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Structural steel (E250 grade) is used in several engineering applications involving loadings from quasi-static
to high strain rates (blast discs, explosion vents, etc.), which introduce large deformation, strain and strain
rate hardening, thermal softening, and damage to the material. The material�s dynamic constitutive be-
haviour can be aptly modelled by a visco-plasticity-based Johnson–Cook (J–C) strength model and damage
initiation and complete failure by the J–C�s damage model. In the latter, damage initiation is modelled
through continuum damage mechanics and propagation by the fracture mechanics. This paper focuses on
the determination of 10 different J–C�s dynamic constitutive and damage model parameters for E250
structural steel by conducting several experiments involving tensile tests at different strain rates (0.0003–
1.0 s-1), stress triaxialities (0.33–0.95), temperatures (30–800 �C), and SHPB experiments (at 3000 and
8000 s-1). It explains the processes and step-by-step procedures for extracting the model parameters from
the experimental results. A different approach is followed in arriving at fracture strain for extracting
damage model parameters to suit fracture mechanic-based damage evolution available in the existing FEA
codes. The constitutive and damage model parameters thus determined are validated through numerical
simulations and comparison with three independent experiments viz. i) experiment of a plain tensile
specimen, ii) tensile experiment of a notched specimen, and iii) hydrostatic burst experiment of a flat burst
disc. The responses and failure patterns from numerical simulations agreed very well in all three experi-
ments, thereby validating the determined model parameters. The determined model parameters can be
utilised directly in the commercially available nonlinear explicit FEA codes.

Keywords E250 structural steel, experimental validation,
Johnson–Cook, strain rate, strength and damage
models, stress triaxiality

1. Introduction

Structural steel with E250 grade is a work-horse material
used in several engineering applications due to its low cost and
manufacturability through several methods. Typically, it is used
as blast discs, explosion vents, structural construction, etc.
These structures and components are subjected to different
loadings, from quasi-static to high strain rates, caused by
different sources of events such as impact, blast, explosion.
Material behaviour under extreme dynamic events differs
greatly from static loading conditions. The material undergoes
large deformation, strain hardening, strain rate hardening, and
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Abbreviations

A J–C parameter representing yield stress (MPa)

As Cross-sectional area of SHPB specimen (mm2)

At Cross-sectional area of the incident and transmitter

bars (mm2)

A0 Initial cross-sectional area of the tensile specimen

(mm2)

Af Cross-sectional area of the tensile specimen after the

experiment (mm2)

B Strain hardening coefficient (MPa)

C Strain rate coefficient

c0 Fundamental longitudinal velocity of the elastic stress

wave (m/s)

Di Damage initiation variable

D Damage propagation variable

D1, D2, D3 Stress triaxiality dependent fracture strain parameters

D4 Strain rate dependent fracture strain parameter

D5 Temperature dependent fracture strain parameter

E Young�s modulus (MPa)

Gf Fracture energy (N/mm)

Ls The thickness of the specimen in the SHPB

experiment (mm)

m Thermal softening exponent

n Strain hardening exponent

P Equivalent force in the incident and transmitted bar

(N)
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thermal softening, eventually leading to damage initiation,
propagation, and failure.

The behaviour of this material under such extreme loadings
can be numerically simulated using nonlinear explicit finite
element analyses (FEA) based on Lagrangian, Eulerian,
arbitrary Lagrangian–Eulerian, or meshless methods along
with appropriate models to capture the material�s constitutive
(i.e. strength) and damage behaviour. Of several material and
damage models available in the literature, the strength and
damage models of Johnson–Cook (J–C) are quite popular (Ref
1-3). Although J–C models are one of the oldest models, they
are increasingly finding their applications in impact simulations
due to their several advantages. The primary advantage is that
the material behaviours or effects can be isolated independently,
and appropriate material and damage model parameters can be
determined from simple experiments. However, the number of
experiments and their conditions depend on the level of
accuracy of the experimental results. Researchers have
attempted to determine either few or all (A, B, n, C, and m)

material parameters of the J–C strength model and (D1…D5)
damage parameters of the J–C damage model for different
engineering materials through various experimental techniques
such as uniaxial tensile experiments, Split Hopkinson Pressure
Bar (SHPB) experiments conducted at different strain rates and
temperatures. Vedantam et al. (Ref 4) attempted for Mild steel
and DP590 steel; Xu et al. (Ref 5) for 603 Armour steel;
Banerjee et al. (Ref 6) for Armour steel; Farahani et al. (Ref 7)
for Inconel-718; Murugesan et al. (Ref 8) for AISI-1045;
Majzoobi et al. (Ref 9) for an unspecified engineering material;
and Bal et al. (Ref 10) for Aluminium alloy 7068-T651. Few
have obtained these parameters through several numerical
iterations, starting with approximate values until their intended
responses match with benchmark experiments.

Vedantam et al. (Ref 4) obtained the J–C strength model
constants (except temperature dependent parameter, m) of mild
steel and DP590 steel using uniaxial tensile experiments at a
strain rate of 0.001 s-1 and SHPB experiments at strain rates of
267, 800, and 1800 s-1 and concluded that mild steel having
lower yield strength exhibited higher strain rate sensitivity than
DP590 steel having higher yield strength. Xu et al. (Ref 5)
investigated the plastic behaviour of 603 Armour steel (a low-
alloy medium carbon steel heat treated to produce a tempered
martensitic microstructure) through quasi-static uniaxial com-
pression experiments at strain rates ranging from 0.001 to 0.1 s-
1 and dynamic compression experiments using SHPB at strain
rates 200, 2000 and 4500 s-1 at temperatures ranging from 15 to
600 �C. The evaluated J–C strength model parameters are
assessed by comparing the predicted results with strain rate
jump test experiments of a separate specimen and shown that
the error in prediction of flow stress by the J–C model is 16.6%
in quasi-static condition and 13% in dynamic condition for this
steel. Banerjee et al. (Ref 6) attempted to determine all the J–C
strength and damage model parameters of the Armour steel
through uniaxial tension experiments at various strain rates
between 0.0001 and 150 s-1 and temperatures ranging from
room temperature to 500 �C and validated their determined J–C
model parameters by comparing numerical simulations with
Charpy impact test.

Farahani et al. (Ref 7) determined the J–C plasticity model
parameters of Inconel-718 except for strain rate dependent
parameters using quasi-static uniaxial tension experiments at a
strain rate of 0.1 s-1 and temperatures of 400, 475, 550, and
625 �C. Since the strain rate dependent parameter was required
at a strain rate more than 106 s-1 for their intended application,
they determined this parameter iteratively through the trail-and-
error method by comparing the crater produced by the
indentation of steel ball in an impact experiment with the
numerical simulation. Murugesan et al. (Ref 8) extracted the J–
C strength and damage model parameters of AISI-1045
medium carbon steel by several isothermal hot uniaxial tensile
experiments at strain rates varying from 0.05 to 0.1 s-1 and at
temperatures ranging from 650 to 950 �C and proposed a
nonlinear algorithm to optimise the extracted parameters and
minimise the error between the predicted and experimental flow
stress.

Majzoobi et al. (Ref 9) determined the J–C�s material and
damage model constants (except temperature dependent param-
eters) of an unspecified engineering material. They performed
limited experiments and determined the strain rate-independent
material model parameters from the quasi-static experiment of a
regular specimen and strain rate-independent damage param-
eters through numerical iterations. They finalised the model

P1, P2 Forces on the left and right end of the specimen in

SHPB experiment (N)
_P Incident pressure loading rate in burst experiment

(MPa/s)

Pb Burst pressure (MPa)

T Temperature in material (�C)
T� Homologous temperature (�C)
T0 Reference temperature (�C)
Tm Melting temperature of the material (�C)
t Time interval for the stress wave propagation through

an element (s)

td Natural time period (s)

u1, u2 Displacements at the left and right end of the

specimen in the SHPB experiment

upl Plastic displacement

uplf Plastic displacement at failure

wl Crack tip opening displacement (mm)

x, y Horizontal and vertical coordinate axes, respectively

r True stress/von-Mises tensile flow stress (MPa)

rm Average of the three normal stresses, i.e. mean stress

(MPa)
~r Von-Mises equivalent stress (MPa)

r* Dimensionless pressure, i.e. stress ratio or stress

triaxiality

r0 Stress at the onset of damage (MPa)

rt Tensile strength of the material (MPa)

ry Dynamic yield stress (MPa)

rD Stress at damaged state (MPa)

e True strain/plastic strain

e0 Equivalent plastic strain at the onset of damage
_e Strain rate (s�1)
_e0 Reference strain rate (s�1)
_e� Dimensionless normalised plastic strain rate
_es Strain rate in SHPB specimen (s�1)

ef Fracture strain

ei Incident strain pulse

er Reflected strain pulse

es Strain in SHPB specimen

et Transmitted strain pulse

De Incremental plastic strain

xn Fundamental natural frequency (Hz)

q Density of the material (kg/m3)
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parameters by matching the experimental damage profile with
FEA simulations of a notched specimen using an optimisation
technique. They also adopted a similar optimisation approach
for determining the strain rate dependent strength and damage
parameters of J–C models from the experimental results of
flying wedge high-rate testing device and validated the
extracted model parameters through FEA simulations of
fractured specimens and comparison with experiments. Bal
et al. (Ref 10) determined the J–C material parameters of
Aluminium alloy 7068-T651 by conducting experiments using
uniaxial experiments at quasi-static strain rate, Gleeble tests at
temperatures up to 300 �C and strain rates up to 100 s�1 and
SHPB experiments at higher strain rates and proposed three
different sets of values for J–C material model parameters for
different applications with maximum, average, and minimum
plastic strains.

Although E250 structural steel is used in several engineering
applications which involve different loadings ranging from
quasi-static to high strain rates, the J–C strength and damage
model parameters needed for its numerical simulation are not
available in the literature. This paper is intended to present the
processes and procedures involved in determining 10 different
strength and damage model parameters of the J–C model for
E250 structural steel through several experiments involving
tensile tests at different temperatures (30-800 �C), strain rates
(0.0003-1.0 s�1) and stress triaxialities (0.33-0.95), and SHPB
experiments (at 3000 and 8000 s�1). A different approach is
proposed here to determine the critical fracture strain and J–C
damage parameters which facilitates the adoption of the
determined damage parameters in any commercial available
nonlinear explicit FEA code. The determined model parameters
are validated by numerically simulating i) a tensile experiment
of a plain specimen, ii) a separate tensile experiment of a
notched specimen, and iii) a hydrostatic experiment of a burst
disc.

2. Johnson–Cook Dynamic Strength and Failure
Models and Implementation of Damage Evolu-
tion

The material�s constitutive behaviour is modelled with the
Johnson–Cook strength model and its failure through the
Johnson–Cook damage model. These two models define the
material�s visco-plasticity and damage behaviour during load-
ing in numerical simulation.

2.1 Johnson–Cook Strength Model

The dynamic flow stress–plastic strain relationship for
metallic materials undergoing plastic deformation is best
described by Johnson–Cook constitutive relation (Ref 1, 2)
which is given as follows:

r ¼ Aþ Ben½ � 1þ C ln _e�½ � 1� T�m½ � ðEq 1Þ

where r is the von-Mises flow stress, e is the equivalent plastic
strain, _e� ¼ _e=_e0 is the dimensionless normalised plastic strain
rate considering the reference strain rate _e0, _e is the strain rate,
and T� ¼ ðT � T 0Þ=ðTm � T0Þ is the homologous temperature
of the material. A is the yield strength of the material, B is the
strain hardening coefficient, n is the strain hardening exponent,
C is the strain rate coefficient, m is the thermal softening
parameter, T0 is the reference temperature, and Tm is the
melting temperature of the material. The first, second, and third
terms in Eq 1, respectively, capture the large strain, strain rate,
and thermal softening effects during loading.

2.2 Johnson–Cook Damage Model

The Johnson–Cook damage model is based on the fracture
strain of the metallic material and depends on stress triaxiality,
strain rate and temperature (Ref 1, 3). The initiation of damage
in the material element is defined by:

Di ¼
XDe

ef
ðEq 2Þ

Fig. 1 Implementation of damage evolution
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where De is the incremental plastic strain during the integration
cycle, and ef is the fracture strain which is given by:

ef ¼ D1 þ D2exp D3r
�ð Þ½ � 1þ D4 ln _e

�½ � 1þ D5T
�½ � ðEq 3Þ

where r� ¼ rm=~r is the dimensionless pressure, i.e. stress ratio,
rm is the mean stress, ~r is the von-Mises equivalent stress, and
D1 _s:D5 are the damage constants for the material, which are
determined from experiments. This model assumes that the
fracture suddenly occurs when Di = 1. However, the material
strength degrades after a certain critical strain due to the
development of internal cracks, which is further explained in
the next section.

2.3 Implementation of Damage Evolution

A typical stress–strain response of metals under uniaxial
loading conditions is shown in Fig. 1. Curve a-b represents the
linear elastic phase, curve b-c represents the strain hardening
phase, and point c represents the onset of damage beyond
which the load carrying capacity of the material decreases due
to the development of macro cracks. Curve c-d represents
material behaviour with damage evolution. Without damage
evolution, stress–strain response follows the curve c-d�. At
point c, r0 and e0 are, respectively, the stress and equivalent
plastic strain at the onset of damage where D = 0 and, ef is the
equivalent plastic strain at failure where damage variable
D = 1.

In the damage evolution phase, material strength reduces
due to the degradation of the elastic stiffness of the material and

stress at any point of loading is governed by the scalar damage
equation given as follows:

rD ¼ 1� Dð Þr ðEq 4Þ

where rD is stress at the damaged state, D is the damage
propagation variable, and ~r is the undamaged stress which is
the stress obtained from the Johnson–Cook constitutive relation
given in Eq 1.

The damage model proposed by Johnson–Cook assumes
that damage accumulates in the material element during plastic
straining and that the material fails immediately when damage
reaches a critical value. But the material strength degrades with
damage, and experiments indicate that the effect of damage on
the material strength remains zero during the build-up of
dislocations generating micro cracks (Ref 11). Based on these
observations, a unified model for damage (Ref 11) is given by:

rD ¼ 1� Dð Þ Aþ Ben½ � 1þ C ln _e�½ � 1� T�m½ � ðEq 5Þ

where D = 0 for undamaged material and D = 1 for fully
fractured material. There exists a threshold of accumulated
plastic strain at which the damage starts to evolve (Ref 11, 12).
In the present work, damage initiation is assumed to be starting
when the accumulated plastic strain reaches a critical value.
Then, the stress–strain relation follows Eq 5 after fracture
initiation. The present work follows fracture mechanics-based
damage evolution, which is explained in detail in sect. 4.3.

3. Experiments for Material Characterisation

E250 Structural steel is a medium carbon steel with a
minimum yield strength of 250 MPa, and its chemical compo-
sition obtained from a spectroscopic analysis is given in
Table 1. The specimens are made from 2 mm thick hot rolled
sheets by laser cutting. Two batches of specimens are
experimented, and their results are averaged. In total, 16 types
of experiments were conducted, and their list is given in
Table 2. All tensile experiments at room temperature are

Table 2 Details of experiments and specimens for determining parameters of Johnson–Cook material and damage
models

J–C parameter Experiment Specimen no. Temperature, �C Stress triaxiality, r* Strain rate, s-1

A, B, n Tensile 1 (a, b) 30 0.33 3910�4

C D4 1 (a, b) 30 0.33 3910�4

2 (a, b) 0.33 3910�3

Tensile 3 (a, b) 0.33 3910�2

4 (a, b) 0.33 3910�1

5 (a, b) 0.33 4910�1

6 (a, b) 0.33 19100

SHPB 7 (a, b) 30 … 39103

8 (a, b) … 89103

D1, D2, D3 Tensile (notched specimens at various r*) 9 (a, b) 30 0.33 3910�4

10 (a, b) 0.49 3910�4

11 (a, b) 0.70 3910�4

12 (a, b) 0.95 3910�4

m, D5 Tensile 13 (a, b) 200 0.33 3910�4

14 (a, b) 400 0.33 3910�4

15 (a, b) 600 0.33 3910�4

16 (a, b) 800 0.33 3910�4

Table 1 Chemical composition of E250 structural steel
(% mass)

C Mn Si P S Fe

0.2–0.23 1.5 0.4 0.045, max 0.045, max Remainder
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conducted on BiSS make servo-hydraulic controlled universal
testing machine (UTM) with a maximum capacity of 25 kN.
High temperature tensile experiments are conducted on
INSTRON make electro-mechanically controlled UTM with
an attached furnace having a maximum capacity of 600 kN.
SHPB experiments are conducted on circular specimens to
obtain stress–strain curves at higher strain rates. All experi-
ments are broadly classified into four categories, viz. 1) tensile

experiments at different strain rates, 2) SHPB experiments at
higher strain rates, 3) tensile experiments of notched specimens,
and 4) tensile experiments at different temperatures to obtain
the Johnson–Cook model parameters, as shown in Table 2.

In the SHPB setup, all bars are made of D2 tool steel with a
hardness of more than 50 HRC and a diameter of 12 mm. The
incident bar and transmission bars have a length of 1200 mm.
For low and high strain rate experiments, striker length is 300

Fig. 2 Plain specimens for uniaxial tensile experiments at various strain rates at room temperature. (a) Specimen geometry
(thickness = 2.0 mm) (all dimensions in mm). (b) Experimented specimens 1–6 (Batch-a)

Fig. 3 Averaged true stress–true strain curves of plain tensile specimens at various strain rates obtained from tensile experiments at room
temperature
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and 200 mm, respectively. The strain pulses were recorded
using foil strain gauges of gauge length 2 mm through a high-
speed amplifier and National Instruments data acquisition
system.

3.1 Tensile Experiments at Various Strain Rates

Six types of tensile experiments were conducted on 12
specimens at room temperature at strain rates of 0.0003, 0.003,
0.03, 0.3, 0.4, and 1.0 s-1. Specimen geometry used in these

experiments is shown in Fig. 2(a), and the first batch of
specimens after experiments are shown in Fig. 2(b). The
average true stress–true strain curves obtained from experi-
ments are shown in Fig. 3. The material has exhibited strain rate
sensitivity, as seen in the stress–strain curves where its yield
and ultimate tensile strengths increased with increased strain
rate.

3.2 SHPB Experiments at Higher Strain Rates

The basic principle governing the SHPB is that the impact
stress waves travelling through the specimen (i.e. material to be
tested) are fast enough that the time interval for propagation is
much smaller than the total time of the experiment. This
permits several reflections to occur at the ends of the tested
specimen, which reasonably presents a uniform state of stress
and strain. This uniaxial stress state is ensured by using a
lubricant between the ends of the bars and specimen. Finally, it
is assumed that the stresses and velocities in the specimen ends
are transmitted through the input and output bars without any
dispersion. Simple expressions for stress, strain, and strain rate
in the specimen are obtained by assuming and adopting the
same material and cross-sectional area for both input and output
bars.

Let c0 be the fundamental longitudinal velocity of the elastic
stress wave in the bar, given by:

c0 ¼
ffiffiffiffi
E

q

s

ðEq 6Þ

in which E and q are, respectively, the elastic modulus and
density of the material of the bar. The displacements u1 and u2
at the left and right ends of the specimen can be written in terms
of the incident ei, reflected er, and transmitted et strain pulses as
follows:

u1 ¼ c0

Z t

0

ei � erð Þ dt ðEq 7aÞ

and

Fig. 4 Specimens for SHPB experiments at higher strain rates. (a)
Specimen geometry (all dimensions in mm). (b) Experimented
specimens 7 and 8 (Batch-a)

Fig. 5 Typical strain signals from SHPB setup and true stress–true strain curves obtained from SHPB experiments. (a) Typical strain signals
obtained from SHPB setup (Inset: The force balance of the sample, i.e. the stress acting on the sample-incident bar and sample-transmission bar
interfaces represented by P1 and P2, respectively). (b) Averaged true stress–true strain curves of specimens 7 and 8 at higher strain rates
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u2 ¼ c0

Z t

0

et dt ðEq 7bÞ

where t is the time interval for the stress wave propagation
through the specimen. Here, the compressive stresses and
strains have a positive sign. Due to the assumption of the
uniform state of stress and strain through the length, i.e.
thickness of the specimen Ls, the strain in the specimen es is
given by:

es ¼
u1 � u2

Ls
ðEq 8Þ

Substituting Eq 7a, b into Eq 8 provides

es ¼
c0
Ls

Z t

0

ei � er � etð Þ dt ðEq 9Þ

The forces P1 and P2 acting, respectively, at the left and
right ends of the specimen are given by:

Fig. 6 Averaged true stress–true strain curves of specimens 1–8 at different strain rates

Fig. 7 Notched specimens at different stress triaxiality (r*). (a) Specimen geometry (thickness = 2.0 mm) (all dimensions in mm). (b)
Specimens 9–12 (Batch-a) after the experiments
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Fig. 8 Averaged true stress–true strain curves of specimens 9–12 at various r* (at a strain rate value = 0.0003 s�1)

Fig. 9 Specimens for tensile experiments at elevated temperatures (at strain rate = 0.0003 s�1). (a) Specimen geometry (thickness = 2.0 mm)
(all dimensions in mm). (b) Specimens 13–16 (Batch-a) after the experiments

Journal of Materials Engineering and Performance



P1 ¼ EAt ei þ erð Þ ðEq 10aÞ

and

P2 ¼ EAt et ðEq 10bÞ

where At is the cross-sectional area of the incident and
transmitter bars. The specimen is in equilibrium under the
action of the above forces, i.e. P1 = P2 = P. So, Eq 10a, b
yields et ¼ 0.33emei þ er. Therefore, the stress, strain, and
strain rate acting on the specimen can be obtained, respectively,
from the following equations:

rs ¼
P

As
¼ Eet

At

As
ðEq 11aÞ

es ¼
�2c0
Ls

Z t

0

er dt ðEq 11bÞ

_es ¼
�2c0
Ls

er ðEq 11cÞ

where As is the cross-sectional area of the specimen.
The response of the specimen material under dynamic loads

can be characterised by accurately measuring the reflecting and
transmitted impact waves and by knowing the elastic modulus,
density, and cross-sectional area of the bar and the cross-
sectional area and length of the specimen.

SHPB experiments were conducted on four circular spec-
imens at room temperature and strain rates of 3000 and 8000 s-

1. Specimen geometry used in these experiments is shown in
Fig. 4(a), and the first batch of specimens after experiments are
shown in Fig. 4(b). The impact waves are measured with strain
gauges, as shown in Fig. 5(a), by acquiring the strain signals
from the strain gauge mounted on the bars. The inset of
Fig. 5(a) shows the force balance of the sample, i.e. the
specimen. Stress acting on the sample-incident bar and sample-
transmission bar interfaces is represented by P1 and P2,
respectively. The sample is in equilibrium. The averaged true
stress–true strain curves obtained from SHPB experiments
using Eq 11a–c are shown in Fig. 5(b). These stress–strain data
demonstrated a phenomenal increase in the strength of the
material at higher strain rates. True stress–true strain curves at
all strain rates are shown in Fig. 6.

3.3 Tensile Experiments of Notched Specimens

Tensile experiments were conducted on two sets of 4
notched specimens with various stress triaxiality (r*) values.
The values of stress triaxialities are found to be 0.33, 0.49, 0.7,
and 0.95. These values are obtained through the FEA
simulation of each notched specimen, and the procedure
followed to obtain these values is explained in Sect. 4.2.2.
The geometry of these notched specimens is shown in Fig. 7(a),
and the first batch of the experimented specimens is shown in
Fig. 7(b). Averaged true stress–true strain curves of notched
specimens obtained from these experiments are shown in
Fig. 8. The experimental results exhibited a substantial decrease
in failure strain and a marginal change in ultimate strength
when the stress triaxiality is increased from 0.33 to 0.49; and
from 0.49 to 0.7; a decrease in failure strain and an increase in

Fig. 10 Averaged true stress–true strain curves of specimens 13–16 at elevated temperatures (at strain rate = 0.0003 s-1)
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ultimate strength are observed, but after 0.7, the changes in
responses are minimal.

3.4 Tensile Experiments at Elevated Temperatures

Tensile experiments were conducted on two sets of 4
specimens at elevated temperatures of 200, 400, 600, and
800 �C, respectively. The geometry of these specimens is
shown in Fig. 9(a), and the first batch of damaged specimens
after the experiments is shown in Fig. 9(b). The averaged true

stress–strain curves obtained from these experiments are shown
in Fig. 10. The results demonstrated an increase in failure strain
and a reduction in the ultimate strength of the material with the
increase in temperature. The change in these responses is quite
significant when the temperature increases from 400 to 600 �C.
At 800 �C, the material behaved plastically with a constant
ultimate strength of less than 40 MPa and failed with less
plastic displacement than specimens at 600 �C.

Fig. 11 Determination of B and n

Fig. 12 Determination of C
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Fig. 13 Determination of m

Fig. 14 Computation of accumulated critical plastic strain
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4. Determination of J–C Strength and Damage
Model Parameters

Johnson–Cook�s five strength model parameters (A, B, n, C,
and m) and five damage model parameters (D1 to D5) are
extracted from sixteen different types of experiments discussed
in Section 3.

4.1 J–C Strength Model Parameters

4.1.1 Determination of A, B, n. The parameters A, B,
and n in Eq 1 are determined from the tensile experiments
conducted at a strain rate, _e ¼ 0.0003 s�1 and room temper-
ature T = 30 �C. Parameter A is the initial yield strength and is
found as 252.3 MPa from the experiment. For determining the
strain hardening coefficient B and strain hardening exponent n,
stress–strain data in the strain hardening region up to the
maximum strength are used. The data from the experiment are
considered to be at a reference strain rate, i.e. _e0 ¼ 0.0003 s�1,
and the reference temperature is taken as T0 = 30 �C which is
also considered as the room temperature T. This, in turn, will
lead to _e� ¼ _e=_e0 ¼ 1 and T* = 0. Substituting these values in
Eq 1 yields the second and third terms as 1 and results in the
following expression:

r� Að Þ ¼ B eð Þn ðEq 12Þ

The strain hardening region from the stress–strain data is
plotted as (r � A) against e as shown in Fig. 11. A trend line
with power fit to this data gives the values matching the form in
Eq 12 where B = 466.72 MPa and n = 0.5447.

4.1.2 Determination of C. Data from experiments con-
ducted at eight different strain rates (as given in Table 2) at
room temperature T = 30 �C, which is also considered as
reference temperature T0, are used for determining C. This will
lead to T* = 0. Substituting this value in Eq 1 yields the third
term as 1, and the equation can be written as follows:

r
Aþ Benð Þ � 1 ¼ C ln _e�ð Þ ðEq 13Þ

Using Eq 13, eight data points can be obtained for the left-
hand side (LHS) term at any given plastic strain (say 5 or 10%)
from stress–strain curves. Considering _e0 ¼ 0.0003 s�1, eight
different strain rates _e give eight corresponding data points for
the right-hand side (RHS) term of Eq 13. Plot of eight LHS data
points against corresponding RHS data for 5 and 10% plastic
strain is shown in Fig. 12.

Linear fit of these eight data points at 5 and 10% plastic
strains gives a value of C as 0.0511. However, a significant
difference is observed between the actual data points with
respect to the linear fit. In order to minimise this error, C is
calculated between a given range of strain rates as 0.010 for _e
< 0.3 s�1; 0.016 for 0.3 s�1 ‡ _e £ 1 s�1; and 0.0511 for _e
> 1 s�1.

4.1.3 Determination of m. In the present work, isother-
mal heating is considered, and load induced adiabatic heating is
neglected to retain the simplistic nature of the original J–C
work. Thermal softening exponent m in Eq 1 can be determined
from the results of tensile experiments conducted at four
different elevated temperatures, as mentioned in Table 2, and

Fig. 15 Obtaining stress triaxiality of notched specimens (9–12 shown in Fig. 7)
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Fig. 16 Determination of D1, D2 and D3

Fig. 17 Determination of D4
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their stress–strain behaviours are shown in Fig. 10. The
reference temperature is T0 = 30 �C, and the melting temper-
ature is Tm = 1415 �C. These experiments were conducted at a
strain rate, _e ¼ 0.0003 s�1, and as earlier, considering the
reference strain rate as _e0 ¼ 0.0003 s�1, the second term in Eq
1 leads to unity. The Eq 1 can now be written as follows:

ln 1� r
Aþ Benð Þ

� �
¼ m lnðT�Þ ðEq 14Þ

Using Eq 14, four data points for LHS and RHS terms can
be obtained at four different temperatures at plastic strains of 5,
10, 15, and 20%. The LHS term is plotted against the RHS term
at four different temperatures for the considered plastic strains,
as shown in Fig. 13. The linear trend line fits between these
data points at each value of plastic strain gives the value of m as
the slope of these lines. The slopes at four values of plastic
strains, i.e. 5, 10, 15, and 20%, respectively, resulted in values
of m as 0.6515, 0.805, 0.8537, and 0.8597. The average value
of m is found to be 0.79.

4.2 J–C Damage Model Parameters

Five different J–C�s damage model parameters D1–D5 are
determined from the results of different tensile experiments.
The procedures are detailed in this section.

4.2.1 Failure Strain from Experiments. Failure strain is
given by the expression (Ref 3, 13):

ef ¼ ln
A0

Af

� �
ðEq 15Þ

where A0 is the initial cross-sectional area of the specimen at
gauge length location before the experiment, and Af is the
cross-sectional area after the experiment. The failure strain in
each experiment is obtained by measuring the cross-sectional
area of the specimens before and after the experiments and from
Eq 15.

From the average normalised load-deflection curve of the
plain specimens at reference strain rate and temperatures shown
in Fig. 14, it can be observed that, at a certain point of
deflection, load gradually reduces when deflection reaches a
critical value. After reaching the critical value, a sudden
reduction in load can be observed. This location is assumed to

Fig. 18 Determination of D5

Table 3 Determined parameters of Johnson–Cook strength and damage models

J–C strength model A
(MPa)

B
(MPa)

n C m

252.3 466.7 0.545 0.010 (_e< 0:3s�1Þ 0.79
0.016 (0:3s�1 > _e< 1s�1Þ
0.051 (_e> 1s�1Þ

J–C damage model D1 D2 D3 D4 D5

0.026 1.223 � 0.683 � 0.054 1.517
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be the point of change in curvature for the load-displacement
curve between maximum load and failure. This location of the
change in curvature (knee point) is found using the Kneedle
algorithm proposed in Ref 14. This value is 87.5% of the total
deflection. The critical value of accumulated plastic strain is
also assumed to be equal to 87.5% of the fracture strain. In the
present work, all the J–C failure parameters are computed by
considering the critical value of plastic strains instead of
fracture strains.

4.2.2 Determination of Stress Triaxiality of Notched
Specimens. FEA simulations are conducted on the notched
specimens shown in Fig. 7(a) using the J–C constitutive
parameters obtained in Sect. 4.1. Curves obtained by plotting
mean stress to von-Mises stress in the centre element at the
middle cross section of the specimens are shown in Fig. 15. The
slope of these curves remains almost constant within the elastic
stage and continuously increases in the plastic stage. In the
present work, the stress triaxiality of each specimen is obtained
by plotting the linear curve fit to this data within the elastic
limit where the distortion of the element is negligible. The
values of stress triaxialities are found to be 0.33, 0.49, 0.7, and
0.95 for the specimens S9, S10, S11, and S12, respectively.

4.2.3 Determination of D1, D2, and D3. The values of
damage model parameters D1, D2, and D3 are determined from
tensile experiments of notched specimens conducted at a strain
rate _e ¼ 0.0003 s�1 and at temperature T = 30 �C. Considering
the reference strain rate as _e0 ¼ 0.0003 s�1 and reference
temperature as T0 = 30 �C, will lead to _e� ¼ _e=_e0 ¼ 1 and
T* = 0. Substituting these values in Eq 3 yields the second and
third terms as 1 and results in the following expression:

ef ¼ D1 þ D2e
D3r�ð Þ ðEq 16Þ

The data of experimental failure strain ef are plotted against
the respective stress triaxiality r� in Fig. 16. Fitting the curve
based on Eq 16 to these data points by adopting minimisation
of errors based on least squares gives values for D1, D2, and D3

as 0.026, 1.223, and � 0.683, respectively.
4.2.4 Determination of D4. The value of D4 can be

determined from the results of tensile experiments conducted at
six different strain rates at temperature T = 30 �C, as given in
Table 2. Considering the reference temperature as T0 = 30 �C
leads to T* = 0, which in turn results in the third term in Eq 3
attaining a value of 1, and the equation reduces to:

ef
D1 þ D2e D3r�ð Þ½ � � 1 ¼ D4 ln _e

� ðEq 17Þ

Fig. 19 Comparison of experimental and J–C model predictions for
plain tensile specimen. (a) Specimen Geometry (all dimensions in
mm). (b) FEA model. (c) Experimented Specimen. (d) Experimental
vs. predicted results

Fig. 20 Comparison of experimental and J–C model predictions for
a notched tensile specimen. (a) Specimen geometry (all dimensions
in mm). (b) FEA model. (c) Experimented specimen. (d)
Experimental vs. predicted results
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Reference strain rate is considered as _e0 ¼ 0.0003 s�1.
Using Eq 17, six data points are obtained for the LHS term
from stress–strain curves. The plot of these six LHS data
against corresponding RHS data is shown in Fig. 17. A linear
trend line fit to the data points provides its slope as
D4 = � 0.0537.

4.2.5 Determination of D5. The value of D5 is determined
from the results of tensile experiments conducted at four
different elevated temperatures. Since all these experiments

were conducted at the reference strain rate of 0.0003 s�1 itself,
the second term in Eq 3 leads to unity, and the equation can be
written as follows:

ef
D1 þ D2e D3r�ð Þ½ � � 1 ¼ D5T

� ðEq 18Þ

Using Eq 18, four data points for LHS and RHS terms can
be obtained at four different temperatures and are plotted as
shown in Fig. 18. The linear trend line fit between these data
points gives the value of slope as D5 = 1.517.

4.3 Damage Evolution

In the present work, a different approach is followed to
implement damage initiation and evolution to use the default
input parameters available in Abaqus Explicit (Ref 15). As
explained in sect. 2.2 and 4.2.1, the damage initiates when the
accumulated plastic strain in the material reaches the critical
value of plastic strain given by Eq 2 and is shown in Fig. 1. All
the J–C damage parameters thus computed will define this
critical plastic strain at which damage initiates. Then, the
damage evolution is implemented in Abaqus (Ref 15) using the
fracture mechanic-based stress–displacement response pro-
posed by Hillerborg et al. (Ref 16) instead of the stress–strain
response in order to reduce mesh dependency due to strain
localisation. Stress in the material element in a damaged state,
rD in this phase is defined by Eq 4, and the value of D is
obtained by assuming a linear relationship between upl, the
effective plastic displacement and damage variable which is
given by:

D ¼ upl

uplf
ðEq 19Þ

where uplf is the plastic displacement at failure. Hillerborg et al.
(Ref 16) proposed that the crack is assumed to propagate when
stress at the crack tip reaches the tensile strength of the material,
ry and the amount of fracture energy Gf, absorbed per widening
the unit crack area is given by:

Gf ¼ r
wl

0

rydw ðEq 20Þ

where wl is the crack tip opening displacement equivalent to
uplf .

It is implemented in Abaqus (Ref 15) as follows:

Gf ¼
ryu

pl
f

2
ðEq 21Þ

Gf is a material parameter and can be represented by the area
under the stress–displacement curve of the pre-notched spec-
imen. In the present work, the area under the load-displacement
curve of the notched specimen (i.e. Specimen-11(a and b)
shown in Fig. 7(a)) per unit cross-sectional area is taken as the
fracture energy required for opening unit area of the crack,
which is found to be 224.6 N/mm.

The element will be deleted when D = 1, i.e. when plastic
displacement in the material reaches plastic displacement at
failure obtained from Eq 21, which is implemented as a default
algorithm in Abaqus explicit FEA code (Ref 15).

The summary of determined values of J–C�s five strength
model parameters and five damage model parameters is
provided in Table 3.

Fig. 21 Experimental burst disc geometry (all dimensions in mm).
(a) Geometry of flat burst disc. (b) Score geometry. (c) Flat burst
disc
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5. Experimental Validation of Determined J–C
Model Parameters

To validate the determined J–C�s strength and damage
model parameters, three experimental data are compared with
respect to FEA simulation results. The first one is the average
load-displacement curve of tensile experiments conducted at
1.08 s�1 strain rate, the second one is the load-displacement
curve of a separate notched specimen tensile tested at 0.3 s�1

strain rate, and the third one is a comparison of pressure-strain
curves from the burst experiment of a flat burst disc. The
experiments are numerically simulated in Abaqus Explicit (Ref
15) using the determined model parameters and damage
evolution approach thus discussed.

5.1 Validation-1: Plain Tensile Specimen

The tensile experiment of plain specimen at 1.08 s�1 strain
rate is considered to validate the determined J–C model
parameters. Specimen geometry and the fractured specimens
are shown in Fig. 19(a) and (c). The half model is discretised
using 19610 C3D8R eight-node solid brick elements with
reduced integration and a symmetric boundary condition is
adopted. A maximum element size of 0.5 mm is retained. The
FEA model is fixed at one end, a displacement loading of

65 mm/s is applied at the other end, and the simulation is
continued until the failure of the specimen, where the failed
specimen is shown in Fig. 19(b). The specimen failed at the
minimum cross-sectional region in the middle. A good
agreement is obtained on the failed pattern between the
experiment and simulation. Further, the load-displacement
curves obtained from experiment and simulation are shown in
Fig. 19(d). The results are in close agreement with each other.
Thus, the predicted load-displacement response and failure
pattern matched closely with experimental results.

5.2 Validation-2: Notched Tensile Specimen

In the second independent validation, a notched specimen
prepared with a stress triaxiality of 0.49 is subjected to a tensile
experiment at a strain rate of 0.3 s�1. Specimen geometry and
the fractured specimens are shown in Fig. 20(a) and (c). The
half model is discretised using 19490 C3D8R eight-node solid
brick elements with reduced integration, and a symmetric
boundary condition is applied. A maximum element size of
0.5 mm is adopted from a mesh convergence study. The FEA
model is fixed at one end, a displacement loading of 10 mm/s is
applied at the other end, and the simulation is allowed to run
until the failure of the specimen. The failed specimen in the
simulation is shown in Fig. 20(b). The specimen failed at the
minimum cross-sectional region in the notched region. A good

Fig. 22 Hydrostatic experiment of the flat burst disc. (a) Schematic view of the experimental setup. (b) Flat burst disc at the instant of failure.
(c) Propagated crack
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agreement is obtained on the failed pattern between the
experiment and simulation. Further, the load-displacement
curves obtained from experiment and simulation are shown in
Fig. 20(d). The results are in close agreement with each other.
Both the load-displacement response and failure pattern from
the simulation matched closely with experimental results,
thereby validating the accuracy of the determined model
parameters.

5.3 Validation-3: Hydrostatic Burst Experiment of Flat Burst
Disc (FBD)

In addition to the previous two independent validations on
plain and notched tensile specimens, the third validation is
carried out by conducting an elaborate experiment on a flat
burst disc (FBD) subjected to hydraulic pressure until failure

and comparing the strains developed within the disc at four
locations with that obtained from FEA simulation.

5.3.1 Geometry of FBD and Experiment. The geometry
of the FBD used is shown in Fig. 21(a). It is a circular disc of
800 mm diameter laser cut from a 2 mm thick hot rolled sheet
of the same material. Two rectangular scores with a width of
5 mm and a depth of 1.4 mm are milled in a � + � configuration,
as shown in Fig. 21(b). The FBD used in the experiment is
shown in Fig. 21(c).

A schematic view of the burst experimental setup of the
FBD is shown in Fig. 22(a). The disc is clamped at the end of a
pressurised cylindrical chamber with the opening diameter of
720 mm (diameter of the disc on which fluid pressure is
applied). A quartz-based pressure transducer with an accuracy
of 2% and a response time of 0.5 ms is attached to the chamber
to record the pressure inside the chamber during the test. Four
foil-type strain gauges, S1, S2, S3, and S4, having a nominal
resistance of 350X, are bonded to the scored side of the FBD,
as shown in Fig. 21(a), to record the strain response of the disc
under applied pressure. Two strain gauges, S1 and S2, are
placed at 450 to the score and closer to the centre of the disc,
one in radial and another in the tangential direction, at a
distance of 50 mm and 30 mm, respectively. Two other strain
gauges, S3 and S4, are placed on the disc, aligned to the
groove, one nearer the centre at 100 mm and another nearer to
the clamping end of the disc at 300 mm from the disc centre.

The actual experimental setup is shown in Fig. 22(b). Before
the experiment, the chamber is pre-filled with water, and
additional hydraulic pressure is applied during the experiment
at a quasi-static loading rate of 0.0003 MPa/s until the burst
pressure Pb of the disc is reached. The observed Pb is
0.331 MPa which took about 992 seconds to form the initial
crack. It is observed that the fracture is initiated away from the
centre of the disc, as shown in the inset of Fig. 22(c) and
propagated along one score until the pressure drops due to
water leakage. Strain response at four locations under applied
pressure is continuously monitored until the chamber pressure
drops to zero.

5.3.2 FEA Simulation of FBD. The Abaqus/Explicit is
adopted for creating the numerical model of the FBD, as shown
in Fig. 23(a) and its FEA simulation. The quarter model is
modelled in 3D, and symmetric boundary conditions are
applied. Automatic time increment is employed. The model is
discretised with 246558 numbers of C3D8R element, an eight-
node brick element with reduced integration and hourglass
control. All three displacement degrees of freedom of nodes in
the annular area of the disc between diameters 720 and 800 mm
(see Fig. 21(a)) are fully constrained, as shown in Fig. 23(b). A
uniformly distributed pressure load is applied on the plain side
of the disc. In order to simulate the problem in nonlinear
explicit FEA with economic computation, the loading rate is
accelerated based on the approach provided by Baker et al. (Ref
17) for the shock response of a blast-loaded elastic oscillator to
calculate the loading rate for the simulation, wherein for a
quasi-static loading regime, the ratio of loading duration td with
respect to the natural time period (1/xn) is given as follows:

xntd � 40 ðEq 22Þ

From the modal analysis of the FBD shown in Fig. 23(a),
the fundamental natural frequency xn is found to be 36.67 Hz.
From Eq 22, td is computed as 1.09 s. Considering the

Fig. 23 FEA simulation setup for the flat burst disc. (a) FE model.
(b) Loads and boundary conditions
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experimentally achieved Pb of 0.331 MPa and the calculated td,
the rate of loading for simulation is taken as 0.3 MPa/s. A mesh
convergence study is carried out to find the optimum number of
elements through the thickness of the FBD, and the model with
4 elements through the plate thickness, i.e. 0.5 mm of element
size, gave an economical and converged solution, which is
considered for comparison and validation of FEA simulation
with experimental results.

5.3.3 Comparison Between FEA Simulation and Burst
Experiment. At this loading rate of 0.3 MPa/s, it is observed
from the simulation that the strain is concentrated along the
score at the central region of the disc. The failure is initiated at
the score location away from the centre of the disc, as seen in
Fig. 24(a). This failure is initiated when the accumulated plastic
strain reaches the fracture strain. Subsequently, failure propa-
gated towards the centre of the disc upon further loading, as
observed in Fig. 24(b). A similar behaviour is observed during
the experiment, as shown in Fig. 22(b) and (c). The simulation
using the determined J–C�s material and damage model
parameters resulted in the burst pressure of 0.327 MPa as
against 0.331 MPa recorded in the experiment. The normal
strain in the direction of the uniaxial strain gauge predicted
from the FEA simulation is compared with the experimentally
observed strain values at the four strain gauge locations S1, S2,
S3, and S4, as shown in Fig. 25. The predicted strain profiles
matched very closely with that of the experiment. Thus, close

agreements are found between the simulation and experiment
on the failure pattern up to initiation of the burst, burst pressure,
and strain profiles, thereby validating the determined material
and damage parameters of J–C model.

6. Conclusions

Johnson–Cook strength and damage models are very
popular in numerically simulating the large deformation, strain
and strain rate hardening, thermal softening, and damage
initiation in ductile materials undergoing loadings at low to
high strain rates. This paper has presented the experimental
determination of ten different Johnson–Cook�s strength and
damage model parameters for E250 structural steel. The
parameters have been determined from the results of sixteen
types of experiments conducted at various strain rates (0.0003–
8000 s�1), stress triaxialities (0.33–0.95), and temperatures
(30–800 �C). Three values of the strain hardening coefficient
are proposed for various ranges of strain rates. Determined J–
C�s strength and damage model parameters have been
employed in numerically simulating the experiments of a
separate i) plain tensile specimen, ii) a notched tensile
specimen, and iii) burst disc under hydrostatic loading. The
stress–strain response of plain and notched tensile specimens,
the pressure-strain response of the flat burst disc, and the failure

Fig. 24 FEA simulation results. (a) Initiation of the crack in the score region (P = 0.327 MPa). (b) Propagation of crack in the score region
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pattern from all three simulations, including the burst pressure
in the third simulation, agreed, respectively, with the three
experiments, thereby validating the determined J–C�s strength
and damage model parameters. The methodology has been
explained step-by-step, which can be followed for determining
the J–C model parameters of any ductile material. The
determined model parameters can be directly used in any
commercially available nonlinear explicit FEA codes.
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