapolation is inherently risky compared to the interpolation
as the material behavior can vary significantly beyond the
tested range of temperature and strain rate. However, the
accuracy of the phenomenological model remains consistent
within the appropriate range outside the tested conditions. The
higher accuracy of the phenomenological model can be
attributed to the fixed mathematical form of the models, and
the poor accuracy of the ANN model for extrapolation might be
accredited to the absence of the fixed mathematical form.

4.3 Operational Ease

The operational ease pertains to the user-friendliness of the
models. Simplicity and robustness are the critical factors for
practical applications in the industries. The usability of the
models is assessed based on the number of parameters, whereas
the robustness of the model is determined by the repeatability
and reproducibility of the results. The number of constants for
different models is shown in Table 9. The SCAE and m-FB
models offer similar overall accuracy; however, the m-FB only
has 10 model constants compared to the 24 model constants in

Fig. 17 Distribution of AARE in (a) JC, (b) m-JC, (c) SCAE, (d) m-FB, (e) m-ZA, (f) ANN (number in contour lines represent the average
error in %)
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the SCAE models. This indicates that the m-FB models should
be preferred over the SCAE model for industrial applications.
The robustness of the model refers to the repeatability of the
models; the phenomenological models are very robust as a
consequence of their mathematical form. On the other hand, the
ANN model, despite having high accuracy, is not very robust as
it can be system- and operator-dependent.

5. Conclusions

The deformation behavior of additively manufactured
AlSi10Mg was predicted and analyzed using different phe-
nomenological models and artificial neural networks (ANN).
The flow stress in the current investigation follows the usual
trend observed in the aluminum alloy. The flow stress decreases
with an increase in the temperature and a decrease in strain rate.
Different phenomenological models, such as JC, m-JC, SCAE,
m-ZA, m-FB, and ANN, were used to investigate the flow
behavior of additively manufactured AlSi10Mg. The JC model
was observed to be the least-suited method for predicting hot
deformation behavior in current study. The original JC model
offers an average AARE of 8% and a maximum AARE of 28%.
The m-FB model and SCAE model were observed to be the
best-suited phenomenological models for prediction of flow
stress. The m-Fb was observed to be marginally better
compared to the SCAE model (average AARE of 3.3% in m-
FB compared to 3.9% in SCAE, and maximum AARE of 5.6%
in SCAE compared to 6.4% in m-FB). The m-FB model offers
the best overall performance in terms of overall accuracy,
interpolation, and extrapolation capability and a low number of
constants. The ANN network does not have a definite
mathematical model and hence can be precisely fitted for the
individual problem. The ANN network offered the highest
overall prediction capability with an AARE and correlation
coefficient of 0.5% and 0.999, respectively.

Fig. 18 Linear fit between predicted and experimental flow stress in (a) JC, (b) m-JC, (c) SCAE, (d) m-FB, (e) m-ZA, (f) ANN

Fig. 19 (a) Prediction capability of different models for
interpolation and extrapolation
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