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The corrosion resistance of two multilayered metallic/ceramic coatings deposited from a 50:50 vol.% CrAl
target, with a-CNx top layer deposited by High Power Impulse Magnetron Sputtering (HIPIMS) onto A11
tool steel was studied. The CrAl/CrAlN multilayer coatings with, and without a-CNx top layer, charac-
terized by FE-SEM resulted in two different layers thicknesses of 1.5 and 1.2 lm, respectively. A glassy-like
morphology was observed in the CrAl layer and in the CNx top layer, whereas the CrAlN layers exhibited a
columnar morphology. XRD-analysis revealed a CrAlN FCC structure (111), accompanied of a Cr phase
(110). Raman spectra for the CNx top layer, showed the characteristic peaks of G (Graphitic) and D
(Disorder) for molecular vibrations in a-CNx containing thin films. Peaks were located between 1200 and
1700 cm21. XPS results, on the other hand, showed the characteristic peaks for Cr, Al, N, present in both
coatings. The deconvoluted peaks agreed with Cr2p3/2, Al2p, and N1s binding energies, respectively;
besides; XRF analysis confirms the bulk chemical composition of these coatings. The electrochemical
impedance, and potentiodynamic polarization tests in a 3.5 wt.% NaCl solution, displayed an improvement
in the corrosion resistance for a-CNx top layer, and up to 15 times in Rp values compared to AISI A11
substrate.

Keywords carbon nitride, chromium aluminum nitride, corrosion,
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1. Introduction

In many industrial applications like milling, turning steel
and high-speed cutting, there is a need of protecting industrial
tools with nitride hard coatings to overcome the problems
associated with high temperatures, oxidation and corrosive
environments, and extend the service life of these tools (Ref 1-
3). PVD techniques are widely used to deposit thin films with
good adherence to the substrate at low temperatures to avoid
microstructural damage in the substrate (Ref 4). Transition
metal nitride coatings like TiN (Ref 5, 6) and CrN (Ref 7, 8), as
well as amorphous carbon (a-C) are widely used to provide
anti-corrosion protection (Ref 9-11). Compared to TiN, CrN-

based thin films provide superior wear and corrosion resistance
with high thoughness (Ref 7). CrN thin films have been
successfully applied to coating industrial components from
molding dies, cutting tools, including metal processing devices
(Ref 12). However, it is well known that CrN/metal deposited
by sputtering present a columnar morphology which is a
disadvantage for some mechanical properties where grain
boundaries, micropores, valleys and cracks forming during
PVD deposition process, can serve as paths for corrosive ions
in solution through the substrate (Ref 9, 13). It has been
reported that CrN-based films plus another metals such as Al,
Si, B, and Ti, suppress the columnar growth of CrN coatings
(Ref 14). The deposition of CrAlN thin films form a ternary
system, that improves mechanical, tribological, corrosion
resistance and thermal stability (Ref 7, 14-18). However, some
studies found a critical thickness when CrAlN films are
deposited through co-sputtering from a binary target composed
of chromium (99.95%) and aluminum (99.99%), due to
decreased corrosion resistance when the layer thickness reached
up to 2.7 lm, and emergence of phases prone to corrosion (Ref
15). Besides, other studies of CrAlN layers obtained with one
Cr/Al target (50/50 at.%) or with two targets (Cr and Al)
deposited by magnetron sputtering, the film deposited from one
homogeneous target showed low frictional coefficient and a
columnar morphology; however, those deposited from two
targets have better control over the chemical composition,
dense morphology, higher hardness and improved Young�s
modulus (Ref 19). Some researchers suggest a multilayer
architecture, to enhance the mechanical and tribological
properties, fracture toughness and the mechanical behavior, as
well as the corrosion resistance of the films (Ref 20). Compared
with single layer films, multilayers have more interfaces, that
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decrease the number of defects, enhancing the crack and
corrosion resistance (Ref 21). A multilayer of CrAl/CrAlN
coating deposited by magnetron co-sputtering pulsed DC
method with a target Cr/Al (25/75 at.%) area ratio, showed
compressive stress when bilayer period was reduced. XPS
analysis showed that the elemental concentration of CrAlN
films is controlled by the applied power in the target and Ar/N2

gas ratio (Ref 22). On the other hand, CrAlN multilayer films
were doped with elements such as Si to modify its microstruc-
ture, restricting the grain growth, or adding an amorphous CNx

structure to increase the corrosion resistance in NaCl solution
(Ref 9, 10, 20). More recently, researchers have investigated the
structure and properties of CrN-based films deposited through
high power impulse magnetron sputtering (HIPIMS), such
coatings showed a dense defect-free structure morphology (Ref
23-25). HIPIMS is known to allow high ion densities in the
plasma, with a relatively small deposition rate. On the contrary,
HIPIMS coatings have shown higher density in comparison to
other PVD techniques (Ref 26, 27). Also, coatings with a
refined structure and lower residual stresses and higher
hardness can be obtained (Ref 13, 26). Some results have
been used for industrial applications for the improvement of
coatings used in the plastic processing industry (Ref 28).
Besides, some studies were directed to improve the corrosion
resistance of multilayer coatings by adding a CNx top layer,
deposited through HIPIMS technique (Ref 9, 10). However,
investigations regarding the corrosion resistance of metallic/
ceramic multilayer coating by HIPIMS are still limited. The aim
of this research is to improve the corrosion resistance of an
AISI A11 tool steel by means of a two architecture CrAl/CrAlN
multilayer coating from sectioned targets (Cr:50-Al:50), and the
effect of an amorphous a-(CNx) top layer deposited by HIPIMS.

2. Material and Methods

2.1 Deposition by HiPIMS

AISI-A11 tool steel substrates were tempered (55 HRC),
and polished until reaching a roughness of Ra = 40 nm. Silicon
wafers were also used as substrates (99.999% purity, crystal
orientation < 111 > ± 0.5�). Both substrates were cleaned
in an ultrasonic bath in acetone and absolute alcohol, 15 min.
each. Subsequently, samples were dried with a flux of N2 to
prevent oxidation. CrAl/CrAlN multilayer coatings were grown
from a 50:50 vol.% CrAl target (2-inch diameter and 99.95%
purity) while C target (2 inch in diameter and 99.95% purity)
was used for the a-CNx top layer in the presence of argon and
nitrogen (99.999%), serving as working and reactive gas,
respectively. All substrates were fixed at 70 mm from each
magnetron, substrates were grounded at the substrate holder.
Before deposition, the chamber was evacuated to a base
pressure of 3.99 9 10�4 Pa. The targets were cleaned through
DC current during 2 h, at a working pressure of 0.66 Pa with an
Ar flow rate of 20 sccm. Followed by a HIPIMS clean up using
deposition parameters (see Table 1) before the multilayer
deposition process. Architecture and all the HIPIMS parameters
are summarized in Table 1. CrAl layer was grown at 0.66 Pa
with an Ar flow rate of 20 sccm. CrAlN layer was deposited in
a reactive N2 flow rate of 13.5 sccm in a 1.48 Ar/N2 ratio, same
parameters were used for the a-CNx top layer. Deposition
temperature was around 110 �C ± 5, and no substrate bias

voltage was used. First, multilayer architecture was formed
alternating eight CrAl/CrAlN layers and labeled as S4 (see
Table 1b), meanwhile, multilayer S5 was composed by six
alternated CrAl/CrAlN layers and a top CNx layer.

2.2 Structure, Morphology and Chemical Characterization

Phase characterization of coatings was assigned using x-ray
diffraction by means of a D8 Advance Bruker diffractometer
with a Cu-Ka Cu radiation (k = 1.5418) with an energy of
30 kV, 30 mA and 0.01�/s as the scan rate in a 2h range of 30-
90�. The morphology and thickness were evaluated from cross-
sectional images by using a Field Emission Scanning Electron
Microscope (Tescan MIRA 3 LMU). The a-CNx top layer was
analyzed by Raman spectroscopy using a confocal microscope
(DXR, Thermo Scientific) with a 532 nm laser wavelength. A
chemical bond was analyzed for each CrAl and CrAlN layer
deposited separately in silicon substrates, by means of X-ray
photoelectron spectroscopy (XPS) with a monochromatic
source Al K-alpha beam energy 1486.7 eV, power of 250 W
and 12.5 kV. The x-ray fluorescence (XRF) analysis of
multilayers were performed by a S2 PUMA Series 2 spec-
trometer.

2.3 Electrochemical Test

The electrochemical properties were evaluated by potentio-
dynamic polarization (PP) and electrochemical impedance
spectroscopy (EIS), using a potentiostat/galvanostat (Corrtest
CS350). A three-electrode cell was used in NaCl 3.5 wt.% at
room temperature (25 �C). The Open Circuit Potential (OCP)
was recorded for 60 min. The PP tests were carried out at a
scan rate of 0.16 mV/s from � 1 to 1 V versus OCP; while the
EIS tests were recorded on wide range of frequencies from
1 MHz to 0.1 Hz with 20 mV of amplitude at same configu-
ration used in PP tests.

3. Results and Discussion

3.1 Structure and Morphology

The diffractograms of S4 and S5 samples are seen in
Fig. 1(a), and (b). In both samples, (111), (200), (220) and
(222) diffraction peaks are observed, corresponding to CrN
NaCl type crystal structure (Ref 12, 14). In both samples, AlN
phase (200), (220), and (111) were observed, but with less
intensity. However, CrAlN phase is commonly associated with
CrN diffraction peaks, hence CrAlN films have a predominant
cubic structure, these results are in agreement with those
reported previously (Ref 22, 29, 30). Samples S4 and S5,
exhibited an FCC structure of CrAlN (JCPDS 25-1495);
however, sample S5 exhibited peaks with different intensity,
which could be attributed to the a-CNx top layer. These results
agree well with those reported previously (Ref 9, 15, 19, 31).

Additionally, Fig. 1(c) shows the Raman spectra for the CNx

top layer, where characteristics peaks of D (Disorder) and G
(Graphitic) for molecular vibrations in a-CNx thin films are
located between 1200 and 1700 cm�1. The peak centered at
1375 cm�1 is associated to disordered band (D), meanwhile,
graphitic band (G) is located at 1562 cm�1. Similar Raman
results have been observed for pure carbon films, which are
associated to sp2 C sites (Ref 32, 33). Studies in amorphous
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carbon nitride coatings showed that the G band appear by the
C–C stretching vibrations of sp2 bonds, meanwhile D band is
associated to breathing modes in both sp2 rings and chains (Ref

34). Those peaks were fitted with a Gaussian deconvolution. A
glassy morphology was observed for the CrAl layer (S4 sample,
Fig. 2a) and in the a-CNx top layer (S5 sample, Fig. 2b), as has

Table 1. a) Multilayer HIPIMS parameter and b) multilayer architecture

Sample
ID

Layer
Pulse

width, ls
Frequency,

Hz
Voltage,

V
Peak

current, A
Peak power density,

W/cm2
Thickness/
period, nm

Time,
minPeriods Composition

a)
S4 4 CrAl 20 300 610 34 1,023 155 12

4 CrAlN 20 300 420 50 1,036 235 45
S5 1 top layer CNx 30 300 735 53 1,921 85 13

3 CrAl 20 300 610 34 1,023 155 12
3 CrAlN 20 300 420 50 1,036 235 45

b)

CrAlN

CrAl

AISI-A11

CNx

Sample S5

CrAl

CrAlN

AISI-A11
Sample S4

Fig. 1 XRD diffractograms: (a) for sample S4 and (b) for sample S5. Raman spectrum: (c) CNx top layer
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been reported in other studies (Ref 10, 22, 35). However,
CrAlN layers presented the characteristic columnar morphol-
ogy (Ref 13, 28). Both samples presented a total thickness of
1.5 and 1.2 lm, respectively.

3.2 Chemical Characterization

Figure 3 and 4 shows XPS spectra of S4 and S5 coatings.
The binding energies of all elements were calibrated by
referencing the C1s peak at 284.8 eV. And XPS spectra were
fitted using Gauss-Lorentzian peak shapes, all the samples were
ion eroded before XPS measurements. Figure 3(a) shows the
XPS survey spectrum for CrAl/CrAlN films, the peaks at 575.8,
533, 397.8, 285.2, 118.2, 74.0, and 42.7 eV corresponded to
Cr2p3/2, O1s, N1s, Al2s, Al2p, and Cr3p binding energies,
respectively. As shown in Fig. 3(b), the high-resolution
spectrum of Cr2p is composed of spin doublets, separated by
9.3 eV. The XPS spectrum Cr2p3/2 was deconvoluted in four
peaks, located at 575.2 eV representing a CrAlN phase, peak at
576.9 eV for CrN phase and for 579.9 eV Cr2O3 phase,
respectively, meanwhile 585.4 eV corresponding to Cr2p1/2.
Some researchers reported two peaks for the Cr2p (575.6 and
578.3 eV) associated with Cr–N and Cr–O3 bonds and the
second one (585.5 eV) assigned to Cr–N bond (Ref 22, 35).
Figure 3(c) showed Al2p spectrum, deconvoluted in three peaks
with the characteristic peaks, at binding energy 73.4 eV for
CrAlN phase, another peak at 74.0 eV from AlN phase and the
peak 78.5 eV represents Al2O3 phase (Ref 22, 35-37). Finally,
as is seen in Figure 3d), the deconvoluted spectrum of N1s
showed a peak at 396.5 eV related to CrN phase, followed by a
weaker peak at 399 eV from N1s (Ref 38, 39).

Figure 4(a) shows the XPS survey spectra for CNx top layer
in sample S5, peaks at 531.7 eV, 398.5 eV, and 285.2 eV from
O1s, N1s, and C1s binding energies, respectively. As can be
seen in Figure 4(b), high-resolution spectrum for C1s is
deconvoluted in three peaks centered at 285.0 eV for sp2C–N,
286.1 eV from sp3C–N and 288.2 eV representing C-O. The
N1s spectrum in Figure 4(c) was deconvoluted into two peaks
centered at 398.9 eV for N-sp3 C bonds and 400.2 eV from N-
sp2 C bonds (Ref 40, 41). The core electronic spectra carry
information of the chemical composition of the CrAl/CrAlN
films, the concentration measurements and identification of
specific bonding were the result of the integral of O1s, N1s,
C1s, Al2p3/2, and Cr2p3/2 spectra, to measure concentrations

of Cr, Al, N, and C elements. The deconvoluted peaks were
used to estimate the bond contents, according to the following
equation (Ref 42):

Ci ¼
X

ðAi=SiÞ=
X

Aj=Sj
� �

ðEq 1Þ

Where S is the sensitivity factor, A is the integral of
deconvoluted peaks, and C is the atomic content. Numerator
part is the sum of the integral of one sort of bond, denominator
part is the sum of the integral of all types of bonds decomposed
from the whole peak of O1s, N1s, C1s, Al2p3/2, and Cr2p3/2
spectra. Atomic concentration of CrAl, CrAlN, and CNx films
are listed in Table 2. The XPS results reveal that Cr and Al
atoms have bonded with N atoms to form nitrides, the atomic
concentration (see Table 2) obtained by XPS for sample S4 and
S5, is under the theoretical maximum solubility of fcc-AlN in
the fcc-CrN which is around 77% (Ref 43, 44). XRF results of
the bulk chemical composition is listed in Table 3 and agreed
well with the XPS superficial atomic concentration obtained in
sample S4; however, sample S5 shows a light discrepancy for
the Cr and Al concentration, which is attributed to the
equipment limitation to quantify light elements. And the
sputtering yield of Cr and Al species when reactive atmosphere
is deposited (Ref 22, 45, 46). Similar results have been
observed from EDS-SEM analysis (Ref 30, 46, 47).

3.3 Corrosion and Electrochemical Resistance

The PP curves for the AISI-A11 substrate and multilayer
coatings are presented in Figure 5a). For the AISI-A11 in 3.5
wt.% NaCl a shift on the anodic curve was observed when the
potential reaches the range between � 0.631 and � 0.511 V,
owing to the passivation layer formation until its dissolution
followed by a formation of a second passivation layer with an
increment in the current density, similar results were mentioned
in some studies (Ref 15, 48). The anodic shift in the sample S4
could be due to the formation of a weak passivation film in the
potential range of � 0.599 and � 0.538 V. This behavior has
been observed before, and is associated to CrAlN coatings
surface defects (Ref 20). It is seen that multilayer coatings
enhanced the corrosion resistance of the AISI-A11 substrate.
Computed values are presented in Table 4, where Ecorr more
positive values are related to anti-corrosion properties hence,
sample S5 has the highest Ecorr values (� 0.478 V). Besides,

Fig. 2 SEM cross section micrographs: (a) Sample S4 and (b) Sample S5
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lower corrosion density values of 1.301 (lA/cm2), compared to
2.586 and 19.46 (lA/cm2) for sample S4 and AISI-A11,
respectively. Where higher Icorr value means higher corrosion
rate once corrosion started. Polarization resistance of the
different alloys is inversely proportional to corrosion current
density and directly proportional to their corrosion potentials,
hence, sample S5 shows higher polarization resistance (Rp) of
4.070 kX cm2 compared to sample S4, these results are
attributed to the addition of a-CNx top layer (Ref 10).

Nyquist plots exhibit single semicircles in all tests, without
degradation of the samples in NaCl solution. Figure 5(b),
shows the semicircles for AISI-A11 steel and coated samples
S4 and S5, as can be seen for sample S5, the semicircle is larger
in comparison to S4. Therefore, a ceramic behavior of the
multilayers with the a-CNx top layer, indicates an improvement
in the corrosion resistance, followed by the sample S4 (CrAl/
CrAlN) multilayer without the a-CNx top layer, both samples
coated improved the corrosion resistance of AISI-A11 steel.

The Bode plots revealed the phase angle as a function of the
frequency that is used to confirm Nyquist data. EIS results
postulate two different interfacial reactions related to coating-
solution interface and substrate-coating interface. Figure 5(c)
sample S5 displays the broadest frequency range (0.04-
2000 Hz) with a decrease of the phase angle to � 49�, this
increment is related to a stable passive layer due to the CNx top

layer. Sample S4 shows a medium range of frequency (0.02-
1000 Hz) with a phase angle of � 36� corresponding to a weak
passive layer that seems to be dissolved near to a phase angle of
� 18� and starts to form again. Compared to AISI-A11 steel
with two range frequencies (1-1000 Hz and 0.01-1 Hz) with a
phase angle of � 15� and � 7�, respectively. Which is due to
the formation and dissolution of a passive layer over the
substrate. The above results, confirms that sample S5 with a
CNx top layer provides more protection as an ideal capacitor at
a broader frequency range to prevent the substrate from
corrosion, compared to sample S4. Where the corrosion
behavior of CrAl/CrAlN multilayer could be deteriorated due
to AlN formation (Ref 14).

On the other hand, a high modulus of impedance (Z) of
450 Xcm2, was obtained for sample S5 with a low frequency
(0.01-20 Hz), as is seen in Fig. 5(d), followed by sample S4
with a module of impedance of 125 Xcm2 for a low range
frequency (0.01-10 Hz). Finally in Fig. 5(e) shows the open
circuit potential values for sample S4 and S5. It is clear the
influence of the CNx top layer on the OCP values, where these
values implies that the corrosion probability on sample S5 is
lower than sample S4. Thus, the CNx top layer provided an
excellent protection to the substrate AISI-A11 in corrosion
environments.

Fig. 3 XPS survey spectra: (a) CrAl/CrAlN films, and high resolution for (b) Cr, (c) Al, and (d) N
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The equivalent circuits proposed for the substrate and
multilayers is presented in Fig. 6. Fitting values results for
substrate and two coated samples are listed in Table 5. The Rs is
the electrolyte solution between the working and reference
electrodes, Rpo corresponds to the pore resistance, related to
the block effect of the coating to inhibit the electrolyte
penetration. As is seen in Table 5, sample S5 had the highest
Rpo value (14 Xcm2), while sample S4 shows a Rpo value of
(6.15 Xcm2). In Table 5, the n values are related to the surface

coating quality, where sample S4 presents the highest value
(0.726) and the low n values corresponding to sample S5
(0.657); however, the columnar morphology in sample S4
(CrAl/CrAlN) is characterized to allow the pass of the
electrolyte through the substrate (Ref 49-51). Compared to
the non-smooth CNx top layer in sample S5, that affected the
corrosion behavior. On the other hand, Rct values are related to
charge transfer resistance due to the formation of a double layer
of charge at the substrate-electrolyte interface, then a high Rct
value indicates the lower transfer rate of the electron. Sample
S5 shows the highest value (502.5 Xcm2), followed by a minor
value for sample S4 (98.08 Xcm2). Finally, the polarization

Fig. 4 XPS survey spectra: (a) CNx film, and high resolution for (b) C, and (c) N

Table 3 XRF atomic bulk composition of multilayers of
sample S4 and S5

Sample ID

Atomic composition, at.%

Cr Al N

S4 32.46 66.30 …
S5 27.52 69.74 …

Table 2 Atomic composition by XPS of films in sample
S4 and S5

Atomic composition, at.%

(Cr + Al)/NCr Al N

33.53 66.46 … …
56.38 26.26 17.35 4.76

C N

84.72 15.27
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resistance (Rp) which is the sum of all resistance in the EIS
results shows higher value for sample S5 (530.35 Xcm2)
compared to sample S4 (118.86 Xcm2). Porosity ratio obtained
from the measured polarization resistance Rp at given potential
(Ref 52).

P ¼ Rps

Rpc
ðEq 2Þ

where Rps is the polarization resistance of the substrate and Rpc
corresponds to the coating. According to Eq 2, sample S5

Figure 5 Electrochemical analysis plots: (a) The Tafel curves, (b) Nyquist curves, (c) Bode curves evaluation of phase as function of logf (Hz)
and (d) Bode plot of LogZ as function of Logf (Hz) and (e) Open circuit potentials evolution of samples as a function of exposure time for AISI
A11 steel substrate and multilayer sample S4 and S5 in NaCl solution.
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(0.0520) has a low porosity ratio value, compared to sample S4
(0.2324) as is seen in Table 5. Then, these Rpo and Rct and Rp
values for sample S5, which is related to a coating with more
compactness than sample S4 and better corrosion properties
(Ref 53). Figure 7 shows the surface morphology after the
electrochemical tests. Figure 7(a), (b), and (c), shows the
corrosion zone for sample S4 and some magnified zones, where
small pitting holes were observed. On the other hand, Fig. 7(d),
(e), and (f) corresponding to sample S5, a delamination is
clearly observed over the coating after electrochemical tests.
Similar results were reported for CrAlN based, single and
multilayered coatings (Ref 14, 20, 50).

Figure 8 shows the Raman spectra analysis performed in the
corrosion track surface for both samples. The analysis was
carried out into the corrosion zone (CZ) and corrosion line
(CL), surrounded by dotted line, respectively. Figure 8a) shows
the Raman analysis in the CZ for sample S4, where bands at
698 and 1547 cm�1 were seen. The Raman analysis for the CL,
presented only a weak peak at 735 cm�1. According to other
studies, peak at 698 cm�1 corresponds to chromite (FeCr2O4)
(Ref 54). The Raman spectra pattern for chromite consist of a
major peak located around 685 cm�1 companied of a shoulder
weak peak near to 650 cm�1, and a second peak near to
555 cm�1. Chromite belongs to the spinel group of minerals
(Ref 55), where typically chromium substitutes for aluminum
or iron (3 +) in the crystal lattice. On the other hand, a width
peak around 650 cm�1 also is attributed to CrAlN Raman
spectra as previously reported (Ref 22). At high wavelengths of
1547 cm�1 a peak is also observed. Similar results were
observed during graphitic corrosion, when the metallic con-
stituents of gray iron or steel are selectively removed or
converted into corrosion products (Ref 56).

Figure 8c corresponding to the Raman analysis in the CZ
obtained in sample S5, shows a weak peak at 723 cm�1,

followed of two intense peaks at 1379 and 1563 cm�1 and
finally a peak at 2833 cm�1. The peak at 723 cm�1 is attributed
to chromite, where a change in the peak locations, is related to a
change in the chromium and aluminum (iron) (Ref 54). The
peaks between 1350 and 1550 cm�1, are the characteristic
peaks of thin films of a-CNx (Ref 33, 57, 58). And the peak at
2833 cm�1, corresponds to the Al2O3 Raman spectra (Ref 59),
these results agree well with the XPS analysis obtained
previously (see Fig. 3c). The last Fig. 8(d), shows the peaks
for CL where the same peaks around 725, 1376, 1545, and
2814 cm�1 were observed. Raman analysis can be related to
elemental concentration as other studies have shown (Ref 54).
Varies chromite samples were analyzed, and the chromium
number (#Cr), which was calculated as Cr = Cr/(Cr + Al).
Where the results, the main peak for the chromite is located at
the range of 707 to 727 cm�1, and is related to a chromium
number of 0.555. Those results agree well with the atomic
concentration obtained from the XPS analysis (see Table 2),
when CrAlN layer is deposited in both samples.

4. Conclusions

The CNx top layer showed a glassy morphology over CrAl/
CrAlN layers with columnar morphology, with a preferential
orientation (111), (200), (220), and (222).

XPS measurements are in agreement with XRD phases
detected and the clear incorporation of Al into the CrN. XPS
survey spectra for CNx top layer, confirm the presence of sp2C-
N, sp3C-N, and C–O bonds for carbon. And N-sp3 C and N-
sp2 C bonds for nitrogen. CNx bonds are in agreement with
Raman measurements and characteristics peaks of G and D and
the relation I(D)/I(G) attributed to the formation of carbon sp2
bonds.

The electrochemical behavior in NaCl solution observed in
PP and EIS analysis, reveals an increment in the corrosion
resistance for HIPIMS coatings and the better performance was
acquired with a-CNx top layer. The coatings showed an
improvement in (Rp) values for sample S5, up to 15 times
compared to uncoated substrate. Additionally, the Bode and
Nyquist plots, confirmed that S5 with a CNx top layer provides
more protection compared to sample S4.

The equivalent circuit proposed indicates that sample S5 has
a greater density than sample S4 and better corrosion properties

Table 4. Tafel fitting values obtained from the
potentiodynamic polarization test

Sample ID Ecorr, V Icorr, lA/cm
2 Ba, V Bc, V Rp, kX cm2

AISI-A11 � 0.714 19.46 0.020 0.030 0.271
S4 � 0.684 2.586 0.027 0.022 2.035
S5 � 0.478 1.301 0.023 0.024 4.070

Table 5 Equivalent circuit values obtained from electrochemical impedance spectroscopy analysis

Sample ID Rs, Xcm2 CPEcoat, Fcm
-2 n Rpo, Xcm2 CPEdl, Fcm

-2 n Rct, Xcm2 Rp, Xcm2 P

AISI-A11 14.47 … … … 89.77x10-5 0.830 13.16 27.63 …
S4 14.63 1.02x10-3 0.726 6.15 1.16x10-4 0.919 98.08 118.86 0.2324
S5 13.85 4.05x10-4 0.657 14 2.48x10-4 0.807 502.5 530.35 0.0520

Figure 6 Schematic of the equivalent circuit model use to fit impedance EIS data: (a) AISI-A11 steel, (b) Sample S4 and (c) Sample S5
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due to the presence of a a-CNx phase. The multilayers with
different architecture proposed, with thickness of 1.5 and
1.2 lm in this investigation improved the corrosion properties

of the AISI-A11 steel substrate, being a potential protective
surface for corrosion environments such as moving parts during
machining and cutting tools.

Figure 7 (a) Corrosion track for sample S4), (b) Ampliation of Zone 1 and (c) Ampliation of Zone 2. (d) Corrosion tracks for sample S5, (e)
Ampliation of Zone 1 and (f) Ampliation of Zone 2
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