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Elevated temperature sensitization of a 304 stainless steel results in degradation of mechanical properties
and becomes prone to premature failure. In the present investigation, sensitization of 304 stainless steel has
been done in the temperature range of 500–800 �C. Yield strength, ultimate tensile strength and fracture
toughness (KJc) of the sensitized 304 stainless steel specimens were determined by ball indentation tech-
nique. Microstructural characteristics were quantified and used in artificial neural network to predict the
mechanical properties of the investigated alloy. Neural network was developed with the help of MATLAB
toolbox. Best equation was fitted for training, testing and validating the output. Predicted values from the
developed model exhibited impressive correlation with experimental data obtained through ball indentation
technique as well as with literature reports. The model has proved its distinctive potential in predicting the
mechanical properties of sensitized 304 stainless steel, which faces restriction in bulk sampling from original
component to perform conventional mechanical test during service exposure.

Keywords heat treatment, mechanical testing, metallography,
modeling and simulation, stainless steel

1. Introduction

304 stainless steels (304SS) are widely used in nuclear
industry as storage of uranium oxide balls, pressure tube,
containment vessel, heat exchanger and cladding material due
to their excellent resistance to corrosion, adequate elevated
temperature strength and outstanding room temperature
mechanical properties (Ref 1-4). During service, depending
on the nature of the reactor, the alloy experiences degradation
of properties in the temperature range of either 500-800 �C
(high temperature short duration) or 350-475 �C (low temper-
ature long duration) (Ref 5). Apart from the influence of
temperature, the degeneration of the alloy is steered by
irradiation within nuclear reactor. Disintegration of austenitic
stainless steel in nuclear reactor includes phase transformation
like occurrence of r phase, phase separation like partitioning of
Cr and Fe to form Cr-rich and Fe-rich phases, carbide
precipitation and change in nature of defects along with
density. Out of these changes, irradiation dose dominantly
affects the corrosion resistance, dimensional stability and
mechanical properties of 304SS. Microstructural change of
the alloy at elevated temperature related to deterioration in
corrosion resistance property is commonly termed as �sensiti-
zation.� Sensitization refers to Cr-rich carbide precipitation

along the austenitic grain boundary. The phenomenon makes
the alloy susceptible to inter-granular corrosion and stress
corrosion cracking (Ref 6). Sensitization significantly reduces
the tensile strength and impact property of the alloy (Ref 7).

Sensitization and its effect on component life cycle are well
documented over the years (Ref 8). Considering stringent
service condition, sensitization becomes unavoidable for certain
applications. The severity of sensitization gradually increases
depending on temperature and duration of exposure. Therefore,
it is essential to assess the effect of sensitization on the residual
life of the component during service. Conventional mechanical
tests need extraction of representative specimens of sufficient
volume from components under critical application in nuclear
power plant. Thus, sampling in turn destroys expensive module
and propels mandatory shut down of the plant.

Necessity thus arises to evaluate material properties inter-
mittently to predict the extent of degradation, explore the scope
of rejuvenation and assess the residual life for safe utilization
without carrying out conventional full-length test. A reliable
technique, complimentary to conventional destructive tests, has
a great impetus in this respect. The technique should be capable
in quantifying the then state of the component in reasonable
time scale without affecting the operational schedule of the
system. In this respect, in situ nondestructive methods and
different minimally invasive procedures like ball indentation
technique (BIT), impression creep (IC), shear punch experi-
ment (SPE) and small punch creep (SPC) have come in
limelight (Ref 9). Among all these, BIT has emerged as one of
the potent reliable approaches to determine mechanical prop-
erties of materials (Ref 10-16).

The method is versatile in nature considering its approach
and applicability for various materials. During BIT, deforma-
tion and stress beneath the ball are multiaxial. To explore it in
detail, Samal and his colleagues proposed hybrid algorithm to
estimate equivalent stress and plastic strain at highly stressed
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location below the surface of ball (Ref 17). It was assumed, that
stress and strain were governed by applied load, yield stress of
material and strain hardening exponent. The proposed approach
was found suitable for drawing equivalent stress–plastic strain
plot for wide range of materials. Selected mechanical properties
of deformed 316L stainless steel was determined using BIT by
Xue and his co-workers (Ref 18). Impressive correlation has
been reported between mechanical properties and nature of
indentation. The outcome was validated using finite element
technique. Nanocomposites consisting of Mg alloy matrix
reinforced with ZrO2 and TiO2 were also investigated using
BIT (Ref 19). An instrumented indentation test was attempted
for Al alloy and stainless steel by a different group of
researchers (Ref 20). Equivalent elastic modulus and hardness
were predicted from the experiment. Using finite element
simulation and geometry of indentation, a constitutive model of
plasticity was developed for both alloys. In a new approach,
additive manufacturing (AM) was clubbed with instrumented
spherical ball indentation technique (Ref 21). Using AM
technique Ti-xNb functionally graded material was produced.
Bulk hardness, Young�s modulus, yield stress and work-
hardening coefficient were evaluated by BIT for the fabricated
component. The results of BIT were compared with conven-
tional mechanical tests and exhibited reliability. It has been
concluded that component produced with different AM param-
eters can be investigated using BIT without carrying out full
length mechanical tests. BIT was also applied for determining
yield strength and residual stress at different zones of welded
assembly consisting of HY-80 and HY-100 steels (Ref 22).
Comparing with conventional test, yield strength of miniature
specimens exhibited a variation of £ 10%. Residual stress
determined through BIT revealed consistent relation with the
outcome of x-ray diffraction study. The method has been
further applied for evaluating local mechanical properties of
welded assembly consisting of P92 steel (Ref 23). It is also
noteworthy that even for a highly heterogeneous structure
containing transition joint between low-alloy steel and stainless
steel, the technique has been found useful during evaluation of
mechanical properties of different zones across weld centerline
(Ref 24).

Apart from BIT, which involves experimentation, another
feasible solution to combat with the issue of structural
degradation of stainless steel, is the development of robust
mathematical model. The model may able to predict the
mechanical properties of the alloy accurately after pre-defined
service exposure. Artificial neural network (ANN) has been
originated as a research field of artificial intelligence (AI) and is
a promising modeling application. ANN is useful in such
situation, where existing mathematical models become inade-
quate / incompetent to deliver statistically reliable and repro-
ducible outcome. In this model, selective inputs are given to
obtain an output. Inputs are measured parameters, acquired
during experimentation. The methodology was inspired from
the biological behavior of the set of neurons and the structure of
the brain (Ref 25, 26). In multilayered ANN model, there are
three type of layers, which are organized hierarchically (Ref
27). The first layer is input, which receives information from
the set of experimental data. The second layer is the hidden
layer, which is located between input and output of the
algorithm. Finally, the last layer is output, resemblances with
neurons to perform the necessary processing. The basic
approach of ANN model involves �creation� and �training.�
Creation is the development of skeleton, which can operate at a

given logic. Training refers to establishing consistent relation
between input and output using �neurons� by trials. Once the
model has been trained to the desired level, ANN becomes
capable in evaluating outputs from new process inputs.
Considering the versatility of the approach, attempts have been
made to apply the technique in different domains of material
science (Ref 28-34). The application of ANN for predicting the
degradation of 304SS, exposed in sensitization environment, is
scanty in the open domain literature.

As mentioned earlier, there is always an embargo in real-
time full-length tests of critical components made of 304
stainless steel in nuclear power plants. However, for safety and
un-interrupted operation, it becomes essential to measure the
degree of structural degeneration. Real-time evaluation of post-
irradiated structurally degraded specimen needs neutralization
treatment before experimentation to avoid health hazards. This
may include storage in �cooling pool� for prolong period,
application of �hot cells� and transmutation. Therefore, in the
present context, it was not possible to replicate the exact
physical condition that a material may experience within
nuclear reactor; however, the thermal condition has been
selected carefully so that the elevated temperature range may be
close to the thermal condition of 304SS within reactor. The
temperature ranges thus corresponded to the specified sensiti-
zation temperature of the alloy.

In the proposed investigation, the microstructural informa-
tion of sensitized 304 stainless steel was utilized to develop an
ANN-based model for determining the mechanical properties of
the alloy. Experimental validation of data for same specimens
was done by Ball Indentation Technique (BIT). Both outcomes
were compared to explore reliability. Thus, the combination of
ANN with BIT opens up a new domain of material evaluation
efficaciously and establishes authenticity to replace conven-
tional destructive characterization.

2. Experimental Details

2.1 Material

304SS was received in rolled condition having thick-
ness � 10 mm. Bulk chemical composition of base material
in wt.pct was 0.07 C, 18 Cr, 8 Ni, 0.75 Si, 0.045 P and 2.0 Mn.

2.2 Heat Treatment

Detail of the sensitization treatment is listed in Table 1. As-
received sample was sectioned, solutionized at � 1080 �C for
20 h. 304 stainless steel consists of single phase austenite;
however, depending on processing and thermal history, the
alloy may contain d-ferrite, M7 carbide, M23 carbide, Fe-rich
carbide, r-phase, and Cr-rich nitride. Aging without solution-
ization may create substantial heterogeneity when these phases
become preexisting. Quantification of second phase is erro-
neous in such case as precipitation from single phase and in the
presence of preexisting second phase in same system varies
widely in number density. Achieving single phase also
provided another flexibility of obtaining selective precipitation
(here Cr-rich carbide) during thermal treatment, contributing in
embrittlement during sensitization.

Solutionization was followed by forced air cooling, for
which the cooling rate was � 11 �C/s. This cooling rate was
sufficient even at � 5 mm depth (i.e., at center with obviously
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reduced value) for the investigated specimen to retain austenitic
microstructure (Ref 35). Moreover, it has been indicated in
subsequent section that major precipitating phase in austenitic
stainless during thermal aging was Cr-rich carbide. Substantial
extent of Cr-rich carbide precipitation during sensitization
treatment occurs at the cooling rate of £ 0.5 �C/s (Ref 36).
Thus, the solution heat treatment followed by forced air cooling
ensured single phase for the given dimension of austenitic
stainless steel.

Solutionized specimens were further sensitized at various
temperatures to facilitate microstructural changes. Sensitization
temperatures have been selected based on different temperature
ranges that may be encountered by the alloy during actual
service exposure in nuclear reactor (Ref 37).

2.3 Characterization

Sensitized specimens were prepared using conventional
metallographic technique for microstructural investigation.
Specimens were etched with Glycergia (mixture of nitric
acid + hydrochloric acid, with the addition of few drops of
glycerine) to reveal microstructure. Prepared specimens were
examined in scanning electron microscopes (SEM, Hitachi
SU7000). For particular specimen, minimum five numbers of
un-biased imaging have been carried out from different
locations at suitable magnification. These images were used
in �Image-J� software for exploring quantitative metallographic
information. During processing, the magnification bar was
calibrated and grayscale thresh holding was done for different
structural features. Subsequently, quantitative analysis of the
same characteristics has been carried out, which included
determination of matrix grain size, diameter of second phase
particles and area fraction of precipitates. The same procedure
was repeated for all specimens under investigation. The average
value with error bar has been considered for different features
in the manuscript.

2.4 Mechanical Tests

To study mechanical properties of sensitized specimens, a
Portable Automated Ball Indentation (PABI) unit was used.
Schematic of the PABI system is shown in Fig. 1. Working
principle of BIT involves loading and unloading of a tungsten
carbide ball (indenter) against the selected material, resulting an
alternative compressive stress on the material (Ref 13). The
diameter and hardness of the ball were 1.5 mm and > 70
HRC, respectively. Indentation depth (both elastic and total)

due to compressive stress by the indenter during loading and
unloading was plotted as a function of load. The uniform
compressive stress over specimen surface by indenter generates
a stress-controlled flow curve. Deformation height was mea-
sured by a linear variable differential transducer (LVDT),
attached with PABI system. Indentation depth of each loading/
unloading cycle was used for computing the diameter of the
indentation. Data were further converted into true stress–strain
plot to find out yield strength, ultimate tensile strength,
hardness and fracture toughness of the material (Ref 10-12, 14).

In this study, deformation of all the specimens took place
under load-controlled mode. For each load/unload cycle,
corresponding depth (both elastic and plastic) was measured
using LVDT. Tensile properties of each specimen were
evaluated by considering eight loading and unloading cycles
of load–depth curves. For each loading cycle total indentation
depth (ht) and corresponding total diameter (dt) were obtained
under maximum load. After completing each unloading cycle,
plastic indentation depth (hp) and related plastic indentation
diameter (dp) were recorded. The values of ht, hp, dt, dp for a
given load (kN) were used as raw data for determining the
mechanical properties.

Different equations used for evaluating mechanical proper-
ties of materials by PABI are tabulated in Table 2.

2.5 ANN Model

An artificial neural network is an interconnected group of
nodes, inspired by a simplification of neurons in a brain. In this
study, back-propagation and Levenberg–Marquardt algorithms
were used. In the artificial neural-networks field, the Leven-
berg–Marquardt algorithm is remarkably efficient and well
accepted for training small- and medium-sized problems. Back-
propagation algorithm is a delta rule or gradient descent
technique and one of the most well-known algorithms for
training the multilayer perceptron (Fig. 2).

This approach minimizes the error for a particular training
pattern by adjusting the weights. In this study, the training of
algorithm by backpropagation has been utilized in one feed-
forward hidden layer.

Table 1 Schedule of heat treatment for different
specimens

Sl. No Specimen ID Heat treatment

1 H As-received
2 H1 Solutionized at 1080 �C for 20 h
3 H2 Solutionized at 1080 �C for 20 h

and sensitized at 500 �C for 5 h
4 H3 Solutionized at 1080 �C for 20 h

and sensitized at 600 �C for 5 h
5 H4 Solutionized at 1080 �C for 20 h

and sensitized at 700 �C for 5 h
6 H5 Solutionized at 1080 �C for 20 h

and sensitized at 800 �C for 5 h

Fig. 1 Schematic of Indentation profile during loading and
unloading conditions
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At the beginning, all input data were normalized for
multilayer perceptron networks to teach the algorithms. All
the variables were normalized by using Eq 1.

X n ¼
X i � Xminð Þ

Xmax � Xminð Þ

� �
ðEq 1Þ

where Xn was the normalized value and Xi was the experimental
value to be normalized. Xmax and Xmin were the minimum and
maximum values, respectively, for input within array.

Structure of the network was defined with activation
functions, initialization of weights and biases. Definition of
the parameters was associated with error goal and maximum
number of epochs with the training algorithm. Accordingly, the
algorithm was described and the neural network was trained.
The main focus in model training was minimization of the
mean square error (MSE). MSE of the experimental and the
predicted data was used to find out the accuracy of the model
and was defined as:

MSE ¼ 1

MN

XM
x¼1

XN
y¼1

½Ti xð Þ � Pi xð Þ�2 ðEq 2Þ

where M and N were the number of training inputs and test
samples, respectively. T was the target output and P was the
predicted output by model network. Initially, the simulated
output of the neural network was examined with the measured
input data and subsequently, compared with the measured
output. Finally, validation was performed with independent
data.

A general structure of ANN model is shown in Fig. 3. Input
variables were matrix grain size, % area fraction of second
phase and size of second phase for different sensitized 304SS
specimens (Table 3). Output is ultimate tensile strength (UTS),
yield strength (YS) and fracture toughness of the investigated
samples.

The range of input variables for sensitized SS304 is shown
in Table 4. Accordingly, the outputs were also included in the
table. The neighboring layers� neurons were interconnected by
all weights. From the total input data, 80% of the same was
randomly selected to train the network. Twenty percent data
were used for testing and validation of the network. The
predicted results were compared against experiment outcome.

Fig. 2 Line diagram of back propagation model (BPM)

Fig. 3 The architecture of multilayer perceptron neural network (ANN) model

Table 3 The neural network data used in ANN model

Parameters ANN model

Number of input layers 3
Number of hidden layers 2
Number of first hidden layers 7
Number of second hidden layers 4
Number of output layers 3

6854—Volume 32(15) August 2023 Journal of Materials Engineering and Performance



3. Results

3.1 Tensile Properties of the Specimens

Load–deflection (P–d) curves were obtained by PABI test
for one of the selected specimens. A representative P–d curve
has been considered for further analysis. P–d curve of as-
received stainless steel sample has been converted into true
stress–true plastic strain (rt–ep) plot. The plot was compared
with true stress–true strain curve, obtained through conven-
tional tensile test (Fig. 4). It was evident that both the curves
were analogous to each other without any noteworthy devia-
tion. Therefore, BIT endorsed its reliability in evaluating
mechanical properties of the alloy. Accordingly, other load–
deflection (P–d) curves were drawn using the outcomes of BIT
for sensitized specimens (Fig. 5a). The plots were further
converted to true stress–true strain diagram from the loading–
unloading curves (Fig. 5b).

The flow stress of the alloy exhibited descending trend after
solutionization treatment (Fig. 5). However, it showed sharp
upward trend with the increment in sensitization temperature.
The tensile properties and hardness of the specimens obtained
using BIT are depicted in Table 5.

Sample H presented the alloy in rolled condition, whereas
sample H1 referred to solutionized condition of the same alloy.
Therefore, difference in their mechanical properties is quite
evident in Table 5.

Both UTS and YS were increased steadily with the
increment in sensitization temperature, reached the consum-
mate point at � 700 �C, and then reduced at � 800 �C. In the
same context, strain hardening exponent was decreased and the
strength coefficient was enhanced monotonically with the
increment in sensitization temperature. Sample H5 displayed a
different characteristic in comparison to other specimens.

3.2 Microstructural Investigation

Microstructure of 304 SS under different sensitized condi-
tions is shown in Fig. 6. By and large all specimens exhibited
the presence of polygonal austenitic grains containing twins.
Average matrix grain size of the specimens is furnished in
Table 6. The samples were further examined in SEM.
Predominantly precipitation of the sensitized samples occurred
along grain boundary with few of them within grain interior
(Fig. 7). Change in number density and average size distribu-
tion of second phases at various sensitized temperatures are
shown in Fig. 8.

It is noteworthy that the number density of particles was
increased with the enhancement in sensitization temperature,
reached a maximum at � 700 �C, and then reduced at � 800 �
C. The average particle size distribution also revealed signif-
icant variation for the sensitized specimens. The peak value of
particle size shifted toward right with the increase in the
temperature. The phenomenon showed that the enhancement of
sensitizing temperature resulted in replacement of relatively
finer particles by coarser second phases.

Figure 9(a) and (b) displays the effect of matrix grain size
and area fraction of precipitates on the flow curve of different
304SS specimens. A negative correlation between indentation
depth and grain size was obtained, and the same trend has been
also observed for particle distribution for different specimens,
except sample H5.

Strengthening mechanism of any alloy steel is the syner-
gistic effect of solid solution hardening, dislocation hardening,
transformation hardening, grain size, internal friction and
precipitation hardening (Ref 39). In multicomponent system,
where precipitation occurs, major contribution toward yield
strength occurs due to second phase. In this respect, the
contribution of grain size, solid solution strengthening and
internal friction become meagre. It has been reported, that
during aging of two different grades of stainless steels at 650-
750 �C for various time scales promoted precipitation in
austenite matrix (Ref 40). These second phases contributed
significantly toward the change in mechanical properties of
alloys. In welded microstructure of austenitic stainless steel, the
extent of precipitation has been evaluated at different sub-zones
and it was inferred that carbide precipitation became the key
phenomenon to alter mechanical properties of different regions
(Ref 41). The effect of structural features on crack propagation
in the temperature range of � 196 to 649 �C was evaluated
during fatigue testing of austenitic stainless steel (Ref 42). It
was found that carbide precipitation was a dominant mecha-
nism in controlling the deformation of the alloy. The effect of
grain size and carbon variation for 300 series austenitic
stainless steel was investigated using different thermal param-
eters. Evolution of various precipitates was discussed, and it
was inferred that second phases were primarily responsible for
the alteration of properties of steel (Ref 43). The effect of
M23C6 carbide precipitation on mechanical properties of 9Cr18
austenitic stainless steel under different thermal condition was
studied, and it was reported that the change in hardness was
mainly contributed by carbides (Ref 44). Thus, literature reports
endorse the dominant effect of second phase on the mechanical
properties of thermally treated austenitic stainless steel; accord-

Table 4 Range of input and output variables used in ANN for sensitized 304SS

Sl. No Parameters Min Max Mean Standard Deviation

Input
1 GS(lm) 163 311 237 47.6
2 AF % 0.33 1.11 0.86 0.325
3 Prec. Size (nm) 80.5 119.6 103.26 11.7
Output
4 UTS(MPa) 422 605.8 573.7 63.1
5 YS(MPa) 188.3 280.3 255.03 27.82
6 Fracture toughness ( MPa.M1/2) 137.94 178.02 164.14 9.5
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ingly, in the present investigation the characteristics of second
phases in sensitized 304SS has been considered as primary
contributor to the variation in mechanical properties of the
alloy.

3.3 ANN Modeling with MATLAB

ANN model with Back-propagation multilayer feed forward
was developed using the Neural Network Toolbox in Mat-
labR2019a package. As mentioned earlier, ANN model com-
prised of three input layers, two hidden layers and three output
layers for the training (Fig. 10).

During the training process, the weight and bias values
between these layers were adjusted for the experimental input
and target values by altering the number of iterations, hidden
nodes and layers.

Figure 11 shows the performance of the test procedure and
the results obtained from the ANN model for data set, used in
training, testing and validation of the model. The normalized
ANN experimental outputs illustrated robust agreement with
the predicted outputs. High value of R2 of all the curves
endorsed that the proposed ANN model became extremely
reliable in predicting UTS, YS and fracture toughness precisely
for sensitized 304 stainless steel.

Developed model was further used in evaluating mechanical
properties of sensitized 304 stainless steel using microstructural
information. A set of fifteen random test input data were fed
into the ANN model. The model delivered numerical value of
UTS, YS and fracture toughness with minor variation (Fig. 12).

The predicted values of UTS, YS and fracture toughness
were compared with BIT data (Fig. 13). Five remaining BIT
data set were used to validate the potential and ability of the
ANN model. Table 7 shows the predicted and validation set for

Fig. 4 Comparison of flow properties obtained from ball
indentation and conventional tensile test for as received 304SS
specimen

Fig. 5 Ball indentation test of various sensitized 304SS specimens (a) load–deflection curves (b) true stress–strain scatter plot

Table 5 Mechanical properties of different 304SS specimens using BIT

Sample I.D UTS, MPa 0.2% Off set yield, MPa Strain hardening Coeff., ,n K, MPa Hardness (HB)

H 564 ± 11 (Conv.) 224 ± 21 (Conv.) 0.40 ± 0.07 (Conv.) 1140 ± 32 (Conv.) 143 ± 5 (Conv)
545.6 ± 15 220.4 ± 14 0.43 ± 0.1 1204.3 ± 21 141.2 ± 7

H1 430.4 ± 7 194.6 ± 11 0.42 ± 0.075 940.9 ± 13 119.9 ± 2
H2 565.0 ± 4 250.5 ± 9 0.41 ± 0.08 1225.2 ± 15 148.4 ± 2.6
H3 573.50 ± 9 255.0 ± 8.5 0.40 ± 0.11 1236.8 ± 18 151.1 ± 5.8
H4 597.2 ± 6.5 271.5 ± 6 0.38 ± 0.04 1263.5 ± 11 158.9 ± 3
H5 590.1 ± 12 259.2 ± 13 0.39 ± 0.14 1260.6 ± 23 154.2 ± 5.6

6856—Volume 32(15) August 2023 Journal of Materials Engineering and Performance



UTS, YS and fracture toughness of sensitized austenitic
stainless steel. In addition, error was calculated for each
ANN prediction. A satisfactory agreement has been achieved
for mechanical properties, which were obtained using both ball
indentation technique and ANN model.

4. Discussion

4.1 Evolution of Microstructure

During solutionization, homogenized single-phase austenite
was obtained. It has been illustrated that when 304 austenitic
stainless steel is exposed in the temperature range of 450-
815 �C over substantial time scale (medium to high tempera-
ture sensitization), nearby region of grain boundaries become
sensitized (Ref 45). The process includes diffusion of Cr from
surrounding matrix and formation of Cr-depleted region around
grain boundary (Ref 46). The diffusion of carbon is faster in
comparison with the diffusion of chromium. Therefore, the rate
controlling step in this process is the diffusion of chromium.
Sensitization obeys exponential law of temperature dependence
with activation energy ranging from 40 to 70 kcal/mole. This
range depends on the nature of as received alloy, which governs
the diffusion. High activation energy indicates the diffusion of
chromium through the bulk stainless steel. On the other hand,
low activation energy corresponds to diffusion of chromium
along grain boundaries or dislocation pipes (Ref 47, 48).

Carbide precipitation is influenced by sensitization temper-
ature, duration of thermal exposure, initial matrix grain size and
chemical composition. Driving force of precipitation arises due
to difference in diffusivity of carbon and chromium in austenite
matrix (Ref 49). During isothermal holding, as mentioned
above, the preferred location of carbide precipitation becomes
grain boundary having high misorientation angle or degree of
coincidence. The probable phases within austenitic stainless
steel during exposure at 400-900 �C temperature for 10 min to
24 h are ferrite, M2(C,N), M23C6 and r (Ref 50). M23C6

appears during short-term aging process. On the contrary,
sigma and M7C3 can be produced in the long-term thermal
exposure. Therefore, the principal second phase after sensiti-
zation treatment in the present study becomes Cr carbide
(M23C6, where M stands for Cr). The effect of Cr2N
precipitation can be ignored because nitrogen depletion in
austenitic matrix becomes dominant at the aging temperature of
750-850 �C for time ranging from 4 h and beyond (Ref 51).

At relatively low sensitization temperature (� 500 �C), the
number of nuclei was trivial due to limited extent of diffusion.
This resulted in less number density and small size carbide
precipitates, which hindered slip at grain boundary. With the
increment in sensitization temperature, diffusion of Cr was
accelerated, nucleation time was reduced to achieve critical size
and precipitation kinetics was faster with respect to lower
temperature. Cr-carbide normally shows low thermal stability;
therefore, the number density of precipitates was enhanced
along with the increment in average size up to the temperature

Fig. 6 Optical images of 304 stainless steel (a) as-received, (b) solutionized, (c) solutionized and sensitized at 500 �C (d) solutionized and
sensitized at 600 �C, (e) solutionized and sensitized at 700 �C, and (e) solutionized and sensitized at 800 �C

Table 6 Average grain size of solutionized and sensitized 304SS samples

Sample I.D H H1 H2 H3 H4 H5

Average grain size (lm) 103 ± 8 173 ± 13 223 ± 17 233 ± 15 281 ± 11 303 ± 9
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Fig. 7 (a) SEM micrograph of the sample H2 showing distribution of tiny precipitate (marked by arrow) with semiquantitative elemental
analysis of one of the carbides (normalized data). (b) SEM micrograph of the sample H3 showing distribution of precipitates with increased size
(marked by arrow) for enhancement in aging temperature along with semiquantitative elemental analysis of one of the carbides (normalized
data). (c) SEM micrograph of the sample H5 showing distribution of precipitates with further enhancement in size / coalescence (marked by
arrow) at the highest aging temperature along with semiquantitative elemental analysis of one of the carbides (normalized data)
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of � 700 �C (Ref 52). At the highest sensitizing temperature
of � 800 �C, the precipitates became interconnected and the
average size of individual particle was increased with a
diminution in number density (Ref 53, 54).

According to Table 6, the matrix grain size of as-received
austenitic stainless steel was enhanced many fold at the time of
solutionization. During aging at relatively low temperature of
500-600 �C the increment in austenite grain size did not exhibit
any quantum jump as previous. At high aging temperature
(700-800 �C) once again the increment in matrix grain size was
significant and finally attained nearly a slow steady state (Ref
54). At low aging temperature grain boundary pinning was
inadequate owing limited quantity of tiny precipitate. There-
fore, matrix grain size was increased. With continuous rise in
aging temperature, more number of nucleation took place as
indicated earlier and increment in the grain size became
sluggish. In the same way, high aging temperature (700-
800 �C) resulted in coalescence of already formed precipitates
and effect of grain boundary pinning was again reduced. The
change in number density and average size of precipitate at
various thermal conditions have been discussed in the literature
for different single-phase and multicomponent systems (Ref
55). The correlation between grain size and precipitation is also
available in open domain reports (Ref 54). The present
observation becomes at par with earlier findings.

4.2 Mechanical Behavior of Sensitized Specimens

Deformation behavior of any alloy can be explained by the
nature of flow curve under stress. While load is applied on
material surface through indenter, contact geometry between

Fig. 8 Distribution pattern of precipitates for different sensitized
304SS specimens

Fig. 9 Microstructural effect on mechanical properties for sensitized 304SS specimens (a) indentation depth-grain size relation, (b) indention
depth-area fraction of precipitate relation and (c) contribution of microstructural parameters toward yield strength
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indenter and the alloy changes due to flow of material beneath
the indenter. Accuracy of BIT outcome was primarily depen-
dent on applied load and precise measurement of contact area

(both total and plastic area) between the indenter and the test
specimen. Contact area was determined through the indentation
depth using LVDT (Ref 13). Degree of pile-up/sink-in sur-

Fig. 10 Schematic of ANN model using MATLAB toolbox

Fig. 11 Correlation of the experimental and predicted output in (a) training, (b) validation, (c) testing and (d) all sets for ANN model
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rounding the indentation was governed by material character-
istics and occurred around the indentation profile. Actual
contact area might exhibit deviation due to the pile-up/sink-in
of materials. Hence, necessary modifications were considered
while measuring the indentation depth (Ref 13).

Plastic deformation under compressive load is accompanied
by two different contributing parameters apart from microstruc-
tural features described above for austenitic stainless steel. One
of them is dislocation multiplication between yield and uniform
strain. The other one is deformation-induced martensitic
transformation, which ensued locally. Both these factors lead
to the enhancement of strength and reduce the effect of solid
solution strengthening by depleting the dissolved chemical
species of austenite matrix. To explore these two aspects were
beyond the scope of present investigation.

Flow curves for different sensitized specimens showed
distinct differences. Sample H4 presented the maximum
increase in strength compare to as-received and other samples.
Though the grain size was increased with the increment in
sensitization temperature, however, the precipitate contribution
was more dominant than that of the former. Significant
enhancement in the strength was due to the precipitation as it

Fig. 12 The plot of experimental and predicted data of sensitized 304SS specimens (a) UTS, (b) YS and (c) fracture toughness

Fig. 13 Comparison of mechanical properties evaluated by ANN
and BIT for sensitized 304SS
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hindered the dislocation movement (Ref 56, 57). Therefore,
from Sample-H2 to H4, with respect to solutionized specimen,
a continuous rise in yield strength, ultimate tensile strength, and
fracture toughness were observed (Ref 58). Sample H5
experienced softening during sensitization at 800 �C. Reasons
were increment in grain size, appearance of coarse precipitates
and decrease in dislocation density owing to thermally
activated annihilation (Ref 59, 60). During compressive
loading, matrix and precipitate behaved in different ways.
The lattice parameter of FCC matrix of austenitic stainless steel
was different with respect to Cr-carbide precipitate. This
phenomenon generated lattice strain at precipitate-matrix
interface (Ref 61). Under stress, dislocations piled up at
interface and contributed further to stress concentration. Such
excessive stress led to interface decohesion/void formation (Ref
62). It has been also reported that fine-scale dense second
phases enhanced the deformation capability of system by
hindering void nucleation. On the other hand, increment in size
of second phase behaved in opposite way (Ref 63). Considering
the fact, at low aging temperature, precipitates were tiny in size;
therefore, void formation was limited and plastic deformation
was large. With the increment in aging temperature, average
size of precipitates was increased. Under stress during inden-
tation early void nucleation was facilitated and deformation
became restricted.

Sensitization of 304L stainless steel welded joints at the
temperatures of 750-850 �C for 60-120 min reported bulk
hardness of 160-178 HV with UTS � 538-551 MPa and
YS � 282-303 MPa (Ref 64). Little higher value of macro-
hardness and YS with respect to present investigation may be
ascribed to smaller duration of heat treatment of the former with
respect to latter. In the same context, the tensile strength of AISI
304 SS was found 530, 505 and 460 MPa, after single, double
and triple pass welding, respectively. It has been inferred that
the tensile strength was principally contributed by chromium
carbide precipitation in the sensitized zone (Ref 65). In a
different endeavor, 304 stainless were solutionized at 1050 �C,
followed by aging at 750 �C for 1-100 h (Ref 66). The YS and
UTS were � 317 and � 670, respectively, for the aged spec-
imens. Little higher value of the tensile properties with respect
to present outcome using BIT might be attributed to the minor
compositional difference of virgin alloy. In a different attempt,
Ti and Mo modified 304 austenitic steel was sensitized in the
temperature range of 500-900 �C for an hour (Ref 67).
Hardness of the as-received specimen exhibited an increment
from � 164 to � 185 HVafter thermal treatment at � 700 �C.
The change in hardness was marginal beyond 800 �C (� 186
HV) owing to softening and other counter balancing phenom-
ena.

Fracture toughness of solutionized alloy became substan-
tially higher than as-received austenitic stainless steel owing to
single-phase precipitate free structure. With rise in aging
temperature, fracture toughness dropped continuously in com-
parison to solutionized alloy due to the appearance of second
phases. At the highest aging temperature of � 800 �C, the
change in the same was nominal (rather within the scatter band)
with respect to (� 700 �C), due to qualitatively / quantitatively
marginal alteration in microstructural features. It is noteworthy
that Table 5 also contained �K,� which refers to �strength
coefficient.� Therefore, the unit of two �K�s� is different and
denoted by different suffixes.

It has been experimentally shown that the mechanical
properties obtained by conventional tensile test became at par
with the data obtained through ball indentation technique for
virgin 304 SS. After sensitization, the present study exhibited
that ball indentation technique has adequate potential and
consistency in evaluating the mechanical properties of the same
specimens also, when compared with open domain literature
reports. The finding opened up an avenue to eradicate the need
of full length mechanical tests for critical components.

4.3 ANN Model for Sensitized Specimens

Experimental values of BIT, the predicted values obtained
from ANN using quantified microstructural information, and
error percent of tensile parameters are collated in Table 7. The
experimental data, which were not used during the learning
process, have been selected to examine the accuracy and
reliability of ANN model. Out of different primary and
secondary microstructural characteristics, the contributory
parameters were selected judiciously during the development
of ANN model and yielded high R2 value during addressing
yield strength, ultimate tensile strength and fracture toughness
for sensitized specimens. Mean square error (MSE) value of
predicted output of UTS, YS and fracture toughness was 0.98,
1.52 and 1.01, respectively. Owing to the high value of R2 and
small value of MSE, the developed model exhibited substantial
potential and reliability in predicting the mechanical properties
of sensitized 304 stainless steel.

5. Summary

Sensitization treatment of 304 stainless steel has been
carried out in a temperature range of 500-800 �C for definite
time scale. Microstructural parameters like matrix grain size,
fraction of precipitates and size range of second phases were
estimated. In next step, two different attempts have been made;

Table 7 Experiment data for testing and predicted output from the ANN network

Sample GS, lm AF% Prec. size, nm

UTS, MPa YS, MPa KJc, MPa.�m

M P E% M P E% M P E%

H1 173 0.33 82.13 430.4 427.15 0.75 194.26 193.66 0.3 147.59 148.59 0.67
H2 223 0.84 101.01 565.23 561.43 0.67 250.50 247.46 1.21 172.28 170.71 0.9
H3 233 1.03 110.39 573.50 582.87 1.6 255.88 267.05 4.18 169.20 166.9 1.65
H4 281 1.10 100.9 597.25 594.53 0.45 271.52 273.4 0.69 162.25 161.8 0.25
H5 303 0.36 116.4 590.1 588.85 0.21 259.3 256.46 1.095 164.9 162.61 1.38
M = Measured, P = Predicted, E = Error.
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in the first one using the quantified microstructural information,
an ANN base model was developed to predict the mechanical
properties of the alloy. In the second one, mechanical properties
of the sensitized alloys were evaluated by ball indentation
technique. Finally, a comparison has been drawn between the
predicted value and experimental data for same specimen. The
major findings of the study are summarized below:

• Increment in sensitization temperature propelled continu-
ous coarsening of matrix grains of 304SS. Precipitate frac-
tion was enhanced with the rise in sensitization
temperature, reached maximum at � 700 �C and then
dropped owing to coalescence of precipitated particles.
Nearly similar behavior was observed for the change in
average size of Cr-carbide precipitate during sensitization
treatment.

• Yield strength, ultimate tensile strength and fracture
toughness were estimated using ball indentation technique.
All three parameters were increased incessantly with the
enhancement in sensitization temperature. The trend was
followed up to the temperature of � 700 �C and then
plummeted during further increment of the same.

• The ANN base model exhibited the same trend in predict-
ing the mechanical properties. The predicted data and
experimental results were in perfect match with each
other. The impressive reliability of the developed model
was attributed to the high R2 and small MSE values, ob-
tained during the development of same.

BIT proved its reliability for in situ monitoring of mechanical
properties of 304SS specimens, exposed in sensitizing envi-
ronment. At the same time, the mechanical properties can be
also predicted by using the developed ANN base model, in
which the quantified microstructural data have been considered
as input. The present study opened up two-way approaches in
foretelling the component efficiency, which was made of 304SS
and exposed to sensitization environment.
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