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This work focuses on the limit strains of 5754-O aluminum alloy sheets with consideration of the hardening
law effect. Based on uniaxial tension test data, the hardening laws of Swift, Voce, LSV and Hockett–Sherby
were applied to determine the mechanical properties. The fitted parameters and the Yld2000-2d yield
function were introduced into the Marciniak–Kuczynski (M–K) theory to predict the forming limit curve
(FLC). This prediction was not consistent with the Nakajima test results. Assessment of the effect of the
hardening law on the predicted FLC indicated that the hardening law affected the yield surface evolution
through the hardening rate. Afterward, an improved LSV hardening law was proposed to depict the plastic
stress–strain relationship, and both the theoretical prediction and the numerical simulation verified the
validity of the improved model. The results were compared with the test data, and good agreement was
shown.
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1. Introduction

Owing to their high specific strength, many aluminum alloy
parts have been manufactured in the automotive and aerospace
industries. Consequently, extensive studies have focused on the
characteristics of aluminum alloy sheets. As a typical property
of sheet metals, the forming limit curve (FLC), comprising the
limit strain pairs under different strain paths or stress states, has
been widely used in the sheet stamping process to represent
sheet failure or fracture. Generally, the limit strain pairs of sheet
metal are experimentally evaluated by stretching the sheet in
different strain paths or calculated theoretically by coupling the
instability criteria and material properties. The experimental
data and prediction results presented in the published literature
demonstrate that the forming temperature, mechanical proper-
ties, strain path, stress state, and other factors affect the forming
limit of aluminum alloy sheets [1]. Many studies have focused
on the formability of aluminum alloy sheets from the perspec-
tive of pre-strain, yield locus, hardening law, and plastic
instability criterion.

The pre-strain was a factor affecting the FLC of the sheet
metal. Graf and Hosford [2], who determined the forming limit
strains of specimens pre-strained to several levels in uniaxial

tension, plane strain, and biaxial tension, found that the amount
of additional plane strain deformation possible before failure
depended on the effective strain during the pre-strain. Uppaluri
et al. [3] extended the modified maximum force criterion by
considering the pre-strain to predict the FLC and validated the
theoretical model by using the experimental data determined by
Graf and Hosford [2]. Cao et al. [4] combined the Marciniak–
Kuczynski (M–K) approach and Karafillis-Boyce yield crite-
rion to evaluate the forming limits of Al-2008-T4 and Al6111-
T4 sheet metals under linear and nonlinear strain paths, and the
predicted result was validated using the test data presented in
the literature [2]. Reyes et al. [5, 6] investigated the effect of
pre-strain on the FLC by applying a nonlocal criterion to detect
the incipient localized necking and the through-thickness shear
instability criterion. By experimentally and theoretically deter-
mining the FLC of AA5754-O, Dhara et al. [7] found that the
limit strains shifted significantly depending on the amount and
direction of the uniaxial pre-strain. From these studies, it can be
concluded that the FLC in the strain space is dependent on the
path.

The pre-strain affected the position of the FLC in the strain
space, however, the work performed by Kleemola et al. [8]
indicated the uniqueness of the FLC in the stress space, and that
this pre-strain effect on the strain-based FLC disappeared. Fang
et al. [9] showed that the strain-based FLC can be transformed
into that of the stress space, and the hardening law is necessary
in this transformation process. Additionally, Werber et al. [10]
investigated the FLC of AA6014 by considering the pre-strain
states and demonstrated that the yield criterion had a significant
impact on the FLC in the stress space. A similar conclusion was
also presented by Paul et al. [11]. As recommended by
Stoughton et al. [12], the stress-based FLC is more suitable for
sheet metal in the multi-stamping process, without concern for
the strain path effect because of the uniqueness of the limit
stress. However, measuring the stress components during the
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sheet stamping procedure is difficult, and an appropriate yield
function is an essential prerequisite for stress-based FLC [13].

There have been many studies of the influence of the yield
function on the FLC. Dasappa et al. [14] predicted the FLC of a
5754 aluminum alloy sheet based on different yield functions
together with the M–K approach and found that the shape of the
yield function was the most dominant factor affecting the
predicted result. Rocha et al. [15] evaluated the FLC of
aluminum alloy 6016-T4 by coupling the M–K theory with
different yield functions and hardening laws and verified the
result through test data and stamping simulation. They found
that the shape of the yield surface had a significant effect on the
predicted FLC. The plane stress yield function, called Yld2000-
2d in many studies, was proposed by Barlat et al. [16] to
describe the anisotropic behavior of aluminum alloy sheets. By
evaluating the effect of the microstructure on the yield loci,
Iadicola et al. [17] demonstrated that the locus elongation of
AA5754-O in the biaxial stretching deformation process could
be fitted well by the Yld2000-2d yield criterion. Wang et al.
[18] recommended the Yld2000-2d yield function to describe
the mechanical behavior of a 5754-O aluminum alloy sheet and
demonstrated this by comparing the deep drawing simulation
results under different yield functions [19]. Kuwabara et al. [20]
simulated the hole expansion process of 6016-T4 and 6016-O
and found that the Yld2000-2d yield function provided proper
material representations of the plastic behavior. As the above-
mentioned studies demonstrated, the yield function signifi-
cantly affects the theoretical prediction result, and the Yld2000-
2d yield function is more suitable for aluminum alloy sheets.

Additionally, the hardening law also affects the predicted
FLC of the aluminum alloy sheet [15], and many models have
been developed to describe the equivalent stress–strain curve,
such as the Swift, Voce, Hockett–Sherby, and Ghosh, and their
combinations (e.g., LSV, Swift-Hockett/Sherby). Pham et al.
[21] theoretically predicted the FLCs of AL5052-O and
AL6016-T4 by applying the modified maximum force criterion
(MMFC) under different hardening models and found that the
Kim-Tuan model, proposed by Pham et al. [22], could improve
the prediction. Gronostajski [23], who briefly reviewed differ-
ent models, recommended that the choice of a proper model
must be preceded by a thorough analysis of the influence of
deformation conditions on the physical processes that occur in
the material. By applying the M–K approach under different
hardening laws and yield functions to evaluate the FLC of
AA6016-T4, Butuc et al. [24] found that the FLC predicted
from the Swift equation was always higher than that predicted
using the Voce equation. Ding et al. [25] coupled different
hardening models with the M–K theory to investigate the
effects of temperature and strain rate on the predicted FLC of
AA5086 and indicated that the hardening law had a significant
effect on the predicted FLC. It is obvious that the hardening law
yields a post-necking prediction for a tested material, and
hence, the prediction result is influenced. The most appropriate
hardening law for a specific material is necessary for high-
precision prediction of the FLC.

The plastic instability criterion is indispensable for theoret-
ically predicting the FLC of sheet metal. Proposed by
Marciniak and Kuczynski [26], the M–K approach, in which
the imperfection of a narrow band inclines at an angle u with

the principal axis, is used as an instability criterion to calculate
the limit strain pairs of sheet metals under different forming
conditions [27–29]. In the M–K theory, the calculation process
ended when the ratio of the major strain increment in the
groove to that outside the groove increased to a critical value,
and the predicted strain pair with the minimum major strain at a
specific groove orientation was treated as the limit strain.
Although the FLC predicted by applying the M–K approach
strongly depended on groove orientation u, imperfection
coefficient f0, and the critical value, extensive studies based
on the M–K approach were conducted to investigate the
formability of aluminum alloy sheets. By applying the M–K
theory with an elastic–plastic constitutive model including
mixed isotropic-distortional hardening, Aretz [30] predicted the
FLC of the AA7018-T6 sheet metal and demonstrated the
impact of distortional hardening on localized necking predic-
tions. Yoshida et al. [31] discussed the influence of the texture
of an aluminum alloy sheet on the limit strains by applying the
M–K approach and a generalized Taylor-type polycrystal
model. Chiba et al. [32] investigated the FLC of AA1100-
H24 by applying the M–K model to compare the prediction
results determined from phenomenological and crystal plastic-
ity theories. By coupling the M–K theory and the Yld2000-2d
yield function, Wang et al. [33] studied the effect of pre-strain
on the strain-based and stress-based FLCs of a 5754-O
aluminum alloy sheet. Yue et al. [34] determined the stress-
based FLC of AL7020 by applying the M–K approach and
found that the FLC in the stress space and the failure criterion
using the damage mechanics model can better reproduce the
local crack initiation in sheet metal forming.

To avoid the complicated process of solving the highly
nonlinear equilibrium and related compatibility equations in the
M–K approach, some studies focused on the finite element (FE)
M–K approach have also been conducted to predict the FLC of
aluminum alloy sheets. Banabic et al. [35] evaluated the FLC of
AA5182-O by applying the FE M–K approach, the MMFC
criterion, the Swift�s diffuse method, and the Hill�s localized
necking approach and confirmed the validity of the finite
element M–K model. Chu et al. [36] investigated the FLC of
AA5086 by considering the temperature and strain rate and
indicated that the FE M–K model can be effective for
predicting sheet metal formability. Zhang et al. [37] reported
an approach to evaluate the sheet formability by combining a
tensile test with the FE M–K model. Ma et al. [38, 39] focused
on developing the FE M–K approach for predicting the FLC of
AA5754-O and evaluating the influence of the pre-strain on the
strain-based FLC.

In this study, the M–K approach and the Yld2000-2d yield
function were coupled to evaluate the effect of the hardening law
on the predicted FLC, and an improved hardening law for 5754-O
aluminum alloy sheet was proposed. First, the Nakajima test was
performed to determine the limit strains, and the experimental
data from the uniaxial tensile test were fitted using different
hardening laws to evaluate the mechanical properties. Then, the
M–K approach and the Yld2000-2d yield function were applied
to predict the FLC and determine the effect of the hardening law
on the prediction result. Finally, an improved LSV hardening law
was proposed to predict the forming limit, and good agreement
between the test data and theoretical FLC was presented.
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2. Experimental Details

2.1 The Nakajima Test

The Nakajima test is typically performed to determine the
experimental limit strain pairs of sheet metals. The material
used in this study was 5754-O aluminum alloy sheet with a
thickness of 1.5 mm. The FLC specimens were prepared
according to the sizes given in Reference [40] and are shown in
Fig. 1. Before the Nakajima test, circular grids with a diameter
of 2.5 mm were printed on the specimen surface, and then, the
specimen surface was treated with molybdenum disulfide
grease to provide good lubrication conditions. During the test,
the specimen was fixed on the die and stretched using a
hemispherical rigid punch with a diameter of 100 mm. The
stretching process ended when the forming force reached its
maximum value. Ozturka et al. [41] demonstrated that the
lubrication affects the position of the sheet failure and the
location of the limit strain pair in the strain space. However,
friction between the rigid punch and the deformed sheet is
inevitable. Thus, one specimen with a size of 180 9 180 mm
(marked as 180 mm-2) was stretched by applying the hydraulic
forming method to determine the limit strain pair in the equi-
biaxial strain state. The deformed specimens are shown in
Fig. 2.

The punch displacement and forming force during the
expansion process were acquired using a grating-scale dis-
placement sensor and a load sensor, respectively. The exper-
imental punch displacement–force curves of some specimens
are shown in Fig. 3. It shows that the maximum dome heights
for specimens with sizes of 20, 80, 100, and 180 mm were 20,
30, 28, and 35 mm, respectively.

After the Nakajima test, the size of each deformed grid near
the failure was measured. The failure region was located near
the centerline of the deformed specimen, and the distance
between the measured grid and the failure region did not exceed
the size of one grid. Considering the grid line width, the inner
diameter, outside diameter, and pitch diameter of each grid
were measured (diagramed in Fig. 4), and the average value

was used to calculate the forming limit strain pairs [27, 29]. The
strain measurement system is shown in Fig. 4. The measured
results are shown in Fig. 5. The measured major limit strain
under the plane strain state and the equi-biaxial tension strain
are 0.23 and 0.31, respectively.

2.2 Uniaxial Tensile Test

Based on the national test standard GB/T228-2002, a
uniaxial tensile test was conducted using an INSTRON 5582
machine, and the strain during the deformation process was
measured using a YYU-10/50 extensometer with an accuracy
of 2 mV/V. Specimens at 0�, 45�, and 90� with respect to the
rolling direction were prepared, and uniaxial tensile tests along
each direction were performed three times. During the test
procedure, the anisotropy R-value, defined as the ratio of the
strain along the width to the strain along the thickness, was
measured when the elongation reached 10% [37, 42]. The
strains along the length and width directions were simultane-
ously measured using two extensometers. The R-value and
Young�s modulus E were fitted using Origin software. During
the Young�s modulus fitting process, stress–strain data pairs
with stresses below 90 MPa were used (near the yield point).
For each specimen, the yield stress r0 and the fitted data are
shown in Table 1. The plastic stress–strain curves determined
from the uniaxial tensile tests are shown in Fig. 6.

In this study, the following four hardening models were
utilized to fit the experimental plastic stress–strain curve, and
the fitted parameters in each model are listed in Table 2. In
Eqs. (1)–(4), the symbols re and ee indicate the equivalent
stress and the equivalent strain, respectively.

Swift model re ¼ Kðee þ e0Þn ðEq 1Þ

Voce model re ¼ r0 þ Kð1� expð�AeeÞÞ ðEq 2Þ

Hockett - Sherby model re ¼ r0 þ Að1� expð�BeneÞÞ
ðEq 3Þ

Fig. 1 Size of the FLC specimen before the test
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LSVmodel re ¼ k1 � rSwift þ k2 � rVoce ðEq 4Þ

In addition, rSwift and rVoce indicate the equivalent stresses
fitted by the Swift and Voce models, respectively.

The fitted curve of each hardening model was plotted and
compared with the test data as shown in Fig. 7. It can be seen
that each hardening model fits well with the test data when the
plastic strain is less than 0.2. However, the difference between
the predicted stresses from each hardening law is significant
when the plastic strain exceeds 0.2. This difference in
predictions under large strain conditions shown in Fig. 7 makes
it difficult to determine which hardening law is appropriate for
describing the stress–strain relationship [43]. Many studies
have predicted the stress–strain relationship under large strain
conditions by applying different methods. However, the

published literature shows that these methods are not yet fully
verified in terms of both the theoretical basis and measurement
techniques [44–46]. Therefore, research on the hardening law
under large strain conditions is also needed, which provides an
opportunity to validate the hardening law through FLC
prediction.

3. Forming Limit Curve (FLC) Theoretical Predic-
tion

3.1 Yield Function

Proposed and recommended by Barlat et al. [16], the non-
quadratic anisotropic yield criterion, called Yld2000-2d, is

Fig. 2 Deformed specimens after the test

Fig. 3 Displacement–force curves of some specific specimens
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suitable for predicting the yield behavior in the plane stress
state; thus, this yield function was applied in this study. It was
expressed as

/ ¼ /0 þ /00 ¼ 2rme ðEq 5Þ

where

/0 ¼ jY 0
1 � Y 0

2j
m

/00 ¼ j2Y 00
2 þ Y 00

1 j
m þ j2Y 00

1 þ Y 00
2 j

m

�
ðEq 6Þ

Y¢i and Y¢¢j (i,j = 1,2) are the principal values of matrices X¢
and X¢¢, respectively, and are formulated as follows:

Y 0
i ¼ 1

2 ðX 0
11 þ X 0

22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 0

11 � X 0
22Þ

2 þ 4X 0
122

q
Þ

Y 00
i ¼ 1

2 ðX 00
11 þ X 00

22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 00

11 � X 00
22Þ

2 þ 4X 00
122

q
Þ

8<
: ðEq 7Þ

Fig. 4 Strain measurement system

Fig. 5 Measured limit strain pairs in the strain space

Table 1 The fitted data of each specimen

00 450 900

Average valueNo.1 No.2 No.3 No.1 No.2 No.3 No.1 No.2 No.3

R 0.785 0.793 0.788 0.713 0.725 0.723 0.789 0.796 0.787 0.766
E (GPa) 66.21 69.41 66.38 59.97 56.51 59.55 58.64 64.995 64.32 62.88
r0 (MPa) 116.42 116.25 116.91 116.73 119.82 117.51 121.06 120.42 120.68 118.39
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Fig. 6 Plastic stress–strain data from the uniaxial tensile test

Table 2 The fitted parameters in each hardening law

Symbols

00 450 900

AverageValueNo.1 No.2 No.3 No.1 No.2 No.3 No.1 No.2 No.3

Swift model re = K(ee + e0)
n

K(MPa) 468.943 471.819 474.665 459.371 456.145 454.406 470.697 459.675 466.984 464.745
e0*10

2 0.929 0.920 0.960 1.009 0.894 0.939 1.000 0.902 1.007 0.951
n 0.301 0.301 0.305 0.306 0.298 0.300 0.309 0.299 0.308 0.303
R-Square*102 99.73 99.76 99.73 99.81 99.74 99.79 99.78 99.73 99.75
Voce model re = r0 + K*(1-exp(-A*ee))
r0(MPa) 119.623 120.145 119.768 116.973 117.726 117.736 118.255 118.177 118.443 118.538
K(MPa) 186.297 188.815 189.464 180.470 184.911 183.892 179.732 183.187 185.054 184.647
A 11.069 10.940 10.852 10.899 10.670 10.513 11.477 10.995 10.656 10.897
R-Square*102 99.91 99.915 99.93 99.90 99.89 99.90 99.87 99.83 99.85
Hockett–Sherby model r e = r0 + A*(1-exp(-B*ee

n))
r0(MPa) 117.378 117.706 117.824 114.330 115.005 114.714 116.157 115.153 115.727 115.999
A(MPa) 199.225 203.472 201.129 198.425 199.649 201.674 193.237 200.320 201.781 199.879
B 8.623 8.036 8.473 7.539 7.804 7.294 8.623 7.687 7.631 7.968
n 0.923 0.913 0.930 0.900 0.910 0.896 0.923 0.899 0.908 0.911
R-Square*102 99.93 99.94 99.95 99.93 99.91 99.93 99.885 99.87 99.88
LSV model r e = k1*rSwift + k2*rVoce

k1 0.238 0.278 0.238 0.328 0.301 0.340 0.315 0.327 0.337 0.3
k2 0.780 0.744 0.784 0.659 0.695 0.650 0.688 0.674 0.663 0.704
R-Square*102 99.93 99.93 99.94 99.93 99.92 99.93 99.88 99.88 99.88
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The elements of X¢ and X¢¢ are obtained using the linear
transformation of the stress components, as shown in Eq. (8).

X0 ¼ L0r

X00 ¼ L00r

(
ðEq 8Þ

where

L011
L012
L021
L022
L066

2
6666664

3
7777775
¼

2=300

�1=300

0� 1=30

02=30

001

2
6666664

3
7777775

a1
a2
a7

2
64

3
75 ðEq 9Þ

L0011
L0012
L0021
L0022
L0066

2
6666664

3
7777775
¼ 1

9

�228� 20

1� 4� 440

4� 4� 410

�282� 20

00009

2
6666664

3
7777775

a3
a4
a5
a6
a8

2
6666664

3
7777775

ðEq 10Þ

Regarding the Yld2000-2d yield function, the parameter r is
the Cauchy stress tensor, and the value of parameter m in
Eqs. (5) and (6) is set to 8 because the 5754-O aluminum alloy
sheet is a material with a face-centered cubic (FCC) structure.
The eight independent anisotropy coefficients, a1–a8, were
determined by applying the numerical approach presented by
Barlat et al. [16], and the values of each parameter are listed in
Table 3. The yield stress and the Rb value under the equi-biaxial
tension state are 117.2 MPa and 0.959, respectively. The
biaxial tensile equipment used in this study is described in our
previous work [47].

3.2 M–K Approach

As proposed by Marciniak and Kuczynski [26], the M–K
model has been widely used to predict the forming limit of
sheet metals. As shown in Fig. 8, the postulate of the M–K
model is a groove (marked as b) inclined at angle u0 with the
principal axis, and the imposition of boundary conditions is as
follows: geometrical imperfection (Eq. (11)), equilibrium of
forces (Eq. (12)), and deformation compatibility (Eq. (13)).

f0 ¼ tb0=t
a
0 ðEq 11Þ

rannt
a ¼ rbnnt

b

rantt
a ¼ rbntt

b

(
ðEq 12Þ

deatt ¼ debtt ðEq 13Þ

In the prediction procedure of the M–K theory, the major
strain increment de (qa = de/de) under a specific stress state (r/
r) is loaded on the region outside the groove, and then, the
other strain increments, strain components, and stress compo-
nents outside the groove can be solved by applying the flow
rule. Subsequently, the parameters in the groove, that is, the
stress states (r/r, r/r) and major strain increment de, were
calculated by applying Eqs. (12) and (13). The prediction
process ended when the ratio of the major strain increment in
the groove to that outside the groove reached a critical value
(de/de > 7).

This procedure was repeated for each initial groove
orientation u0, and the groove orientation u was updated using
Eq. (14) during the prediction procedure. The limit strain pairs
under different initial groove conditions were solved, and the
strain pair with the minimum major strain was treated as the
predicted limit strain.

tanðuþ duÞ ¼ tanu
1þ dea11
1þ dea22

ðEq 14Þ

3.3 Prediction Results

The M–K theory and the Yld2000-2d yield function were
employed to predict the FLCs under different hardening laws.
In this study, the principal strain increment outside the groove
and the critical value were 0.00005 and 7, respectively. It is
known that the predicted limit strain increases with an increase
in the imperfection coefficient f0. However, this increasing
trend changes as f0 increases to a critical value, as shown in
Fig. 9. The predicted limit strains on the left-hand side of the
FLC and the plane strain condition hardly increase. Figure 9
shows that the predicted limit strains under the plane strain
condition based on the Hockett–Sherby, Voce, and LSV models
are smaller than the experimental results (see Fig. 5). This
demonstrates that the predicted limit strains cannot be made to
agree with the experimental data by adjusting the value of the
imperfection coefficient f0.

Fig. 7 Comparison among the fitted curve and the test data

Table 3 Values of the parameters in the Yld2000-2d yield function

a1 a2 a3 a4 a5 a6 a7 a8

1.02664 0.90663 0.97341 0.98256 1.00252 0.97341 0.96304 1.03595
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However, for the Swift model, the limit strain under the
plane strain condition was predicted when the imperfection
coefficient f0 was set to 0.991. The predicted FLC based on
each hardening law is shown and compared with the test data in

Fig. 10. This demonstrates that the hardening law significantly
affects the predicted FLC.

To clarify the effect of the hardening law on the predicted
limit strain pair, the imperfection coefficient, f0 = 0.995, and
the principal strain increment, de = 0.00005, were applied to
calculate the limit strain pair. As shown in Fig. 11, a significant
difference exists between the predicted FLCs for each harden-
ing law.

According to the flow rule, the direction of the plastic strain
rate is determined by the normal direction of the yield surface;
thus, the equivalent strain increment dee depends only on the
stress ratio a = r22/r11 and the major strain increment de11.
Owing to the hardening rate, H = dre/dee, the hardening law
affects the equivalent stress increment dre; consequently, the
yield surface evolves at different rates. The hardening rate H
was evaluated from the derivative of the hardening law
Eqs. (1)–(4), and its evolution with the equivalent strain is
shown in Fig. 12. The difference in the hardening rate
determined from each hardening law is significant.

To explain how the hardening rate affects the prediction
result, the original M–K instability criterion, which ignores the
groove orientation, was utilized. Because de = de and f0 < 1,
the de > de relationship is valid during the iterative process.

Fig. 8 M–K model

Fig. 9 Imperfection coefficient effect on the predicted FLC
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Owing to the force equilibrium, the major strain increment, de,
in the groove increases rapidly; consequently, the strain state
(de/de) in the groove gradually approaches a plane strain state,
and a large value of de/de is obtained.

Because of the flow rule, the equivalent strain increment dee
depends on the major strain increment, de11, and the stress ratio,
a. For the two hardening laws, A and B, based on the

assumption that HB > HA, the dr > dr relationship can be
confirmed at the beginning of the calculation. This indicates
that the degree of yield surface expansion under hardening law
B is more noticeable (shown in Fig. 13). In the next iterative
process, the stress ratios in the groove based on hardening laws
A and B are ab�A = (r + dr)/(r + dr) and ab�B = (r + dr)/
(r + dr), respectively.

As the equivalent stress increment, dr is larger than dr, dr
is greater than dr. At the beginning of the calculation
procedure, for the uniaxial tensile stress state, the values of
parameters dr and dr approach zero; therefore, ab�B < ab�A is
valid. For the equi-biaxial tensile stress state, the values of dr
and dr approach dr and dr, respectively, resulting in
ab�B > ab�A.

Based on this analysis, the stress evolution under different
stress conditions is shown in Fig. 13. The strain state in the
groove under the condition of applying hardening law A is
closer to the plane strain state (red line in Fig. 13); conse-
quently, a small limit strain is predicted. Therefore, the essence
of the hardening law effect on the FLC is the hardening rate H.
A smaller value of the parameter H results in a lower position
of the predicted FLC in the strain space, that is, the position of
the FLC in the strain space in Fig. 11 corresponds to the value
of H in Fig. 12.

4. Model Correction and Validation

4.1 Forming limit curve

As shown in Fig. 11 and 12, parameter H affects the
forming limit. The limit strain pair under the plane strain
condition can be predicted by applying the Swift model (shown
in Fig. 10), whereas the other models fail because of a small H
value. As the equivalent strain increases, the Swift model fails
to predict the limit strain under the biaxial tension strain state
owing to the larger value of H. The combination model, such as
the LSV model, changes the parameter H (shown in Fig. 12
and 14). Therefore, considering this principle, the LSV model
was modified to Eq. (15) to increase the hardening rate in the
plane strain state and decrease the hardening rate in the biaxial
tensile strain state, where the parameter K was fitted through the
experimental data shown in Fig. 6 and its average value was -2,
k1 and k2 were 0.3 and 0.704, respectively (see the LSV model
in Table 2). Based on the derivative of function re which is
expressed in Eq. (15), the hardening rate H can be expressed as
Eq. (16).

re ¼ ðk1 þ eKeeÞ � rSwift þ ðk2 � eKeeÞ � rVoce ðEq 15Þ

H ¼ @re
@ee

¼ HLSV þ eKeeðHswift � HvoceÞ þ K eKeeðrswift � rvoceÞ
ðEq 16Þ

As shown in Fig. 14, the plastic stress–strain curve deter-
mined from Eq. (15) describes the flow stress well, and the H
value of this improved LSV model also changes. With the
imperfection coefficient as f0 = 0.998 and the major strain
increment as de = 0.00005, the FLC was predicted, as shown in
Fig. 15. The modified LSV model can be utilized to predict the
FLC with a higher accuracy.

Fig. 10 Predicted FLCs and the Nakajima test results
(de = 0.00005)

Fig. 11 Predicted FLCs from each hardening law

Fig. 12 Relationship between equivalent strain ee and dre/dee
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4.2 Numerical Simulation

The simulation of the stretching sheet metal under equal-
biaxial strain conditions was conducted using Abaqus software
(version 6.14) to investigate the hardening law effect and
validate the modified LSV model. According to the mesh
sensitivity investigation presented in the literature [41], the size
of the mesh, typed as S4R, in the simulation was set to 2.5 mm,
and a general static analysis procedure was applied with a
friction coefficient of 0.03. Based on the Yld2000-2d yield
function, the Voce, Swift, and modified LSV hardening laws
were utilized by implementing the UMAT subroutines. During
the simulation, the sheet metal was fixed on the die by applying
a holding force of 50 kN and then stretched using a rigid punch.

Figure 16 shows the numerical specimen deformation for the
same simulation time (stretching time: 32.29 s). Moreover, the
punch displacement and the forming force were extracted from
the simulation results, and each simulated punch displacement–

Fig. 13 Strain state evolution of the groove region under different hardening laws (left: tensile stress state; right: equi-biaxial tensile stress
state)

Fig. 14 Fitted plastic stress–strain curve and the value of parameter H of the modified hardening law

Fig. 15 Comparison between the prediction results and the
experimental data

10124—Volume 32(22) November 2023 Journal of Materials Engineering and Performance



force curve was plotted, as shown in Fig. 17. These two
figures demonstrate that the hardening law strongly affects the
numerical stretching process and the strain distribution. As
shown in Fig. 16, the simulated strain distribution based on the
modified LSV model is more uniform; hence, the corresponding
punch displacement in Fig. 17 is larger. The simulation results in
Fig. 17 display that the modified LSV model is suitable.

Figure 16 shows that the simulated strain distribution based
on the Voce model is close to that based on the Swift model;
consequently, the two simulated displacement–force curves
shown in Fig. 17 are close in the uniform deformation stage.
Owing to the small hardening rate H, the forming force based on
the Voce model is the smallest (in Fig. 12). The maximum
forming forces from the Swift and the modified LSV models
approach the actual value, but the modified LSV model is more
suitable for depicting the actual forming displacement–force
curve.

To show the influence of the hardening law on the limit
strain, the method of comparing the major strain increments of
the necked element and its adjacent element was applied to
determine the numerical limit strain pair [48]. In this study,
parameter B is defined in Eq. (17). When necking occurs, it
centralizes the deformation in the necked element, resulting in
an increase in the value of parameter B.

B ¼ de1necked=de
1
adjacent ðEq 17Þ

The limit strain data were extracted from the simulation
results, and parameter B was calculated and is shown in
Fig. 18. The results indicate that the value of parameter B
increases sharply when necking occurs. In this study, when
parameter B is greater than 10, the strain of the element
adjacent to the necked element is regarded as the limit strain.
For Voce, Swift, and the modified LSV model, Fig. 18 shows
that the times when necking occurs are 22.93, 29.45 and
44.26 s, respectively. The deformation based on each hardening
law is shown in Fig. 19, which demonstrates that the hardening
law affects the position of the necked element and that the
simulation result from the modified LSV model is consistent
with the test result (shown in Fig. 20).

This instability criterion is applied to determine the simu-
lated strain path and compare with the test data, as presented in
Fig. 20. This indicates that the hardening law influences the
strain path and the limit strain and that the simulated limit strain
based on the modified LSV model is close to the experimental
data. The position of the limit strain under the equal-biaxial
strain condition from the Swift model is the lowest, and this
numerical result is consistent with the theoretical result
presented in Fig. 15.

Fig. 16 Stretching results under different hardening laws (stretching time: 32.29 s)

Fig. 17 Comparison between the experimental displacement–force
curve and numerical curves

Fig. 18 B-value under different hardening laws
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5. Conclusion

In this study, the limit strains of 5754-O aluminum alloy
sheets are focused on considering the hardening law effect. The
parameters in the four hardening laws investigated were fitted
by the uniaxial tensile test and utilized to predict the forming
limit by applying the M–K theory and Yld2000-2d yield
criterion. After the influence of the hardening law on the
predicted results was discussed, a modified LSV model was
proposed to predict the FLC with more accuracy and validated
by numerically stretching the sheet metal. Thus, the value of the
parameter H = dre/dee affected the yield surface evolution in

the M–K approach prediction procedure. Decreasing parameter
H caused the strain state in the groove to be close to the plane
strain state, and a small limit strain was predicted. The modified
LSV hardening law can be used to predict the forming limit of
the 5754-O aluminum alloy sheet.
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