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Additive manufacturing of acrylonitrile butadiene styrene (ABS) was investigated based on statistical
analysis via an optimization method. The present article discusses the influence of the layer thickness (LT),
infill percentage (IP), and contours number (C) on the maximum failure load and elastic modulus of the
final product of ABS. ABS is a low-cost manufacturing thermoplastic that can be easily fabricated, ther-
moformed, and machined. Chemical, stress, and creep resistance is all excellent in this thermoplastic
material. ABS combines a good balance of impact, heat, chemical, and abrasion resistance with dimensional
stability, tensile strength, surface hardness, rigidity, and electrical properties. To comprehend the impact of
additive manufacturing parameters on the build quality, both artificial neural network (ANN) and response
surface method (RSM) were used to model the data. The main characteristics of the build considered for
modeling were ultimate tensile strength (UTS) and elastic modulus. Main effect plots and 3d plots were
extracted from ANN and RSM models to analyze the process. The two models were compared in terms of
their accuracy and capability to analyze the process. It was concluded that though ANN is more accurate in
the prediction of the results, both tools can be used to model the mechanical properties of ABS formed by
3D printing. Both models yielded similar results and could effectively give the effect of each variable on the
mechanical properties.

Keywords 3D printing, artificial neural network, fused deposition
modeling, mechanical properties

1. Introduction

Since the dawn of rapid manufacturing, additive manufac-
turing (AM) has become one of the remarkable and popular
ways of fabrication in the manufacturing world. AM is a
method in which engineers can create models by adding
successive layers of feedstock material adhered together (Ref
1). Fused deposition modeling (FDM) is a solid-based rapid
prototyping technology by which a sample is created by

successive deposition of polymeric layers from a print head
(Ref 2). The schematic of 3D printing by fused deposition
modeling is shown in Fig. 1 (Ref 3). FDM offers several
advantages such as low machine costs, mold dimension
accuracy, and time savings (Ref 3). Owing to its advantages,
FDM is widely used in manufacturing areas to contribute to
improvements in the design and commercialization of products
(Ref 4). The required low temperature, the ability to be
solidified fast, and the inverse correlation between temperature
and viscosity make the amorphous polymers good candidates in
FDM (Ref 5).

A large number of FDM processes were investigated by
artificial intelligence techniques, design of experiment (DOE),
or evolutionary algorithm to study the effect of FDM param-
eters on the build quality (Ref 6). Some of these parameters,
such as material density, fill density, and extrusion temperature,
were investigated to see how they affected the mechanical
properties of different materials, including acrylonitrile butadi-
ene styrene (ABS), polyethylene terephthalate glycol (PETG),
and multi-materials (Ref 7). Understanding the correlation
between process parameters and the component properties is an
effective approach to optimize the process (Ref 8). Response
surface method (RSM) is a widely used tool to correlate the
process parameters with the component properties (Ref 9). The
regression model obtained by this method provides this
opportunity to optimize the process. Artificial neural network
(ANN) (Ref 10) and genetic algorithm-artificial neural network
(GA-ANN) were also utilized to optimize the procedure (Ref
6). Results indicated that there is a fundamental relation
between the tensile strength, extrusion temperature, and infill
density (Ref 8). The processing parameters including extrusion
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or nozzle temperature, infill density, and infill pattern are
believed to affect strongly feature qualities, mechanical prop-
erties, and build time of the ultimate part (Ref 5). The important
role of layer thickness, infill percentage, and extruder temper-
ature was reported by Moradi et al. (Ref 11, 12). The objective
of the optimization can vary from case to case. For example,
obtaining a high maximum failure, shortening the build time
and part weight was the main objective of the investigation
performed by Moradi et al. (Ref 13). It was reported that the
layer thickness and infill percentage were the most influential
parameters in determining the failure load, build time, and part
weight (Ref 14). Moradi et al. investigated the effect of layer
thickness, infill percentage, and extruder temperature on the
maximum failure load, thickness, and build time of bronze
polylactic acid (Br-PLA) composites using the DOE process
(Ref 15). Results indicated that layer thickness is the core
element in obtaining the maximum failure load. Augmentation
of the layer thickness and the infill percentage caused a
significant improvement in the mechanical properties (maxi-
mum failure) (Ref 16). Grden et al. examined the fracture
behavior of printed specimens produced by a new filament
deposition method (Ref 2). The new filament contributed to a
30% improvement in toughness and caused enlargement of the
deformation zone. Sajan et al. (Ref 17) considered bed and
nozzle temperature, print pace, infill percentage, thickness, and
the number of loops as input parameters to improve circularity
and surface roughness of a grinder blade made of acrylonitrile
butadiene styrene (ABS). In another study, the Taguchi method
was used to achieve the optimal process parameters, and this
improved the surface quality in the XYand XZ planes (Ref 18).
In addition to the aforementioned parameters, void and raster
orientation affect the quality of the build (Ref 19).

Demands on special mechanical properties of the build
necessitate the regulation of the FDM parameters (Ref 20, 21).
It is also important to know the effect of process parameters on
the build quality. ANN is a strong tool to model the processes
(Ref 22, 23). The RSM is regarded as a modeling process used
by experimental research to evaluate the efficiency and the
effect of the parameters. In the present study, both ANN and
RSM were used to model and investigate the effects of contour
numbers, infill percentage, and layer thickness on strength and
modulus. Regulating controlled variables to produce tough
ABS + specimens, reducing part weight, and minimizing build
time of the printing parts were the main objectives (Ref 24).
The details of such measurements are provided in reference
(Ref 25). Tensile tests were used to determine the maximum
failure load and elastic modulus. The output data were used
along with the input parameters to establish a model by using
an artificial neural network (Ref 26). Validation of the obtained
model was confirmed by using some untrained data, named test
series (Ref 27).

2. Methodology and Experimental Work

ABS is a three-monomer amorphous polymer made up of
acrylonitrile, butadiene, styrene, and an opaque and oil-based
thermoplastic. What contributed ABS to be a popular material
is its versatility. ABS’ products can be used in a variety of
domestic, industrial, and specialist settings all over the world.
Chemical and thermal stability is provided by the acrylonitrile
in ABS, while hardness and strength are added by the

butadiene. The styrene gives the finished polymer a nice,
glossy finish. ABS has a low melting point, allowing it to be
used in injection molding and 3D printing with ease. It also has
high tensile strength and is chemically and physically resistant,
allowing the finished plastic to withstand heavy use and harsh
environmental conditions. ABS has been instrumental in the
growth and development of 3D printing. ABS parts are
inexpensive and simple to mold into the desired shape and
effect. ABS can be heated and cooled multiple times which
makes it an environmental material. It is considered to have a
very high impact, tensile strength, and aesthetic qualities. It is
also a cost-effective material and easy to use for fabricating
complex shapes without extra effort.

ABS 3D printing specimens were obtained by fused
deposition modeling (FDM). The performance of the 3D
printer is easy to be tracked and can be adjusted accurately.
Therefore, simplify 3D was used to adjust the specimens�
parameters. Based on international standard ISO 527-2, the
tensile sample was designed by Solidwork software and
imported to Simplify 3D.

Table 1 shows the considered independent variables. 17
samples were printed in diverse settings mentioned in Table 2
and drawn on a design of experiment to scrutinize the effects of
input parameters distinctively. Material properties are men-

Fig. 1 Schematic of 3D printing by the fused deposition modeling
(Ref 3)

Table 1 Levels of independent variables

Variable Symbol Unit

Levels

2 2 2 1 0 1 2

Layer thickness LT mm 0.15 0.2 0.25 0.3 0.35
Infill percentage IP % 15 25 35 45 55
Contours number C No 2 3 4 5 6
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tioned in Table 3. Table 4 shows the assigned parameters which
are identical for all experiments. Moreover, Fig. 2 represents
the geometrical dimensions and internal patterns of samples.
The filament was carried by two rollers, and thereafter, a
heating element melted the material by designating three input
parameters. Then, the pressure by the rollers was applied to
drive the material and deposit the first layer. By moving the
platform down, the nozzle printed the next layers.

Tensile test results were used to determine the maximum
failure load and elongation at break. Tensile tests were
performed in accordance with ASTM D638 in a universal
testing machine. The brittle fracture of a sample is presented in
Fig. 3. Based on the results, the samples� behavior could be
categorized as a brittle or tough fracture. The brittle samples
fracture at the elastic limit, while the tough specimens
experienced a low degree of plastic deformation before fracture.

2.1 Methodology of Data Analysis

ANN is a robust tool for analyzing the data that can relate
the input parameters to output responses. ANN has a structure
like neurons that these neurons are correlated with each other
by a transfer function. Variables, treated as neurons in a 1st
layer, are connected through a transfer function to several

neurons that are set in a hidden layer. The hidden layer is also
connected to the output with a transfer function. Figure 4
depicts the ANN structure. In the present research, the input
parameters (first layer) are the experiment parameters, i.e.,
contour numbers, thickness, and infill percentage. The outputs
are UTS and modulus.

To train the model by ANN, some data were randomly
selected as training data series (85% of data) among which
some were considered for validation of the training process to
avoid overfitting. Finally, the rest data which were not included
in the training stage were selected as test data sets to assess the
accuracy of the model. The model�s ability to predict new
experimental conditions is evaluated using these results. In this
analysis, 70% of the data were chosen as a training series, 15%
as a validation series, and 15% as a test series. Up to two
hidden layers and different numbers of neurons (5-15) and
different types of transfer functions (logsig-tansif-linear) were
chosen to train the model. After a sufficient number of runs, the
optimal ANN was discovered, ensuring that the error achieved
in the prediction of the test data series was minimum. Matlab
software was used to carry out the whole process.

To figure out how important each variable is in determining
the outputs, main effects plots were drawn based on the data
generated by the neural network model. If the number of data
increases, the precision of the main effect plots improves.
Furthermore, to obtain the interaction plots, enough combina-
tions of data are needed. When there are three variables and
four levels, the required number of data combinations is
43 = 64. To put it another way, a factorial design is needed,
which takes time to complete all the tests. With only a limited
number of experiments, ANN can produce all of the required
data. Since an accurate ANN model can predict the perfor-
mance for any combination of variables without having to run
experiments on certain variables, it�s a great way to save time.
To make sure that the ANN model is accurate, it is necessary to
perform a rational design of experiments. The design of
experiments in regular regression methods such as the RSM is
extremely reliable because they cover the required range of all
variables through a minimum of experiments. The simple

Table 2 Design matrix and experiment results

Run

Input variables (actual values) Output responses

N LT, mm IP, % rUTS, MPa Elastic modulus, MPa

1 3 0.3 25 27.25 966.65
2 6 0.25 35 40.87 1503.01
3 4 0.25 35 32.89 1210.64
4 4 0.25 35 32.85 1126.07
5 4 0.25 15 31.62 920.27
6 4 0.25 55 32.85 1193.23
7 5 0.2 45 34.85 1296.64
8 5 0.2 25 35.6 1025.36
9 3 0.2 45 28.6 1108.52
10 3 0.2 25 25.74 897.58
11 5 0.3 25 37.08 1143.24
12 4 0.25 35 32.85 1134.62
13 4 0.35 35 34.67 1134.62
14 5 0.3 45 37.18 1345.6
15 2 0.25 35 24.76 914.57
16 4 0.15 35 29.19 978.46
17 3 0.3 45 29.92 1075.76

Table 3 Material properties

Property Value

Full name Acrylonitrile butadiene styrene
(ABS)

Melting point 190-270 �C
Glass transition 105 �C
Injection mold temperature 178-240 �C (353-464 �F)
Density 0.9-1.53 g/cm3
Chemical formula (C8H8ÆC4H6ÆC3H3N)n
Crystallinity 37%
Tensile modulus 1.4-3.1
Molecular weight (Mw) 211.3 g/mol
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quadratic functions are potent to make a regression over the
range of variables with acceptable accuracy. ANN is capable of
doing this regression with much higher accuracy. In this study,
a central composite design method was used to design the
experiments. The essential data were created by the obtained
model after obtaining an accurate ANN model.

Following, the produced data were used to create main
effects and interaction plots. The input variables and their
coded and uncoded levels are presented in Table 5.

RSM is a structured and arranged method to identify
relationships between factors affecting a process and the output
of the process. Design-Expert V8 software was exploited for
statistical analysis of experimental data via RSM (Ref 28–30).
Finally, main effects plots were generated by the obtained ANN
and RSM models to assess the trends of influence of each
variable on the characteristics of the obtained ABS +.

3. Results and Discussion

The results of the experimental work are provided in Table.
2. For each output, a separate ANN model was considered, as
this makes the model more accurate. The chosen ANN models
have an accuracy of more than 90% in the prediction of the
untrained data. The accuracy is obtained from the relative error
(e) which is obtained from:

e ¼ 1

n

Xn

1

Gtarget � Goutput

�� ��
Gtarget

� 100 ðEq 1Þ

where Gtarget and Goutput are the expected output values and the
values obtained by modeling, respectively. ‘‘n’’ is the number
of data. The ‘‘root mean square error’’ (RMSE) is another
criterion used to assess the model accuracy and is obtained
from:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
Gtarget � Goutput

� �2
s

ðEq 2Þ

The correlation coefficient (R) is a measure of the linearity
of target and output values and is obtained from:

Rð Þ ¼
n
P

GtargetGoutput

� �
�
P

Gtarget

� � P
Goutput

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

G2
target �

P
Goutput

� �2h i
n
P

G2
target �

P
GtargetGoutput

� �2h ir

ðEq 3Þ

It is most desirable that R be close to 1.
The optimum ANN models obtained for each output and the

corresponding error, for both preparation and testing, the root
mean square error and correlation coefficient, and test data
series are provided in Table 6.

Table 4 FDM build parameters

No Build parameters Definition Unit Value

1 Nozzle diameter The diameter of the extruder nozzle mm 0.45
2 Extrusion width The desired single-outline width of the plastic extrusion mm 0.45
3 Top solid layer Number of solid layers to require at the top of the part … 3
4 Bottom solid layers Number of solid layers to require at the bottom of the part … 3
5 Default printing speed Initial speed used for all printing movements (modification may be added

for cooling or outline underspeed)
mm/s 55

6 Retraction speed Extruder speed for the retraction movements typically uses the highest
speed the extruder can support

mm/s 60

7 Outline overlap Percentage of extrusion width that will overlap with outline perimeters
(ensures infill bonds to outline)

… 40%

8 Interior fill percentage Determines the interior solidity of the model % 15

Fig. 2 Geometrical dimensions and internal features of 3D printing
of acrylonitrile butadiene styrene (ABS). (a) Dimensions of the
tensile test sample according to ASTM-D638 type-IV and (b) 3D-
printed samples
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3.1 UTS Modeling

The results of the ANN model plotted as the target values
versus output values are presented in Fig. 5(a) and (b) for
training and test data series, respectively.

The main effects plot for UTS is shown in Fig. 6. Among
the three variables, the contours number has the most effect on
the UTS, and with increasing the contour number, the UTS
increases. The same trend is observed for the two other
variables but with a lower effect. The main effect plots obtained

from RSM modeling are presented in Fig. 7. The same trend as
ANN can be observed here.

3D plots of UTS versus the contour numbers and thickness
are presented in Fig. 8. The plots correspond to 3 levels of infill
percentage. The highest UTS is obtained at maximum contour
numbers, maximum thickness, and maximum infill percentage.

3D plots obtained by RSM modeling are provided in Fig. 9.
Likewise ANN modeling, the contour number has the main
effect on UTS, and by increasing the contour number, the UTS
is improved. The infill percentage does not affect the UTS. By
increasing the layer thickness, the part thickness is divided into
a fewer number of sections, and therefore the specimen printed
by a thicker layer consists of less interlayer adhesion than a
specimen with a thinner layer. Therefore, increasing layer
thickness directly results in less interlayer adhesion. Also, the
thicker layer causes a lower heat transfer rate which results in
improving interlayer adhesion. That is why the printing of
specimens with a thicker layer ends up with tougher properties.
Increasing the contours similar to increasing the infill density
increases the failure force.

Fig. 3 (a) Tensile test. (b) Brittle fracture of a tensile specimen

Fig. 4 ANN structure

Table 5 Input variables and their coded and uncoded
levels

Variable Notation Unit 2 2 2 1 0 1 2

No. contours C No 2 3 4 5 6
Layer thickness T mm 0.15 0.2 0.25 0.3 0.35
Infill percentage IP % 15 25 35 45 55
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Based on both RSM and ANN models, the trend of the
effect of contours number is dependent on the infill percentage.

The analysis of variances by RSM modeling is provided in
Table 7. In the analysis of variance, the alpha value in F value

Table 6 Optimum ANN models were obtained for each output and the corresponding error, root mean square error, and
correlation coefficient for both training and test data series

Output factor

Training series

Correlation coefficient RMSE Error Test series Correlation coefficient RMSE ErrorNo. of neurons

UTS 7
logsig
7,7
Logsig, tansig

0.9879 1.7614 0.03 0.9944 1.437 0.053
Module 0.9923 16.2258 0.087 0.9686 63.375 0.044

Fig. 5 Results of ANN model plotted as the target values vs. output values of UTS for (a) training data series and (b) test data series

Fig. 6 Main effects plots for UTS obtained from ANN modeling

Journal of Materials Engineering and Performance Volume 32(4) February 2023—2021



is considered to be 0.05, which indicates that if the probability
of P in the analysis of variance is less than 0.05, the relevant
parameter with a probability of more than 95% is effective.

Also, the values of R indicate the good accuracy of modeling
by RSM.

Fig. 7 Main effects plots for UTS obtained from RSM modeling

Fig. 8 3D plots of UTS vs. the contour numbers and thickness at three levels of infill percentage obtained by ANN
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The regression equation obtained from the RSM model for
coded values is obtained as follows:

UTS Nð Þ ¼ 32:281þ 4:089 Contours number

þ1:100 Layer thicknessþ 0:459 Infill percentage

�0:773 Contours number � Infill percentage

The interaction between contours number and the infill
percentage is obvious from this equation.

3.2 Modulus

The results of the ANN model plotted as the target values
versus output values are presented in Fig. 10(a) and (b) for
training and test data series, respectively.

Figure 11 shows the main effects plot according to ANN
modeling. The contour numbers and infill percentage have
similar trends, and the modulus is increased as they increase.
The effect of the thickness is negligible.

Fig. 9 3D plots of UTS vs. the contour numbers, thickness, and infill percentage obtained by RSM

Table 7 The analysis of variances (ANOVA) for UTS obtained by RSM modeling

Source DF Adj SS Adj MS F value P value

Model 4 294.987 73.747 207.95 0.000
Linear 3 290.213 96.738 272.78 0.000
Contours number 1 267.486 267.486 754.26 0.000
Layer thickness 1 19.360 19.360 54.59 0.000
Infill percentage 1 3.367 3.367 9.49 0.010
2-way interaction 1 4.774 4.774 13.46 0.003
Contours number*infill percentage 1 4.774 4.774 13.46 0.003
Error 12 4.256 0.355
Lack-of-fit 10 4.255 0.425 797.72 0.001
Pure error 2 0.001 0.001
Total 16 299.243
R-sq(adj) = 98.10%, R-sq(pred) = 97.12%
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Figure 12 shows the main effects plot obtained by RSM
modeling. The trend of contours number and layer thickness is
similar for both RSM and ANN modeling. A slight difference
in the case of infill percentage is observed for the two models.
While the ANN model predicts that the modulus increases with
infill percentage, the RSM model predicts a decreasing trend at
the high values of infill percentage.

The 3D plots obtained by ANN modeling are presented in
Fig. 13. A strong interaction exists between contour numbers
and infill percentages at their highest values. When the infill
percentage is high, the increase in contour numbers results in a
steep increase in modulus. In other words, the highest modulus
is obtained when the infill percentage and contour numbers are
at their highest level.

The 3D plots obtained by RSM are presented in Fig. 14.
Both RSM modeling and ANN modeling infer that by
increasing the infill percentage the elastic modulus is increased.
Also, the ANN model states that the effects of infill percentage
and contour numbers are correlated, and the effect of contour
number is higher at a higher infill percentage. This correlation
is not obvious in 3D plots obtained by the RSM model. Also,
both models show that the thickness has the lowest effect on
modulus.

The analysis of variances by RSM modeling is provided in
Table 8. In the analysis of variance, the alpha value in F value
is considered to be 0.05, which indicates that if the probability
of P in the analysis of variance is less than 0.05, the relevant
parameter with a probability of more than 95% is effective.

Fig. 10 Results of the ANN model plotted as the target values vs. output values of modulus for (a) training data series and (b) test data series

Fig. 11 Main effects plot for modulus obtained by ANN
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Fig. 12 Main effects plot for modulus obtained by RSM

Fig. 13 3D plots of modulus vs. the contour numbers and thickness at three levels of infill percentage obtained by ANN
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Also, the values of R indicate the good accuracy of modeling
by RSM.

The regression equation obtained from the RSM model for
coded values is obtained as follows:

Elastic Modulus MPað Þ
¼ 1173:7þ 121:2 Contours number

þ 32:2 Layer thicknessþ 83:7 Infill percentage

� 30:6 Layer thickness � Layer thickness

� 30:5 Infill percentage � Infill percentage

Fig. 14 3D plots of modulus vs. the contour numbers, thickness, and infill percentage obtained by RSM

Table 8 The analysis of variances (ANOVA) for modulus obtained by RSM modeling

Source DF Adj SS Adj MS F value P value

Model 5 397,162 79,432 27.20 0.000
Linear 3 363,800 121,267 41.52 0.000
Contours number 1 235,033 235,033 80.48 0.000
Layer thickness 1 16,607 16,607 5.69 0.036
Infill percentage 1 112,160 112,160 38.41 0.000
Square 2 33,362 16,681 5.71 0.020
Layer thickness*layer thickness 1 21,439 21,439 7.34 0.020
Infill percentage*infill percentage 1 21,365 21,365 7.32 0.020
Error 11 32,124 2920
Lack-of-fit 9 27,790 3088 1.42 0.479
Pure error 2 4335 2167
Total 16 429,286
R-sq(adj) = 89.12%, R-sq(pred) = 80.63%

Table 9 R values for both UTS and modulus were
obtained in ANN and RSM

ANN model RSM model

RTraining RTest R-sq(adj) R-sq(pred)

UTS 98.78 99.44 98.10 97.12
Modulus 98.81 96.83 89.12 80.63
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The coefficients in the regression equation for coded values
are indicative of the importance of each variable. In this case,
according to the above equation, the contour number has the
most influence on the elastic modulus.

To have a comparison between ANN and RSM, the values
of R obtained for prediction are presented in Table 9.
According to this table, the accuracy of prediction obtained
by the ANN model is higher than the one obtained by RSM,
especially for the prediction of modulus. This is attributed to
the fact that in RSM a simple regression is used while in ANN a
complex relationship is established during training between the
inputs and outputs. This is achieved by the selection of the right
weight function and choosing the optimum coefficients during
the training.

According to Table 9, the ANN resulted in more precise
modeling of both UTS and modulus than the modeling by
RSM, though the difference is negligible. The drawback of
ANN modeling is that a huge number of data are needed to
accurately model the process.

4. Conclusions

Improving mechanical properties to minimize component
weight and build time as much as possible was the research�s
final goal to investigate fused deposition modeling of ABS. By
ANN and RSM, the effects of layer thickness (LT), infill
percentage (IP), and contour numbers (C) on UTS and elastic
modulus were investigated, and the following results were
obtained:

1. The results indicated that as the contour numbers in-
crease, the mechanical properties (maximum failure load)
improve.

2. The contours number plays the most effective role in the
specimens� improvement compared with layer thickness
and infill percentage.

3. The mechanical properties of the structure depend
slightly on the layer thickness, which indicates that a part
can be fabricated fast by increasing the layer thickness
without any influence on the build properties. The elastic
modulus was mainly dependent on the infill percentage.

4. The results of both RSM and ANN stated that the
mechanical properties of the build can be controlled by
changing the process variables individually, as the inter-
action between the variables is negligible. A slight inter-
action between infill percentage and contour numbers
was observed in the case of UTS which according to
both models can be neglected at lower values.

5. The R value obtained in ANN modeling was higher than
the one obtained in RSM modeling, indicating a more
reliable prediction by ANN, though the difference was
not considerable.

6. Both ANN and RSM can be used to model the mechani-
cal properties of ABS produced by additive manufactur-
ing. These models are effective tools in understanding
the effect of each variable on the properties of the final
part.
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