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An efficient approach for virtual prediction of melt pool geometry and temperature distribution in selective
laser melting (SLM) is required to optimize the process parameters for eventually printing high-fidelity
parts. In this study, the melt pool geometry in the SLM process was simulated by employing Ansys
Additive, the commercial finite element analysis software tool. First, a single track of 4 mm length was
modeled for Inconel 718 material by varying the process parameters. Validations with existing studies were
performed to ensure the reliability of the FE model. Further, a process map exhibiting the optimum process
parameters window for SLMed Inconel 718 was developed, which can be used to avoid process-induced
defects such as lack of fusion, balling, and keyholing. The response surface methodology design of exper-
iment technique and ANOVA-based regression modeling were used to relate the vital SLM process
parameters with the melt pool geometry. The statistical analysis results showed that maximum melt pool
depth and width are obtained at maximum laser power and at minimum scan speed and layer thickness.
The proposed approach facilitates robust 3D printing by avoiding common process-induced defects as well
as allows the tuning of vital process parameters for fabricating superior quality SLM builds.

Keywords finite element simulation, Inconel 718, melt pool
geometry, process map, response surface
methodology, selective laser melting

1. Introduction

In the recent past, metal additive manufacturing (MAM) has
emerged as one of the most promising advanced manufacturing
processes for fabricating complex functional components that
would otherwise be impossible using traditional manufacturing
processes (Ref 1). It negates the need for expensive tooling.
MAM is used to fabricate parts by melting metal powders,
wires, or sheets. Binder jetting, directed energy deposition, and
powder bed fusion (PBF) are among the popular subcategories
of MAM (Ref 2). These processes are widely used to
produce geometrically complex products with high geometric
precision, desired grain structure, and superior mechanical
properties. They have a broad range of applications in the
aerospace, automobile, and medical sectors (Ref 3). Selective
laser melting (SLM) is a prominent PBF technology that
involves dispersing metallic powder on a substrate and fusing it
together in layered manner with a moving laser that selectively
melts the powder particles. A typical configuration of the SLM
process is shown (see Fig. 1). The melt pool characteristic is

commonly employed as a process monitoring signature in SLM
processes as it is directly correlated with the development of
porosity and other build defects (Ref 4). Laser power, scan
speed, layer thickness, and laser spot diameter are just a few of
the numerous process parameters that influence the melt pool
characteristics and hence the build quality of the part (Ref 5). In
the SLM process, the laser power and scan speed are the
commonly varied process parameters to control the melt pool
geometry and the quality of build (Ref 6). A potential remedy
for reducing process-induced defects is to predict and control
the melt pool geometry during the build process. Apart from
being a useful tool to assess and minimize defects, melt pool
geometry is also utilized in process-parameter optimization,
residual stress and distortion estimation, grain growth evolu-
tion, and process–structure–property linkage (Ref 7). To
achieve these objectives, an accurate prediction of the melt
pool geometry with a given combination of process parameters
is very much desired. The next section reviews the literature to
identify the gaps in the melt pool geometry studies, followed by
the implemented numerical approach, results, and conclusions
of this study.

2. Literature Review

The melt pool geometry is a distinctive index that reflects
the quality of the SLM process. A melt pool that is too deep is
more prone to keyhole formation, which increases porosity in
the build (Ref 8). Furthermore, if the melt pool is too shallow to
completely melt the powder layer, lack of fusion porosity may
occur. In the multi-track SLM process, irregular pores can also
be formed by an insufficient overlap of neighboring tracks,
which is influenced by melt pool geometry and hatch spacing
between neighboring tracks (Ref 9). These pores may have an
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adverse effect on the mechanical performance of the build.
SLM builds are also prone to balling defects when a solidified
molten pool fails to adequately wet a solid part below (Ref 10).
This results in the formation of discontinuous tracks, which

deteriorates the build’s surface quality. Figure 2 shows optical
microscopy images of the process-induced defects in the
SLMed build that were formed by the lack of fusion, balling,
shrinkage, and keyholing (Ref 11).

The melt pool geometry is also shown to have a significant
influence on the dimensional accuracy of the SLMed builds.
Thus, controlling the geometry of the melt pool helps to
eliminate numerous potential defects and optimize the final
quality of the builds (Ref 12). The literature exhibits that the
evaluation of melt pool geometry along with thermal history is
important as these two are crucial in determining the resulting
grain structure and mechanical properties (Ref 13, 14). As the
melt pool geometry and temperature distribution are of great
importance, researchers utilized various sensors for monitoring
and controlling the SLM process (Ref 15). Incorporating
monitoring sensors, calibrating them, and analyzing the
acquired data are expensive in terms of both time and capital
(Ref 16).

Single-track build experiments have been used to investigate
the relationships between processing parameters and melt pool
geometry, which proved to be cost and time efficient. They
make it convenient to evaluate the individual effects of a
specific processing parameter on the melt pool geometry.
Developing a generic criterion for predicting melt pool

Fig. 2 Process-induced defects in SLM (a) lack of fusion (b) balling (c) shrinkage (d) keyholing (Ref 11). Figure 4 by Won Rae Kim, Gyung
Bae Bang, Jung Hyun Park et al. in Journal of Materials Research and Technology, Vol 9, Iss 6, Pages 12,834–12,839 is licensed under CC BY-
NC-ND 4.0

Fig. 1 A typical SLM process configuration

Journal of Materials Engineering and Performance Volume 32(17) September 2023—7999



geometry is challenging since the SLM process comprises
numerous process parameters that affect melt pool character-
istics (Ref 17). Along with experimental approaches, numerical
simulations have also been utilized to study the melt pool
characteristics and thermal history in the SLM process (Ref 18).

Most numerical simulations in the literature are developed
based on the physics involved in the SLM process, such as
rapid heat transfer, surface tension, molten metal flow, and
recoil pressure. These numerical modeling approaches prove to
be reliable for simulating the melt pool geometry and
temperature distribution in SLM process as they also explicitly
unravel the underlying physics. Cheng et al. (Ref 19) developed
a multiphysics computational fluid dynamics model to predict
the melt pool geometry and pore defects during laser melting of
a SS-316L. Khorasani et al. (Ref 20) developed a micro-scale
thermo-fluid model in a commercial software Flow 3d to
investigate melt pool depth with varying process conditions.
However, the multiscale and multiphysics nature of the
numerical problem imposes a very high computational cost,
preventing their widespread acceptance (Ref 21, 22).

In parallel, there are several studies of melt pool evolution in
which the developed thermal models are based primarily on
solving the heat conduction equations using finite element
methods (Ref 23, 24). Tan et al. (Ref 25) studied the melt pool
evolution in SLM by solving the transient heat conduction
equation, but the effect of vital process parameters on melt pool
geometry was not evaluated. Arisoy et al. (Ref 26) evaluated
melt pool geometry during selective laser build at three distinct
locations, the start, middle, and end of the track using thermal
imaging and numerical methods. Though the simulation results
are satisfactory, the approach was computationally expensive.
Ansari et al. (Ref 27) developed a finite element model to
evaluate the influence of process parameters on the melt pool
and peak temperature. Because fewer combinations of laser
power and scan speed were used, the impact on process-
induced defects could not exactly be determined. Waqar et al.
(Ref 28) performed multi-track and multi-layer numerical
modeling to investigate the thermal behavior and melt pool
characteristics. Majeed et al. (Ref 29) developed a three-
dimensional finite element model to analyze the influence of
laser processing parameters on different underlying surfaces.

Recently, data-driven techniques are gaining a lot of
popularity in every domain of research, including AM (Ref
30, 31). The high dimensionality and complexity of the SLM
process make it well-suited for applying the popular machine
learning (ML) algorithms, and the synergy of ML and
simulation can accelerate computations by orders of magnitude
above standalone physics-based simulations (Ref 32). More-
over, as the SLM process modeling yields a huge amount of
data in terms of process parameters, simulated melt pool
geometry, and temperature distribution profiles, ML algorithms
can be applied to these data in order to learn hidden
relationships and correlations among the vital entities. How-
ever, one of the major challenges of leveraging ML techniques
in AM is the availability of smaller-size datasets, particularly
for a variety of input process conditions. (Ref 33).

It is concluded from the literature review that a compre-
hensive study of the melt pool geometry is essential for the
deployment of the SLM process for real-life industrial appli-
cations. The majority of the reviewed literature focused on
evaluating the melt pool geometry either using laborious and
expensive experimental studies or computationally expensive
numerical simulations, limiting these approaches for detailed

exploration of the SLM process. The above methods also act as
a bottleneck for the application of emerging data-driven
techniques, as the acquired data are either expensive and/or
very limited. Moreover, the development of process maps
representing optimum process windows to avoid process-
induced defects such as lack of fusion, keyholing and balling
has not been well-established utilizing numerical simulations.
The development of effective virtual simulation tools and
computing techniques has significantly contributed to the
emergence of increasingly efficient, quick and powerful
frameworks to assess the fidelity of printed parts.

This study addressed the above-mentioned issues by employ-
ing a robust FE modeling approach for rapid prediction of melt
pool geometry using a commercial simulation tool. The proposed
method not only allows for the simulation of melt pool
characteristics in SLM, but also for the eventual development
of process maps for defect-free builds. Correlation between the
melt pool geometry and the SLM input parameters (laser power,
scan speed, and powder layer thickness) was developed using a
response surface methodology-based statistical analysis, and
different quadratic response models were developed. SLM
parameters were also optimized using RSM for suitable melt
pool depth and width for a defect-free build with improved
microstructure and mechanical properties. This work is aimed at
supporting the decision-making process toward highfidelityAM,
with minimum number of trial runs and thereby cost.

3. Material and Methods

The numerical approach incorporated in this study is shown
(see Fig. 3). The first part of the approach, single bead
simulation, was employed to model the melt pool geometry of
single-track SLMed Inconel 718. It facilitated the detection of
process-induced defects (lack of fusion, balling, and keyholing)
and the generation of process maps. The second part of the
approach, which is currently a work in progress, uses the
optimized process parameters from these process maps for
thermal history and microstructure simulation in multi-track
and multi-layer SLM.

3.1 Governing Equations and Boundary Conditions

The SLM process is governed by numerous input process
parameters like laser power (P), scan speed (v), powder layer
thickness (t) and hatch distance (h) to name a few important
ones. The laser energy density (E) of the process in terms of
these key process parameters can be determined using formulae
below (Ref 34):

E ¼ P

v:t:h
ðJ=mm3Þ ðEq 1Þ

If the process parameters are not properly tuned, improper
melting can result in a variety of undesirable process-induced
defects or even a complete build failure.

The temperature distribution T (x, y, z, t) is determined in the
ANSYS Additive module by solving the governing three-
dimensional partial differential equation of transient heat
transfer, which is defined as (Ref 35):
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In the above equation, T the temperature varies as a function
of time and location, while q, c and k are the material density,
specific heat, and thermal conductivity, respectively. Further, t
is the interaction time, and q is the heat generated per volume
within the build.

At time t = 0, the initial condition of powder bed regarding
thermal distribution can be defined as follows:

T x; y; z; tð Þt¼o¼ T0 x; y; zð Þ 2 D ðEq 3Þ

where T0 is the ambient temperature, and D is the concerned
domain. The natural boundary condition with heat balance can
be represented as:

k
@T

@n
þ qr þ qc ¼ q x; y; z;ð Þ 2 S ðEq 4Þ

where S is the surfaces of levied heat fluxes, convection and
radiation and n is the normal vector to the surface S.

Heat flux input q due to the laser beam source is considered
to have a Gaussian distribution and is defined by (Ref 36):

q ¼ 2AP

pR2
exp � 2r2

R2

� �
ðEq 5Þ

where A is the laser absorptance of powder material, P is the
laser power, R is the effective radius of laser beam, and r
represents the radial distance from the center of the laser spot to
a point on the powder bed surface. Further, qc represents the
heat transfer due to convection and can be defined by:

qc ¼ h T � T0ð Þ ðEq 6Þ

while qr represents the heat transfer due to radiation and can be
expressed by:

qr ¼ re T4 � T 4
0

� �
ðEq 7Þ

where h, r, and e represent the convective heat transfer
coefficient, the Stefan–Boltzmann constant, and the surface
emissivity, respectively.

3.2 Finite Element Modeling

In this study, several physical assumptions were considered
for modeling the SLM process. The powder bed was assumed
to be a continuous and homogeneous media. The thermo-
physical properties, such as thermal conductivity and specific

heat capacity of the material, were considered to be temperature
dependent. The convective heat transfer coefficient between the
powder bed and the surroundings was treated as constant.

ANSYS Multiphysics (2020R1) with Additive Wizard was
used in this study for numerical modeling. The finite element
model with meshing of single bead and substrate is depicted in
Fig. 4. The base plate with the dimensions of
5 9 2 9 0.2 mm3 was taken as substrate, and the laser scan
area on the IN718 powder bed had a length of 4 mm.
Considering the computational efficiency (MRF), hexahedral
meshing with a fine mesh of 0.1 mm was used and the number
of elements was 2168.

A voxel is a hexahedral (cubic) element used in the FE
analysis to specify the domain. The computational domain is
divided into voxels using the voxelization function, and to more
accurately depict the domain, sub-voxels are used within each
voxel. The voxel size ranges from 0.2 to 2 mm. While the mesh
in the mechanics solver is determined by the voxel size and
voxel sample rate, the Additive application uses mesh resolu-
tion factor (MRF) to control the mesh in the thermal Solver.
MRF controls the fidelity of the solution by scaling the mesh
for the thermal solver.

Valid MRF values are integers between 1 and 12. The MRF
of 12 corresponds to a voxel rate of 1, resulting in a coarse
mesh, and as the MRF is reduced, the mesh becomes finer.
MRF values with different voxel rate are represented in Fig. 5.
MRF is inversely proportional to the run time and fidelity. If the

Fig. 3 Workflow of the proposed numerical approach: (1) single bead simulation conducted in this study and (2) thermal history simulation
(currently in progress)

Fig. 4 Meshed model used for FE simulation

Journal of Materials Engineering and Performance Volume 32(17) September 2023—8001



MRF is too low, the simulation will take a long time to
complete due to the finer mesh used in the thermal solution. If
the MRF is too high, the simulation time will be less but
accuracy is lost as the mesh used is too coarse to accurately
resolve the melt pool. This indicates that the element size is too
large to adequately represent the heat transfer in the melt pool.
A trade-off between simulation time and model accuracy
allowed us to take an informed decision of the final MRF.
Tuning the MRF by comparing simulated melt pool geometry
with existing experimental results leads to selection of final
MRF as 4.

3.3 Material Properties and Simulation Parameters

The material data for Inconel 718 used in this study were
obtained from ANSYS Mechanical engineering data source,
additive manufacturing materials. The thermo-physical proper-
ties and their values used in the numerical models are
documented in Table 1.

4. Single Bead Parametric Simulation

At first, a single track was simulated to determine the melt
pool characteristics for a given process parameters and material
system. It replicated the standard practice of printing a single
track on SLM systems where the heat source scans in a single
stroke across the powder bed. The simulated melt pool depth
and width were evaluated to assess the effect of SLM process

parameters on the melt pool geometry without experimenting
on expensive machine and material systems. The input process
parameters with the machine configuration are used to simulate
a definite track length in geometric configuration. The layer
thickness, laser spot size, and baseplate temperature were used
as constant inputs, whereas the laser power and scan speed
were employed as parametric variables. A schematic of the
numerical model representing the single bead parametric
simulation and the melt pool geometry is shown (see Fig. 6).

Single tracks of 4 mm length SLMed Inconel 718 were
simulated to evaluate the geometry of melt pool. Considering
the laser power and scan speed range used by various
researchers (Ref 38-41) for Inconel 718, nine combinations of
the laser power and scan speed were selected. Combinations of
laser power, scan speed, and energy density used in the single
bead simulation are shown in Table 2. Other constant input
parameters included layer thickness of 30 lm, laser spot size of
80-100 lm, and the base plate temperature of 80 �C.

The melt pool geometry for these nine combinations was
evaluated from single bead simulation, and the effect of laser
power and scan speed on melt pool depth and width is shown in
Fig. 7(a) and (b), respectively.

The effect of laser energy density on melt pool depth and
width was also studied (see Fig. 8). As the laser energy density
increases, melt pool depth and width increase as more energy is
transferred to the melt pool area. This single bead simulation of
melt pool geometry took 110 min of computational time on a
workstation equipped with an Intel octa-core i3 3.1 GHz CPU
and 8 GB of RAM. So, this proposed framework can be
utilized for rapid evaluation of melt pool geometry with a given
material system and process conditions in SLM. This rapid
prediction of melt pool geometry was efficiently utilized in
developing the process map for the SLM process to avoid
common defects in the build. This was comprehensively
discussed later in the study.

4.1 Model Validation

Prior to incorporating the numerical model for developing
process maps, it was validated by comparing the simulated
results of melt pool geometry with the existing literature. Bayat
et al. (Ref 42) evaluated single-track melt pool geometry for
SLMed Inconel 718. The track length for the study was
1000 lm, and a layer of powder with a thickness of 40 lm was

Fig. 5 Mesh resolution factor (MRF) with different voxel rates

Table 1 Material properties for IN718 used in the
numerical simulation (Ref 37)

Properties Values

Liquidus temperature, K 1609
Solidus temperature, K 1533
Thermal conductivity, W/m K 0.56 + 2.9 9 10�2 T –

7 9 10�6T2

Specific heat capacity, J/kg K 360.4 + 0.026 T – 4 9 10�6T2

Density, kg/m3 8100
Latent heat of fusion, J/kg 209 9 103

Viscosity, kg/m s 5 9 10–3

Laser absorptance, A 0.7
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laid using the process conditions given in Table 3. Melt pool
depth and width were determined along the track, with values
ranging from 90-99 for melt pool depth and 120-136 lm for
melt pool width.

To validate the model, the above-mentioned single track of
1000 lm was simulated with the same process conditions and
material systems. The melt pool depth and width simulated
over the track length are shown in Fig. 9. At the start of the
track, the melt pool depth and width were increasing as the melt
pool was in the developing region. To analyze the simulated
results, melt pool geometry was taken from the stable region
where the melt pool was already developed. The simulated melt
pool depth and width were compared with actual results and are
listed in Table 4. The simulated melt pool geometry was clearly
in good accord with the results obtained by Bayat et al. (Ref
42).

Kusuma et al. (Ref 43) printed single tracks with varying
laser power and scan speed by laying 50 lm powder layers and
using a laser heat source of 100 lm spot size. Experimentally
measured melt pool widths for various combinations used in the

Fig. 6 Schematic showing the physical model: (a) single bead parametric simulation depicting Gaussian heat source and (b) simulated melt
pool geometry

Table 2 Various combinations used in the single bead simulation

Laser power, W 150 200 250 150 200 250 150 200 250
Scan speed, mm/s 700 700 700 900 900 900 1100 1100 1100
Energy density, J/mm 0.214 0.286 0.357 0.167 0.222 0.278 0.136 0.182 0.227

Fig. 7 Variation of (a) melt pool depth and (b) melt pool width
with laser power and scan speed

Fig. 8 Variation of melt pool depth and width with energy density
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study are shown in Table 5. To further assess the robustness of
the approach, single bead simulation is employed to model
single track with same process parameters as utilized by
experimental study. 10 single tracks were simulated, and their
melt pool widths were compared with the experimental widths
as listed in Table 5. The simulation results give a good
agreement with the experimental findings.

Jakumeit et al. (Ref 44) printed five single tracks with
different laser energy densities by laying 60 lm powder layers
and using a laser heat source of 100 lm spot size. Experimen-
tally measured melt pool depth for various combinations of
laser power and scan speed used in the study is shown in
Table 6. Five single tracks with these process parameters were
simulated using single bead simulation, and their melt pool
depths were compared with the experimental depths and are

Table 3 Process conditions for the validation study

Laser power, W Scan speed, mm/s Layer thickness, lm Base plate temperature, �C Laser spot size, lm

285 960 40 50 100

Fig. 9 Melt pool depth and width over the simulated track length

Table 4 Actual (Ref 42) and simulated melt pool geometry

MP geometry Actual MP depth, lm Simulated MP depth, lm Actual MP width, lm Simulated MP width, lm

Values 90-99 94 120-136 127

Table 5 Experimental (Ref 43) and simulated MP widths

Scan speeds, mm/s

500 600

Laser
power, W

Experimental MP
width, lm

Simulated MP
width, lm

Absolute
error, %

Experimental MP
width, lm

Simulated MP
width, lm

Absolute
error, %

100 163 160 1.84 150 147 2.00
120 168 178 5.95 164 167 1.83
140 194 192 1.03 170 176 3.53
160 210 201 4.29 190 187 1.58
180 217 209 3.69 200 195 2.50

Table 6 Experimental (Ref 44) and simulated melt pool depths

Laser power, W Scan speed, mm/s Energy density, J/mm Experimental MP depth, lm Simulated MP depth, lm Absolute error, %

142 960 0.15 73 76 4.10
250 1100 0.23 120 116 3.33
285 960 0.30 172 157 8.72
250 660 0.38 176 172 2.27
285 600 0.48 252 231 8.33

8004—Volume 32(17) September 2023 Journal of Materials Engineering and Performance



shown in Fig. 10. The simulation gives a fair agreement with
the experimental findings as the calculated absolute errors are
< 10%.

4.2 Process Map for SLMed Inconel 718

Process maps provide an optimum process parameter
window for a specific material system that can be used to print
without encountering major printing defects such as lack of
fusion, balling, and keyholing. Single bead simulations were
utilized to generate a laser power-scan speed process map for
SLMed Inconel 718. Seven different values for laser power and
scan speed were used to generate 49 combinations in the laser
power-scan speed space. Material system, input process
conditions, laser power and scan speed combinations used to
develop the process map are given in Table 7 and 8.

The simulated results of melt pool depth (D), width (W), and
length (L) are utilized to assess various criteria of defect-free
builds in SLMed IN718 (Ref 45). The following constraints on
the melt pool geometry were introduced to evaluate the
characteristics of the melt pool:

• Ratio of melt pool depth to layer thickness as (D/t > 2).
It ensures that the melt pool is not too shallow.

• Ratio of melt pool depth to its width as (D/W < 0.75). It
ensures that the melt pool is not too deep.

• Ratio of melt pool length to its width as (L/W < 4). It en-
sures that the melt pool is not too long.

where t is the powder layer thickness. All these ratios were
evaluated for all combinations of laser power and scan speed
and plotted in the form of a process map as shown in Fig. 11.
The process map exhibited that at low laser power and higher
scan speeds, lack of fusion was significant due to energy deficit,
which led to improper fusion of powder particles. Keyholing

was observed at higher laser power levels and lower scan
speeds due to energy surplus, which resulted in a deeper melt
pool.

At higher levels of laser power and scan speed, the width of
the melt pool reduced, gradually became discontinuous, and
subsequently resulted in balling due to Rayleigh instability. The
region free of the aforementioned common flaws was desig-
nated as the optimal process window. Of all the process
parameter combinations of laser power and scan speed, 10
combinations yielded the optimum process window enclosed
by the dotted lines shown in the process map. Within this
window, the resulted melt pool geometry is such that the build
is likely to be free from lack of fusion, keyholing, and balling.
Thus, choosing a laser power and scan speed combination from
this optimum process window will be beneficial to further
studies of thermal history and microstructure evolution.

An experimental study by Kumar et al. (Ref 46) also
supported that the lack of fusion defect is more likely to occur
at low laser power and low scan speed combinations. At high
laser power and high scan speed combinations, however,
balling defects are common. Moreover, the laser power-scan
speed combinations used to fabricate nearly defect-free Inconel
718 components are well within the optimized process window
developed in this study. Another study by Cheng et al. (Ref 23)

Fig. 10 Simulated vs. experimental (Ref 44) melt pool depths for
different energy densities

Table 7 Material system and constant input process
conditions

Material system Layer thickness, lm Laser spot size, lm Track length, lm Base plate Temp, �C

Inconel 718 30 80-100 4 80

Table 8 Input laser power and scan speed combination
used to generate the process map

Laser power, W 50
100

150 200 250 300 350

Scan speed, mm/s 500600 700 800 900 1000 1100

Fig. 11 Process map of laser power vs. scan speed for SLMed
Inconel 718
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established that a larger laser power and smaller scanning speed
are responsible for generating keyhole-induced pores in SLMed
builds, as also evident from the developed process map in this
study.

5. Design of Experiments

The design of experiment (DOE) was utilized to study the
effect of the laser power, scan speed, and layer thickness on the
melt pool geometry of the simulated single tracks. DOE is a
well-established approach to analyze the influence of input
process parameter (factor) on evaluated responses. The analysis
of variance (ANOVA) was employed to develop the mathe-
matical relation between the input parameters and the response.
Three SLM process parameters were sorted at three uniformly
spaced levels, as shown in Table 9. The laser power (P) and
scan speed (v) were selected from the developed process map.
Then, the range of layer thickness (t) was taken as 30– 45 lm
to assess the effect on melt pool geometry. Melt pool depth (D)
and width (W) were considered as responses for the regression
modeling.

Table 9 Levels of selected SLM process parameters for
BBD RSM

Parameters Units 2 1 0 1

Laser power, P W 150 200 250
Scan speed, v mm/s 700 800 900
Layer thickness, t lm 30 45 60

Table 10 BBD RSM process parameter (factors) and responses

Run order Std. order

Process parameters Responses

Laser power, W Scan speed, mm/s Layer thickness, lm MP depth, lm MP width, lm

1 6 250 800 30 111 150
2 10 200 900 30 80 128
3 14 200 800 45 78 126
4 7 150 800 60 35 85
5 12 200 900 60 53 100
6 8 250 800 60 92 128
7 15 200 800 45 78 126
8 1 150 700 45 61 116
9 13 200 800 45 78 126
10 3 150 900 45 44 98
11 5 150 800 30 64 118
12 11 200 700 60 77 121
13 2 250 700 45 119 152
14 9 200 700 30 100 145
25 4 250 900 45 92 133

Table 11 Predicted melt pool geometry using regression equations and comparison with simulated results

Run
order

Simulated MP depth,
lm

Predicted MP depth,
lm

Error,
%

Simulated MP width,
lm

Predicted MP width,
lm

Error,
%

1 111 113.18 1.96 150 149.29 0.47
2 80 81.60 2.00 128 128.61 0.48
3 78 79.55 1.98 126 126.11 0.08
4 35 35.92 2.63 85 85.92 1.08
5 53 55.08 3.92 100 99.84 0.16
6 92 93.65 1.79 128 128.02 0.01
7 78 79.55 1.98 126 126.11 0.08
8 61 62.43 2.35 116 115.69 0.27
9 78 79.55 1.98 126 126.11 0.08
10 44 45.47 3.34 98 97.42 0.59
11 64 65.44 2.25 118 118.19 0.16
12 77 78.54 2.00 121 120.60 0.33
13 119 119.67 0.56 152 152.79 0.52
14 100 101.06 1.06 145 145.37 0.26
15 92 93.71 1.85 133 133.53 0.40
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5.1 Response Surface Methodology

The response surface methodology (RSM) based on Box–
Behnken design (BBD) with a simulation design of 15 runs
(with 3 center points) was employed, as shown in Table 10. It
facilitates reduced simulation (from 27 of full factorials run to
15 BBD run) and also the development of regression models as
BBD allows efficient estimation of the first- and second-order
coefficients. 15 single tracks were simulated using single bead
simulation by varying laser power, scan speed and layer
thickness as per BBD runs while keeping other input param-
eters fixed to evaluate the responses D and W. SLM process
parameters were also optimized by developing and analyzing
regression models using the Minitab statistical software (ver-
sion 2019). The evaluated responses of the simulated melt pool
geometry for the different process parameters are shown in
Table 10.

The relationship between the input SLM process parameters
and the output responses was evaluated using RSM. The
quadratic regression equations for D and W in terms of the
actual parameter values were generated and represented by the
below equations:

D ¼ 93:4þ 0:8375P � 0:2113v� 0:2001t

� 0:00025P � P þ 0:00014v � v� 0:00833t � t
� 0:00045P � vþ 0:00333P � t � 0:000667v � t

ðEq 8Þ

W ¼ 165:6þ 0:6010P�0:2138vþ 0:3081t

� 0:000900P � P þ 0:000100v � v� 0:01556t � t
� 0:000050P � vþ 0:003667P � t � 0:000667v � t

ðEq 9Þ

Table 12 ANOVA table for MP depth and width

Response Source Adj SS F value P value T value

MP depth, D R-sq (pred) 99.64% Linear 7755.75 7286.43 < 0.001 228.36
P 5565.13 15,900.38 < 0.001 126.10
v 990.13 2828.93 < 0.001 � 53.19
t 1200.50 3430.03 < 0.001 � 58.57

MP width, W R-sq (pred) 98.94% Linear 4798.75 2460.90 < 0.001 270.69
P 2667.50 4099.23 < 0.001 64.03
v 703.13 1081.78 < 0.001 � 32.89
t 1431.13 2201.73 < 0.001 � 46.92

Fig. 12 Normal probability plot and residual vs. fitted value plot for (a) MP depth (b) MP width
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These regression equations were further utilized to predict
melt pool depth and width for all process parameter combina-
tions used in BBD design. The predicted values were compared
with the actual simulated results. The confirmation test results
are shown in Table 11. The maximum percentage error in the
prediction of depth and width of melt pool was less than 5 and
2%, respectively.

5.2 Analysis of Variance (ANOVA)

ANOVA tables of responses were developed to analyze the
adequacy and significance of regression models. The vital
values of linear terms from the ANOVA table are shown in
Table 12, and the square terms were omitted due to brevity. The
significance of the developed models was examined using the P
values (at a 95% confidence level). Model adequacy is

indicated by the obtained P values for the model responses
being less than 0.05. T values from coded coefficients represent
the quantitative effect of each individual process parameter on
response. A positive value reflects the same trend of the
concerned factor and response, while negative values show the
opposite effect of the factor on the response. Also, the R2

values were close to 1, which shows a high adequacy of the
statistical model.

The residual plots for melt pool depth and width were also
developed as shown in Fig. 12 in order to illustrate the model’s
adequacy. The residuals in the normal probability plot were
confirmed to be quite close to the straight line, demonstrating
the regression models’ good fit. Further, the residual vs. fitted
value plot shows that the residuals were randomly distributed
and without any particular distribution pattern, indicating good
model adequacy.

Fig. 13 Contour and surface plot of melt pool depth vs. laser power and scan speed at constant layer thickness

Fig. 14 Contour and surface plot of melt pool depth vs. scan speed and layer thickness at constant laser power
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5.3 Effects of SLM Process Parameters on the Melt Pool
Geometry

To study the variation of the melt pool depth with process
parameters (laser power—P, scan speed—v, and layer thick-
ness—t), contour and surface plots were developed as shown in
Fig. 13, 14, 15. From contour plots, it is evident that to get a
high melt pool depth, higher laser power, lower scan speed, and
lower layer thickness are needed. The maximum melt pool
depth is obtained on account of increased heat input to the
bead. The surface plots clearly show that, for a given layer
thickness, the melt pool depth tends to increase as laser power
increases and scan speed decreases. At constant scan speed, the
lower layer thickness and higher laser power increase the melt
pool depth. At constant laser power, lower layer thickness and
scan speed increase the melt pool depth. The parametric
contribution of laser power, scan speed, and layer thickness to

the melt pool depth was calculated from ANOVA Table 12 as
71.75, 12.76, and 15.47%, respectively.

A similar trend of melt pool width with these process
parameters was observed from contour and surface plots (see
Fig. 16, 17, 18). The parametric contribution of laser power,
scan speed, and layer thickness to melt pool width was
calculated from ANOVATable 12 as 55.52, 14.65, and 29.82%,
respectively.

The main effect plots shown in Fig. 19 were analyzed to
evaluate the influence of various levels of input process
parameters on melt pool geometry. The main effect plots clearly
show that while laser power has a positive correlation with melt
pool geometry, scan speed and layer thickness have a negative
correlation. The most significant parameter for melt pool
geometry is confirmed to be laser power. However, scan speed
and layer thickness also affect the melt pool geometry due to
changes in heat input to the bead.

Fig. 15 Contour and surface plot of melt pool depth vs. laser power and layer thickness at constant scan speed

Fig. 16 Contour and surface plot of melt pool width vs. laser power and scan speed at constant layer thickness

Journal of Materials Engineering and Performance Volume 32(17) September 2023—8009



The RSM technique was used to optimize the SLM process
parameters for defect-free build because controlling the melt
pool depth and width can reduce the occurrence of common
process-induced defects. Results of optimization are shown in
Fig. 20. The optimized process parameters are 240 W laser
power, 900 mm/s scan speed, and 45 lm layer thickness to
obtain a melt pool geometry with a depth of 95 lm and a width
of 130 lm to avoid process-induced defects with a faster build
rate. Similarly, one can tailor the melt pool characteristics by
choosing process parameters with the help of process maps and
regression modeling without encountering common defects in
SLM build. By tailoring scan speed and layer thickness within

the safe processing window, the build rate can also be
optimized for greater yield.

6. Conclusions

In this work, a numerical modeling approach was employed
for the simulation of the melt pool geometry of single-track
SLMed Inconel 718. Model validations exhibited that the
simulated melt pool geometries were in very good agreement
with the actual results reported in the literature. Nine single

Fig. 17 Contour and surface plot of melt pool width vs. scan speed and layer thickness at constant laser power

Fig. 18 Contour and surface plot of melt pool width vs. laser power and layer thickness at constant scan speed
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tracks were simulated using single bead simulation utilizing
different combinations of laser power and scan speed, yielding
varying energy density and generating melt pool depths and
widths. It was concluded that with an increase in laser power and
decrease in scan speed, the melt pool depth and width increase
due to more energy being transferred to the powder bed. The
simulated melt pool geometry, corresponding to varying laser
power and scan speed, was further utilized in the generation of
the process map for SLMed Inconel 718, which can be used to
avoid common process-induced defects such as lack of fusion,
keyholing, and balling during SLM build. Box–Behnken design
of response surface methodology was used to study the effect of
laser power, scan speed, and layer thickness on the melt pool
geometry. Laser power is found to be the most significant SLM
process parameter for melt pool geometry. Confirmation test
results show that the error in prediction of melt pool geometry
with regression modeling is within the acceptable range. SLM

process parameter optimization for defect-free build was also
performed using regression modeling. Existing studies show
that the optimized parameters can be utilized to print defect-free
IN718 builds for better performance. Considering the compu-
tation time required in single bead simulations, the proposed
numerical approach can be used in the rapid prediction of melt
pool geometry in bulk SLM builds and also optimization of
process parameters through process maps.

Optimum process parameter settings obtained from the
developed process maps can be used to simulate the temper-
ature distribution and microstructure in multi-track multi-
layered SLMed builds. This is a work in progress currently.
This will further lead to the development of process–structure
(P–S) and process–structure–property (P–S–P) linkage for the
SLM. ML-based predictive models can also be developed using
the simulated data to further automate the evaluation of the melt
pool geometry for a given input of process parameters.

Fig. 19 Main effect plots for (a) mean MP depth (b) mean MP width as a function of P, v and t

Journal of Materials Engineering and Performance Volume 32(17) September 2023—8011



Acknowledgments

The Ministry of Human Resource Development, Government
of India, is sincerely acknowledged by the lead author for
providing financial assistance in the form of a research scholarship.
This research received no particular funding in any form.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng.
Perform., 2014, 23, p 1917–1928.

2. D.G. Ahn, Direct Metal Additive Manufacturing Processes and their
Sustainable Applications for Green Technology: A Review, Int. J.
Precis. Eng. Manuf. Green. Technol., 2016, 3, p 381–395.

3. M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz
and J.J. Lewandowski, Progress Towards Metal Additive Manufactur-
ing Standardization to Support Qualification and Certification, JOM,
2017, 69(3), p 439–455.

4. P. Kumar, J. Farah, J. Akram, C. Teng, J. Ginn and M. Misra, Influence
of Laser Processing Parameters on Porosity in INCONEL 718 During
Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2019, 103, p
1497–1507.

5. N. Kladovasilakis, P. Charalampous, I. Kostavelis, D. Tzetzis and D.
Tzovaras, Impact of Metal Additive Manufacturing Parameters on the
Powder Bed Fusion and Direct Energy Deposition Processes: A
Comprehensive Review, Prog. Addit. Manuf., 2021, 6, p 349–365.

6. M.A. Ryder, C.J. Montgomery, M.J. Brand, J.S. Carpenter, P.E. Jones,
A.G. Spangenberger and D.A. Lados, Melt Pool and Heat Treatment
Optimization for the Fabrication of High-Strength and High-Toughness
Additively Manufactured 4340 Steel, J. Mater. Eng. Perform., 2021,
30, p 5426–5440.

7. H. Ali, H. Ghadbeigi and K. Mumtaz, Processing Parameter Effects on
Residual Stress and Mechanical Properties of Selective Laser Melted
Ti6Al4V, J. Mater. Eng. Perform., 2018, 27, p 4059–4068.

8. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, J.W.
Gibbs, D.E. Hahn, C. Kamath and A.M. Rubenchik, Observation of
Keyhole-mode Laser Melting in Laser Powder-bed Fusion Additive
Manufacturing, J. Mater. Process. Technol., 2014, 214, p 2915–2925.

9. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O.
Milewski, A.M. Beese, A.E. Wilson-Heid, A. De and W. Zhang,

Additive Manufacturing of Metallic Components- PROCESS, Struc-
ture and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.

10. P. Promoppatum and S.C. Yao, Analytical Evaluation of Defect
Generation for Selective Laser Melting of Metals, Int. J. Adv. Manuf.
Technol., 2019, 103, p 1185–1198.

11. W.R. Kim, G.B. Bang, J.H. Park, T.W. Lee, B.S. Lee, S.M. Yang, G.H.
Kim, K. Lee and H.G. Kim, Microstructural Study on a Fe-10Cu Alloy
Fabricated by Selective Laser Melting for Defect-Free Process
Optimization Based on the Energy Density, J. Mater. Res. Technol.,
2020, 9(6), p 12834–12839.

12. S. Gao, X. Yan, C. Chang, E. Aubry, M. Liu, H. Liao and N.
Fenineche, Effect of Laser Energy Density on Surface Morphology,
Microstructure, and Magnetic Properties of Selective Laser Melted Fe-
3wt.% Si Alloys, J. Mater. Eng. Perform., 2021, 30, p 5020–5030.

13. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal and B.E.
Stucker, Influence of Processing Parameters on the Evolution of Melt
Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabri-
cated by Selective Laser Melting, Prog. Addit. Manuf., 2017, 2, p 157–
167.

14. X. Zhang, B. Mao, L. Mushongera, J. Kundin and Y. Liao, Laser
Powder Bed Fusion of Titanium Aluminides: An Investigation on Site-
Specific Microstructure Evolution Mechanism, Mater. Des., 2021, 201,
109501.

15. T.G. Spears and S.A. Gold, In-process Sensing in Selective Laser
Melting (SLM) Additive Manufacturing. Integr, Mater. Manuf. Innov.,
2016, 5, p 16–40.

16. S. Shrestha and K. Chou, Single Track Scanning Experiment in Laser
Powder Bed Fusion Process, Proced. Manuf., 2018, 26, p 857–864.

17. L. Scime and J.L. Beuth, Melt Pool Geometry and Morphology
Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion
Additive Manufacturing Process, Addit. Manuf., 2019, 29, 100830.

18. S.A. Khairallah and A.T. Anderson, Mesoscopic Simulation Model of
Selective Laser Melting of Stainless-Steel Powder, J. Mater. Process.
Technol., 2014, 214, p 2627–2636.

19. B. Cheng, L. Loeber, H. Willeck, U. Hartel and C. Tuffile, Compu-
tational Investigation of Melt Pool Process Dynamics and Pore
Formation in Laser Powder Bed Fusion, J. Mater. Eng. Perform.,
2019, 28, p 6565–6578.

20. M. Khorasani, A.H. Ghasemi, M. Leary, L. Cordova, E. Sharabian, E.
Farabi, I. Gibson, M. Brandt and B. Rolfe, A Comprehensive Study on
Meltpool Depth in Laser-based Powder Bed Fusion of Inconel 718, Int.
J. Adv. Manuf. Technol., 2022, 120, p 2345–2362.

21. S.A. Khairallah, A.T. Anderson, A.M. Rubenchik and W.E. King,
Laser Powder-bed Fusion Additive Manufacturing: Physics of Com-
plex Melt Flow and Formation Mechanisms of Pores, Spatter, and
Denudation Zones, Acta Mater., 2016, 108, p 36–45.

Fig. 20 Optimum process parameters to minimize the defects by tailoring melt pool geometry

8012—Volume 32(17) September 2023 Journal of Materials Engineering and Performance



22. N. Diaz Vallejo, C. Lucas, N. Ayers, K. Graydon, H. Hyer and Y. Sohn,
Process Optimization and Microstructure Analysis to Understand Laser
Powder Bed Fusion of 316L Stainless Steel, Metals, 2021, 11, p 832.

23. S. Jelvani, R. Shoja Razavi, M. Barekat and M. Dehnavi, Empirical-
Statistical Modeling and Prediction of Geometric Characteristics for
Laser-Aided Direct Metal Deposition of Inconel 718 Superalloy, Met.
Mater. Int., 2019, 26, p 668–681.

24. M. Balichakra, S. Bontha, P. Krishna and V.K. Balla, Laser Surface
Melting of c-TiAl Alloy: An Experimental and Numerical Modelling
Study, Mater. Res. Expr., 2019, 6, 046543.

25. P. Tan, F. Shen, B. Li and K. Zhou, A Thermo-metallurgical-
Mechanical Model for Selective Laser Melting of Ti6Al4V, Mater.
Des., 2019, 168, 107642.

26. Y.M. Arisoy, L.E. Criales and T.R. Ozel, Modelling and Simulation of
Thermal Field and Solidification in Laser Powder Bed Fusion of Nickel
Alloy IN625, Opt. Laser Technol., 2019, 109, p 278–292.

27. M.J. Ansari, D.S. Nguyen and H.S. Park, Investigation of SLM Process
in Terms of Temperature Distribution and Melting Pool Size: Modeling
and Experimental Approaches, Materials, 2019, 12, p 1272.

28. S. Waqar, Q. Sun, J. Liu, K. Guo and J. Sun, Numerical Investigation
of Thermal Behavior and Melt Pool Morphology in Multi-track Multi-
layer Selective Laser Melting of the 316L Steel, Int. J. Adv. Manuf.
Technol., 2021, 112, p 879–895.

29. M. Majeed, H.M. Khan, G. Wheatley and R. Situ, A Numerical
Approach to Assess the Impact of the SLM Laser Parameters on
Thermal Variables, J. Addit. Manuf. Technol., 2021, 1(3), p 589–589.

30. C. Wang, X.P. Tan, S.B. Tor and C.S. Lim, Machine Learning in
Additive Manufacturing: State-of-the-Art and Perspectives, Addit.
Manuf., 2020, 36, 101538.

31. N. Kouraytem, X. Li, W. Tan, B. Kappes and A.D. Spear, Modeling
Process–Structure–Property Relationships in Metal Additive Manufac-
turing: A Review on Physics-Driven Versus Data-Driven Approaches,
J. Phys. Mater., 2021, 4, 032002.

32. X.Qi,G.Chen,Y.Li,X.ChengandC.Li,ApplyingNeural-Network-Based
Machine Learning to Additive Manufacturing: Current Applications
Challenges andFuturePerspectives,Engineering, 2019,5, p 721–729.

33. E. Maleki, S. Bagherifard and M. Guagliano, Application of Artificial
Intelligence to Optimize the Process Parameters Effects on Tensile
Properties of Ti-6Al-4V Fabricated by Laser Powder-Bed Fusion, Int.
J. Mech. Mater. Des., 2022, 18, p 199–222.

34. H. Tupac-Yupanqui and A. Armani, Additive Manufacturing of
Functional Inconel 718 Parts from Recycled Materials, J. Mater.
Eng. Perform., 2021, 30, p 1177–1187.

35. Y. Li and D. Gu, Parametric Analysis of Thermal Behaviour During
Selective Laser Melting Additive Manufacturing of Aluminium Alloy
Powder, Mater. Des., 2014, 63, p 856–867.

36. J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai and D. Zuo, Simulation of
Temperature Distribution in Single Metallic Powder Layer for Laser
Micro-Sintering, Comput. Mater. Sci., 2012, 53, p 333–339.

37. P. He, C. Sun and Y. Wang, Material Distortion in Laser-Based
Additive Manufacturing of Fuel Cell Component: Three-Dimensional
Numerical Analysis, Addit. Manuf., 2021, 46, 102188.

38. J.P. Choi, G.H. Shin, S. Yang, D.Y. Yang, J.S. Lee, M. Brochu and J.H.
Yu, Densification and Microstructural Investigation of Inconel 718
Parts Fabricated by Selective Laser Melting, Powder Technol., 2017,
310, p 60–66.

39. W.Y. Chen, X. Zhang, M. Li, R. Xu, C. Zhao and T. Sun, Laser Powder
Bed Fusion of INCONEL 718 on 316 Stainless Steel, Addit. Manuf.,
2020, 36, 101500.

40. T.E. Shelton, G.R. Cobb, C.R. Hartsfield, B.M. Doane, C.C. Eckley
and R.A. Kemnitz, The Impact of Laser Control on the Porosity and
Microstructure of Selective Laser Melted Nickel Superalloy 718,
Results Mater., 2021, 11, 100211.

41. O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima and
T. Nakano, Unique Crystallographic Texture Formation in Inconel 718
by Laser Powder Bed Fusion and Its Effect on Mechanical Anisotropy,
Acta Mater., 2021, 212, 116876.

42. M. Bayat, S. Mohanty and J.H. Hattel, Multiphysics Modelling of
Lack-of-Fusion Voids Formation and Evolution in IN718 Made by
Multi-Track/multi-Layer L-PBF, Int. J. Heat Mass. Transf., 2019, 139,
p 95–114.

43. C. Kusuma, S.H. Ahmed, A. Mian and R. Srinivasan, Effect of
Laser Power and Scan Speed on Melt Pool Characteristics of
Commercially Pure Titanium, J. Mater. Eng. Perform., 2017, 26, p
3560–3568.

44. J. Jakumeit, C. Huang, R. Laqua, J. Zielinski and J.H. Schleifenbaum,
Effect of Evaporated Gas Flow on Porosity and Microstructure of
IN718 Parts Produced by LPBF-Processes, IOP Conf. Ser. Mater. Sci.
Eng., 2020, 861, p 012011.

45. U. Segurajauregi, A. Alvarez-Vazquez, M. Muniz-Calvente, I. Urresti
and H. Naveiras, Fatigue Assessment of Selective Laser Melted Ti-6Al-
4V: Influence of Speed Manufacturing and Porosity, Metals, 2021, 11,
p 1022.

46. P. Kumar, P. Chakravarthy, S.K. Manwatkar and S. Murty, Effect of
Scan Speed and Laser Power on the Nature of Defects, Microstructures
and Microhardness of 3D-Printed Inconel 718 Alloy, J. Mater. Eng.
Perform., 2019, 28, p 6565–6578.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affilia-
tions.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Journal of Materials Engineering and Performance Volume 32(17) September 2023—8013


	Numerical Modeling of Selective Laser Melting: Influence of Process Parameters on the Melt Pool Geometry
	Abstract
	Introduction
	Literature Review
	Material and Methods
	Governing Equations and Boundary Conditions
	Finite Element Modeling
	Material Properties and Simulation Parameters

	Single Bead Parametric Simulation
	Model Validation
	Process Map for SLMed Inconel 718

	Design of Experiments
	Response Surface Methodology
	Analysis of Variance (ANOVA)
	Effects of SLM Process Parameters on the Melt Pool Geometry

	Conclusions
	Acknowledgments
	References




