CORRECTION

Correction to: Optimizing Process Parameters of As-Homogenized Mg-Gd-Y-Zn-Zr Alloy in Isothermal Uniaxial Compression on the Basis of Processing Maps via Prasad Criterion and Murty Criterion

Qiang Chen, Li Hu 📵, Mingao Li, Yong Chen, Laixin Shi, Tao Zhou, and Mingbo Yang

Published online: 23 October 2023

Correction to: JMEPEG (2022) 31:2257–2266 https://doi.org/10.1007/s11665-021-06305-y

Acknowledgment of an image source was inadvertently omitted from the caption of Fig. 7. The caption should read as follows:

The original article can be found online at https://doi.org/10.1007/s11665-021-06305-y.

Qiang Chen, Southwest Technology and Engineering Research Institute, Chongqing 400039, China; Li Hu, Mingao Li, Laixin Shi, Tao Zhou, and Mingbo Yang, College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054, China; Yong Chen, Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China. Contact e-mail: huli@cqut.edu.cn.

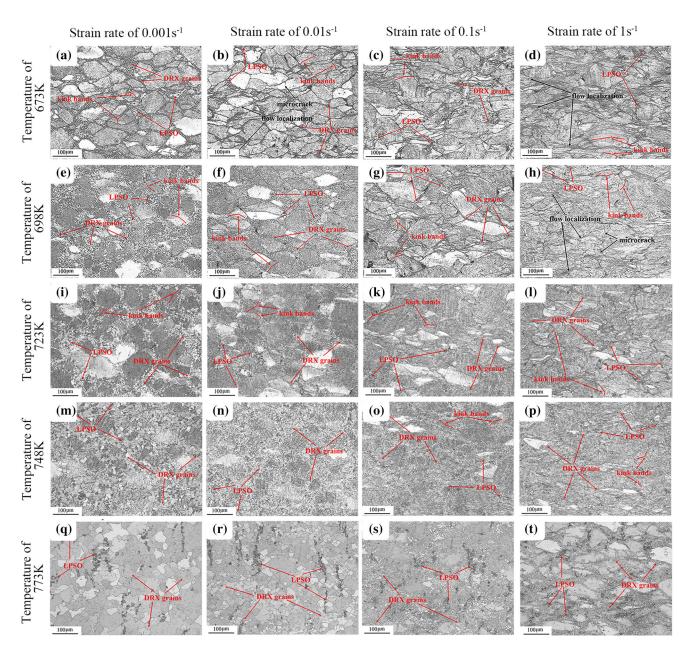


Fig. 7 Microstructures of as-homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy compressed to the true strain of 0.70: **a–d** At temperature of 673 K; **e–h** At temperature of 698 K; **i–l** At temperature of 723 K; **m–p** At temperature of 748 K; **q–t** At temperature of 773 K. Reprinted from *Journal of Magnesium and Alloys*, Vol 11, Li Hu, Mengwei Lang, Laixin Shi, Mingao Li, Tao Zhou, Chengli Bao, and Mingbo Yang, Study on hot deformation behavior of homogenized Mg8.5Gd 4.5Y 0.8Zn0.4Zr alloy using a combination of strain compensated Arrhenius constitutive model and finite element simulation method, Pages No. 1016–1028, Copyright 2023, with permission from Elsevier

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.