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This research paper presents a novel approach to predicting the surface roughness of polylactic acid (PLA)
specimens manufactured using the additive manufacturing process known as fused deposition modeling
(FDM). The study introduces a unique coupling of genetic algorithm (GA) with four prominent machine
learning algorithms, namely decision tree (DT), random forest (RF), artificial neural network (ANN), and
gradient boosting regressor (GBR). The goal of this coupling is to enhance the accuracy and efficiency of
surface roughness prediction, which is a critical aspect of FDM-based manufacturing. The proposed hybrid
methodology explores the synergistic effect of GA and machine learning algorithms by optimizing the
algorithmic parameters and feature selection. A comprehensive dataset was collected from the PLA
specimens, and various performance metrics were employed to evaluate the effectiveness of the coupled
algorithms. The results indicate that the GA–DT model outperforms the other coupled models, achieving an
impressive R2 value of 0.9378. This high R2 value demonstrates the robustness of the GA–DT model in
predicting surface roughness and highlights its potential applicability in the additive manufacturing do-
main.
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1. Introduction

Additive manufacturing (AM) represents a revolutionary
shift in the landscape of fabrication technologies, offering
unparalleled advantages and opportunities across various
industries. As opposed to traditional subtractive methods,
which involve the removal of material to achieve the desired
shape, AM builds objects layer-by-layer, directly from digital
3D models. This advanced fabrication technique enables the
creation of intricate geometries, customizable products, and
reduced material waste, all of which contribute to increased
manufacturing efficiency and sustainability (Ref 1-5).

The rapid development and adoption of AM technologies
have had a transformative impact on numerous sectors,
including aerospace, automotive, medical, and consumer
goods. The flexibility offered by AM allows for the production
of lightweight, high-strength components, driving innovation in
aerospace and automotive design. In the medical field, AM
facilitates the development of patient-specific implants and
prosthetics, enhancing the quality of patient care. Furthermore,
consumer goods manufacturers benefit from accelerated pro-

duct development cycles and greater design freedom, enabling
them to deliver tailored solutions to their customers (Ref 6-9).

Despite the numerous advantages, AM techniques often face
challenges related to the quality and consistency of the final
products. One such critical challenge is the accurate prediction
and control of surface roughness, which plays a vital role in
determining the functionality and aesthetics of the manufac-
tured parts. Surface roughness affects properties such as
friction, wear, and adhesion, and thus has a significant impact
on the performance and longevity of AM-produced compo-
nents. Surface roughness is a critical factor influencing the
performance of additive manufactured specimens, as it directly
affects various material properties and functional attributes.
Surface roughness influences the mechanical behavior of AM-
produced parts, including their fatigue life, tensile strength, and
fracture toughness. Rough surfaces can introduce stress con-
centrations and micro-cracks, which can act as initiation sites
for crack propagation, leading to premature failure of the
component. The surface roughness of additive manufactured
specimens plays a significant role in determining their wear and
friction characteristics (Ref 10-13). Rough surfaces increase the
contact area between interacting components, resulting in
higher friction and wear rates. This can adversely affect the
energy efficiency, performance, and durability of the moving
parts in various applications, such as bearings, gears, and
sliding components. Surface roughness affects the adhesion and
bonding performance of AM-produced components, which is
crucial in applications like coatings, adhesive joints, and
biomedical implants. A rough surface can provide increased
surface area and mechanical interlocking, improving the bond
strength between the materials. However, excessive surface
roughness may lead to weak bonding due to voids and trapped
air, reducing the overall performance of the component. Surface
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roughness can impact the thermal properties of AM-produced
specimens, such as heat transfer and thermal conductivity.
Rough surfaces may exhibit increased heat transfer rates due to
enhanced surface area and turbulence, which can be advanta-
geous in applications like heat exchangers. Conversely, exces-
sive surface roughness may lead to localized hotspots and
thermal stress, potentially compromising the component’s
integrity. Surface roughness directly affects the aesthetic appeal
and surface finish of additive manufactured components.
Rough surfaces may require additional post-processing steps
like polishing, grinding, or chemical etching to achieve the
desired surface finish, increasing the production time and cost.
In biomedical applications, surface roughness can influence the
biocompatibility and osseointegration of AM-produced im-
plants. A controlled level of surface roughness can promote
better cell adhesion and tissue integration, improving the long-
term success of the implant. However, excessive roughness
may cause adverse reactions and compromise the implant’s
performance (Ref 14-18).

Artificial Intelligence (AI) has shown immense potential in
optimizing and enhancing the quality of additive manufactured
specimens, particularly in the determination of mechanical
properties (Ref 19-22). Machine learning algorithms, a subset
of AI, can be employed to analyze and predict the mechanical
properties of these specimens by correlating various process
parameters, such as layer thickness, print speed, and material
composition. This enables manufacturers to fine-tune the
printing process and produce parts with desired mechanical
characteristics.

Given the importance of surface roughness in AM, there is a
growing need for innovative methodologies to predict and
optimize this attribute during the fabrication process. This study
focuses on the development of a novel coupled Genetic
Algorithm–Machine Learning approach to accurately predict-
ing the surface roughness of polyactic acid specimens manu-
factured using fused deposition modeling. The findings of this
research aim to contribute to the enhancement of AM
processes, leading to improved product quality and increased
manufacturing efficiency across various industries.

2. Problem Statement

The rapid advancement of additive manufacturing tech-
niques, such as fused deposition modeling (FDM), has enabled
the production of complex and customized components across a
wide range of industries. However, the quality and performance
of FDM-produced parts are often influenced by surface
roughness, which affects various material properties and
functional attributes. Accurate prediction and control of surface
roughness are essential to optimize the manufacturing process,
enhance product quality, and improve overall efficiency.

Traditional methods for surface roughness prediction often
rely on empirical models, which may not account for the
complex interactions between various process parameters and
material properties. Moreover, these methods may lack the
flexibility and adaptability required to address the evolving
demands of additive manufacturing technologies. As a result,
there is a need for innovative, accurate, and efficient method-
ologies to predict surface roughness in FDM-produced poly-
lactic acid (PLA) specimens.

The problem statement for this research work can be
articulated as follows:

• Developing a novel, coupled Genetic Algorithm–Machine
Learning approach for predicting surface roughness in
FDM-produced PLA specimens, which can effectively ac-
count for the complex interdependencies between process
parameters and material properties, while ensuring high
accuracy, efficiency, and adaptability to various manufac-
turing conditions.

• To address this problem, the research aims to investigate
the integration of Genetic Algorithm with four prominent
machine learning algorithms (decision tree, random forest,
artificial neural network, and gradient boosting regressor)
to optimize the algorithmic parameters and feature selec-
tion. The effectiveness of the coupled algorithms will be
evaluated using a comprehensive dataset collected from
PLA specimens, and their performance will be compared
based on various metrics, such as R2 value, to identify the
most suitable approach for surface roughness prediction in
additive manufacturing processes.

3. Materials and Methods

To maintain uniformity in the model, the geometry outlined
in the ASTM E8 standard was used as a reference, with
dimensions reduced by 50% to decrease print size and
minimize both material consumption and time. The response
surface methodology (RSM) design of experiment was imple-
mented to create 30 distinct trial conditions (see Figure 1), with
each having three levels of input parameters. Based on the
literature review, machine capability and pilot study, the levels
of 3D printing parameters were selected. The CAD model (see
Figure 2) was sliced using the Ultimaker Cura software,
generating the G-code. The experimental investigation was
conducted using the Creality 3D FDM printer (see Figure 3).
Each print was allocated a unique combination of settings that
varied in layer height, infill density, infill pattern, bed
temperature, and nozzle temperature to produce Polylactic
Acid (PLA) specimens. An input parameter datasheet was
compiled, and the length discrepancies between each model
and the original CAD file were measured using a digital Vernier
caliper.

The experimental data obtained is transformed into a CSV
file and then imported to the Google Colab platform to
implement coupled GA–ML algorithms developed using
Python programming. The framework employed in this study
is illustrated in Figure 4. The Pandas library is utilized for data
manipulation and analysis, offering efficient data structures for
managing and accessing large datasets. Widely employed in
machine learning, Pandas supports tasks like data pre-process-
ing, cleaning, and transformation, handling missing values,
merging and grouping datasets, and filtering and sorting data.
NumPy, another library extensively used in machine learning,
caters to large multi-dimensional arrays and matrices and
includes a suite of high-level mathematical functions. It is
valuable for linear algebra, numerical computing, and scientific
computing tasks within machine learning. The Seaborn library
is employed for data visualization, offering a high-level
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interface for crafting visually appealing and informative
statistical graphics. In machine learning, Seaborn is beneficial
for visualizing data distributions, identifying patterns, and
exploring variable relationships. Another Python library, Mat-
plotlib, is used for data visualization, providing a comprehen-
sive set of graphical tools for generating high-quality
visualizations. It is valuable in machine learning for tasks such
as data visualization, model evaluation, and result presentation.

The coupled GA–ML model aims to enhance the prediction
accuracy and efficiency of surface roughness by integrating the
powerful search and optimization capabilities of Genetic
Algorithms with the learning and generalization abilities of
Machine Learning algorithms.

The first step involves using the Genetic Algorithm to
optimize the feature selection process and algorithmic param-
eters of the chosen ML models. The GA searches for the
optimal combination of input features (e.g. layer height, infill
density, infill pattern, bed temperature, and nozzle temperature)
and ML algorithm parameters (e.g. learning rate, depth of the
tree, number of estimators, etc.) that contribute to the best
surface roughness prediction performance. During the opti-
mization process, each chromosome in the GA population
represents a potential solution, consisting of the selected
features and ML algorithm parameters. The fitness function
evaluates the performance of each chromosome based on the
prediction accuracy of the corresponding ML model, such as

Figure 1 Additive manufactured PLA specimens
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the R2 or mean squared error. Through iterative selection,
crossover, and mutation, the GA evolves the population
towards an optimal or near-optimal solution, identifying the
best combination of input features and ML algorithm param-
eters for surface roughness prediction.

Once the optimal feature set and algorithm parameters have
been identified using the GA, the selected ML models (decision
tree, random forest, artificial neural network, and gradient
boosting regressor) are trained using the optimized settings.

The training process involves using a dataset of PLA speci-
mens, where each specimen has a set of input features and a
corresponding surface roughness value. The ML models learn
the complex relationships between the input features and
surface roughness by minimizing the prediction error on the
training data. The models’ generalization performance is
assessed using validation or testing datasets, which were not
used during the training process.

After training the ML models with the optimized GA
settings, their performance is evaluated using various metrics
such as R-squared value, mean squared error, and mean
absolute error. The performance of each coupled GA–ML
model is compared to determine the most suitable approach for
predicting surface roughness in FDM-produced PLA speci-
mens.

The present work utilizes the population size of 50 and
number of generations equal to 200. By integrating the Genetic
Algorithm with Machine Learning algorithms, the coupled
GA–ML model offers a robust and accurate method for surface
roughness prediction in additive manufacturing processes. This
approach addresses the challenges of feature selection, param-
eter optimization, and model complexity, contributing to the
advancement of surface roughness prediction methodologies in
the field of additive manufacturing.

In this study, mean absolute error (MAE), mean square error
(MSE), and coefficient of determination (R2) are employed as
metric features to assess the performance of the coupled GA–
ML models. MAE is a widely used metric for evaluating
regression model performance. It calculates the average of the
absolute differences between predicted and actual values. A
lower MAE value indicates better model performance. MAE is
advantageous because it offers an easily interpretable measure
of the average error magnitude in predicted values. MSE is
another commonly used metric for assessing regression model
performance. It calculates the average of the squared differ-
ences between predicted and actual values. MSE is advanta-Figure 2 Design of the PLA specimens

Figure 3 Setup for 3D printing the specimens
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geous because it more heavily penalizes larger errors compared
to smaller ones, which is crucial for accurately assessing model
performance. R2 is a statistical measure representing the
proportion of variance in the dependent variable explained by
the independent variables in the model. R2 values range from 0
to 1, with higher values signifying a better model fit to the data.
R2 is a valuable metric for evaluating regression models, as it
provides insight into the model’s capacity to account for data
variation.

4. Results and Discussion

Table 1 shows the obtained results for Surface roughness by
the combination of different input parameters.

Figure 5 displays the Confusion Heat Map matrix obtained
in this study. The correlation matrix heatmap is a vital tool in
machine learning, as it helps determine the relationship strength
and direction between various variables. It offers a quick visual
representation of the connections between different variables.
This information is crucial for feature selection, as highly
correlated variables can cause overfitting, and it is essential to
eliminate redundant variables to enhance the model’s perfor-
mance.

The correlation matrix heatmap is color-coded, with the
color intensity indicating the correlation strength. Positive
correlations are represented by shades of blue, while negative
correlations are denoted by shades of red. The darker the shade,
the stronger the correlation. A neutral correlation is depicted by
shades of white or gray. Variables with high correlation appear
as dark squares on the heatmap, which can lead to overfitting

and should be removed. Variables with low or no correlation
appear as light squares on the heatmap. A negative correlation
between two variables is indicated by a shade of red. When
variables exhibit a strong negative correlation, they move in
opposite directions. A positive correlation between two vari-
ables is denoted by a shade of blue. When variables display a
strong positive correlation, they move in the same direction.

Figure 6 presents the feature importance plot generated in
this study. The feature importance plot is a visual tool
employed in machine learning to ascertain the significance of
each feature within a dataset. It aids in identifying the most
relevant features for the target variable and those that can be
removed. The feature importance plot can also help detect
irrelevant features that do not contribute to the model’s
accuracy. Eliminating these features during feature selection
can enhance the model’s performance. It is observed that Layer
Height has the greatest impact on the output parameter, i.e.,
Surface Roughness, while Wall Thickness, Bed Temperature,
and Fan Speed parameters exert a negligible effect on Surface
Roughness.

Figure 7 shows the convergence curve of the GA–ML
coupled algorithms. The convergence curve of the GA–ML
coupled algorithm is an essential aspect of understanding and
evaluating the performance of the combined optimization
approach. The convergence curve illustrates the progress of
the Genetic Algorithm (GA) throughout its iterations (gener-
ations). By plotting the best fitness values found in each
generation, the curve provides a visual representation of how
the optimization process evolves over time. This allows
researchers to observe the gradual improvement of the solutions
as the GA progresses towards an optimal or near-optimal
solution. The convergence curve helps assess the speed at

Figure 4 Proposed framework in the present work
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Table 1 Experimental results

Layer
height, mm

Wall
thickness,

mm
Infill

density, %
Infill

pattern
Nozzle

temperature, �C

Bed
temperature,

�C
Print speed,

mm/s
Fan

speed, %
Surface

roughness, lm

0.1 1 50 Honeycomb 200 60 120 0 6.12275
0.1 4 40 Grid 205 65 120 25 6.35675
0.1 3 50 Honeycomb 210 70 120 50 5.957
0.1 4 90 Grid 215 75 120 75 5.92025
0.1 1 30 Honeycomb 220 80 120 100 6.08775
0.15 3 80 Honeycomb 200 60 60 0 6.0684
0.15 4 50 Grid 205 65 60 25 9.27525
0.15 10 30 Honeycomb 210 70 60 50 7.479
0.15 6 40 Grid 215 75 60 75 7.557
0.15 1 10 Honeycomb 220 80 60 100 8.48675
0.2 5 60 Honeycomb 200 60 40 0 8.4695
0.2 4 20 Grid 205 65 40 25 8.8785
0.2 5 60 Honeycomb 210 70 40 50 9.415
0.2 7 40 Grid 215 75 40 75 9.71375
0.2 3 60 Honeycomb 220 80 40 100 10.59625
0.1 1 50 Triangles 200 60 120 0 6.04925
0.1 4 40 Cubic 205 65 120 25 9.262
0.1 3 50 Triangles 210 70 120 50 6.127
0.1 4 90 Cubic 215 75 120 75 5.99675
0.1 1 30 Triangles 220 80 120 100 6.1485
0.15 3 80 Triangles 200 60 60 0 8.2585
0.15 4 50 Cubic 205 65 60 25 8.347
0.15 10 30 Triangles 210 70 60 50 8.2385
0.15 6 40 Cubic 215 75 60 75 8.23125
0.15 1 10 Triangles 220 80 60 100 8.35125
0.2 5 60 Triangles 200 60 40 0 9.072
0.2 4 20 Cubic 205 65 40 25 9.23825
0.2 5 60 Triangles 210 70 40 50 9.18225
0.2 7 40 Cubic 215 75 40 75 9.299
0.2 3 60 Triangles 220 80 40 100 9.382

Figure 5 Obtained correlation matrix heatmap
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which the GA–ML coupled algorithm converges to an optimal
or near-optimal solution. A rapid convergence indicates that the
algorithm efficiently navigates the search space, while a slower
convergence suggests that more iterations or adjustments to the
algorithm’s parameters may be required. Evaluating the con-
vergence speed is crucial for comparing different algorithms or
parameter settings and ensuring that the optimization process is
effective and efficient. The convergence curve can also provide
insights into the stability of the GA–ML coupled algorithm. A
smooth curve indicates a stable optimization process, where the
algorithm consistently improves the solutions. In contrast, a
curve with sudden fluctuations or oscillations may signal
instability in the algorithm, possibly due to issues like
premature convergence or inadequate exploration of the search
space. Analyzing the stability of the algorithm is critical for
ensuring that the optimization process reliably converges to the
best possible solution. By examining the convergence curve,
researchers can determine appropriate termination criteria for
the GA–ML coupled algorithm. The curve can reveal when the

algorithm has reached a plateau, suggesting that further
iterations are unlikely to yield significant improvements in
the solution quality. Identifying the point of diminishing returns
allows for the termination of the optimization process at an
appropriate time, saving computational resources and time.

Table 2 shows the comparison of the performance of
implemented GA–ML coupled algorithms on the basis of
metric features such as MSE, MAE, and R2 value.

Figure 6 Feature importance plot

Figure 7 Convergence curves of (a) GA–gradient boosting regressor, (b) GA–random forest, (c) GA–decision tree, and (d) GA–artificial neural
network

Table 2 Evaluating the performance of the coupled GA–
ML algorithms to predict surface roughness

Algorithms MSE MAE R2 value

GA–gradient boosting regressor 0.3267 0.3944 0.7627
GA–decision tree 0.0855 0.2324 0.9378
GA–random forest 0.1394 0.3128 0.8987
GA–artificial neural network 1.7860 1.0412 � 0.2966
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Figure 8 shows the visualization of the obtained results for
MSE, MAE, and R2 value.

Figure 9 shows the plot between original surface roughness
values and predicted surface roughness value for the imple-
mented algorithms.

The results obtained for the four coupled GA–ML algo-
rithms highlight their varying performances in predicting the
surface roughness of the polyactic acid specimens manufac-
tured by the fused deposition modeling (FDM) process. The
GA–gradient boosting regressor algorithm achieved a moder-
ately high R2 value of 0.7627, indicating a reasonable fit of the
model to the data. However, the relatively higher MSE and
MAE values suggest that the model’s predictions deviate more
from the actual values compared to the GA–Decision Tree and
GA–Random Forest algorithms. The GA–Decision Tree algo-
rithm displayed the highest performance among the four
algorithms, with the lowest MSE and MAE values and the
highest R2 value. An R2 value of 0.9378 indicates a very strong
fit between the predicted and actual values, suggesting that the
GA–Decision Tree model can effectively explain the variation
in the data. The low MSE and MAE values further confirm the
model’s high accuracy in predicting surface roughness. The
GA–Random Forest algorithm performed relatively well, with
an R2 value of 0.8987, indicating a good fit between the
predicted and actual values. However, its MSE and MAE
values are higher compared to the GA–Decision Tree algo-
rithm, suggesting slightly less accurate predictions. The GA–
Artificial Neural Network algorithm performed poorly in
predicting surface roughness, as evidenced by its negative R2

value and substantially higher MSE and MAE values. The
negative R2 value suggests that the model does not explain the
variation in the data well and may not be suitable for this
specific problem.

The outstanding performance of the GA–Decision Tree
algorithm can be ascribed to multiple aspects. Decision trees
possess an innate ability to be easily interpreted and efficiently
manage intricate relationships among variables. This makes
them particularly adept at handling challenges like predicting
surface roughness, where numerous parameters may exhibit
nonlinear influences. Moreover, the genetic algorithm’s fine-
tuning of the decision tree’s parameters could have resulted in a
more precise model, culminating in the algorithm’s exceptional
performance in this research.

An experimental determination/validation of the modeling
results using actual experimental measurements of the surface
roughness is shown in Table 3 for which the GA–DT model
accuracy is 92%.

The rationale for adopting machine learning approaches,
even when traditional experimental determination methods are
prevalent, stems from the unique benefits provided by machine
learning techniques when predicting surface roughness in
Fused Deposition Modeling (FDM) processes. Machine learn-
ing algorithms have the capacity to establish intricate connec-
tions between input variables and the target outcome,
potentially resulting in enhanced accuracy in surface roughness
prediction. This is evidenced by the noteworthy R2 value of
0.9378 achieved by the GA–DT model in this study. Addition-
ally, predictions based on machine learning can considerably
decrease the time and resources required for experimental
testing, promoting more effective resource use. By leveraging
these techniques, surface roughness can be accurately and
efficiently estimated, eliminating the need for costly and time-
consuming trial-and-error experiments. Furthermore, the com-
bination of genetic algorithm (GA) with machine learning
algorithms enables improved optimization of algorithmic
parameters and feature selection, which can contribute to a

Figure 8 Visualization of the metric features results
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streamlined and optimized FDM process, superior product
quality, and a reduction in manufacturing defects.

Machine learning models also possess scalability and
adaptability, as they can be readily updated with new data as
it becomes accessible. This allows the models to adapt to
changing manufacturing conditions and continuously enhance
their predictive abilities. Such adaptability is especially valu-
able in the fast-paced and ever-evolving additive manufacturing
industry.

5. Conclusion

In conclusion, this research successfully demonstrated the
application of coupling genetic algorithm (GA) with four
machine learning algorithms, namely decision tree, random
forest, artificial neural network, and gradient boosting regres-
sor, for predicting the surface roughness of polyactic acid
specimens manufactured through the fused deposition model-
ing (FDM) process. The study’s results indicated that the GA–
Decision Tree algorithm outperformed the other algorithms in
terms of Mean Square Error (MSE), Mean Absolute Error

(MAE), and R2 value, showcasing its potential as an effective
and accurate model for surface roughness prediction in additive
manufacturing.

The superior performance of the GA–Decision Tree model
can be attributed to the decision tree’s inherent interpretability
and ability to handle complex interactions between variables
effectively. Furthermore, the optimization of the decision tree’s
parameters by the genetic algorithm contributed to the
enhanced accuracy of the model.

The current research has laid the foundation for further
advancements in the additive manufacturing domain. As a
future scope, this work can be extended to include other
machine learning algorithms and optimization techniques to
explore the possibility of achieving even better prediction
accuracy.
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