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In the present work, the Arrhenius-type constitutive equation and artificial neural network (ANN) model
have been used to predict the hot deformation behavior of CoFeMnNiTi eutectic high-entropy alloy in the
temperature range 1073-1273 K and strain rate range 0.001-1 s21. The performance of both models is
assessed by using the coefficient of correlation (R) and average absolute relative error (AARE). The ANN
model with R = 0.9997 and AARE = 1.52 % better predicts flow behavior than the Arrhenius type model
with R = 0.9769 and AARE = 11.5 %. The rate of softening and mean free path value are also evaluated at
different thermomechanical conditions to understand the deformation mechanism. The compressive flow
behavior of EHEA also studied and understood the softening and globularization phenomenon during
deformation and proposed the deformation mechanism.

Keywords ANN, eutectic high-entropy alloy (EHEAs), flow
stress, hot deformation

1. Introduction

In last few years, there have been surge in research activities
in the exciting field of high-entropy alloys (HEAs) domain to
design and develop novel materials with unique microstructure.
It is reported that HEAs comprise four or more major elements
with a concentration between 5 and 35 atomic % (Ref 1, 2).
Eutectic high-entropy alloys (EHEAs) are composed of solid
solution phase and intermetallics and having good strength and
ductility (Ref 3). In the stress–strain plot, drop in the flow stress
after reaching the peak stress is recognized to either the
mechanism of DRX (dynamic recrystallization) or globulariza-
tion of phase. DRX phenomena are related to the hot working
temperature, strain rate, and the initial grain size of the alloys.
In a stress–strain plot, the formation of single or multiple peaks
may also define the DRX mechanism. Generally, low strain rate
and high temperature during the deformation in HEAs favor the
DRX (Ref 4). Stepanov et al. (Ref 5) described the hot working
at different temperatures and strain rates and also DRX
mechanism for CoCrFeMnNi HEA (during uniaxial compres-
sion to a height reduction of 75%, corresponding to a true strain
of �1.4). They observed the discontinuous type DRX is main
mechanism associated with microstructure evolution during all

deformation temperatures (873-1373 K). At temperatures above
1073 K, bulgings were observed in initial grain boundaries, and
nucleation of new grains along the initial grain boundaries
taken place, while below 1073 K, the shear band deformation
was observed in the deformed sample. In the past, numerous
constitutive models have been established to characterize alloy
flow behavior at high temperatures (Ref 6). The various models
have been used to understand the hot working of materials
under different processing conditions, such as Johnson-cook (J-
C) (Ref 7) model, Zerilli–Armstrong (Z-A) (Ref 8) model, and
hyperbolic sinusoidal Arrhenius relation proposed for a broad
range of stress (Ref 9). Also, several reformations to this
established model have been recommended to improve its
results. As reported in the literature, the J-C model is not
suitable for predicting softening behavior during hot deforma-
tion. Also, the model does not accurately track flow stress at a
higher strain rate and lower temperature due to the lack of
information on various deformation phenomena. (Ref 10).
Motlagh et al. (Ref 10) reported the prediction of flow behavior
at different hot working conditions (temperature range of 1173-
1323 K and at strain rates of 0.001-1 s�1) for 1.4542 stainless
steel by different models. In the literature, it is found that the
performance of the Arrhenius model is better than J-C and Z-A
model. In J-C and Z-A models, the effects on flow stress by
strain, temperature, and strain rate are separated, so these
models accuracy cannot satisfactorily predict the flow stress.
Patnamsetty et al. (Ref 11) deliberated the flow behavior at
thermomechanical conditions for CoCrFeMnNi HEA using the
Arrhenius relation and predicted the flow curve over a wide
temperature (1023-1423 K) and strain rates (0.001-10 s�1)
ranges. The conventional models have specific limitations to
predict the flow behavior, such that J-C model has not
considered the thermal softening effect for flow stress predic-
tion. While physics-based Z-A model considers the strain
hardening, thermal softening, and other physical effects for
flow stress prediction, it uses some parameters which are
estimated using precision equipment. The Arrhenius relation
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estimates the activation energy of the material during the
deformation and gives the information about the deformation
mechanism which is correlated with the microstructural evo-
lution, mainly dislocation movement, dynamic recovery
(DRV), DRX and grain boundary movement.

An ANN is a digital form of the human brain that abstracts
the data by learning from the available data and observes the
patterns in the form of input/output without any prior
assumption. ANN approach offers unprecedented opportunities
to solve complex problems, i.e., nonlinear systems and uneven
data prediction (Ref 12). Sabokpa et al. (Ref 13) predicted the
flow stress using the ANN approach at temperature range 523-
673 K and strain rate 0.0001 to 0.01 s�1 for AZ81 magnesium
alloy. Singh et al. (Ref 14) predicted the flow behavior during
hot deformation of phosphorus steel using the ANN method.
Therefore, ANN has recently emerged as a promising modeling
approach to predict different parameters in materials engineer-
ing. However, only a few studies predict the flow curve of
EHEAs at different processing conditions during deformation
using the strain compensated constitution equation. Reliance
et al. (Ref 15) reported the microhardness prediction using
ANN approach for different HEAs and FeCoNiCrMnVAlNb
EHEAs with respect to their compositions. Reliance et al. (Ref
6) predicted flow behavior at different hot deformation
conditions using ANN approach for CoCrFeNiZr containing
HEA. From the literature, it was observed that there is a limited
study to predict flow behavior during hot deformation of
EHEAs using the ANN approach.

The current study established an Arrhenius relation and
multilayer perceptron ANN model with Levenberg–Marquardt
(L-M) algorithm to predict flow stress. Finally, the proposed
model’s predictability is evaluated based on the coefficient of
correlation (R) and average absolute relative error (AARE).
Furthermore, to understand the mechanism of softening and
DRX during the hot deformation, the deformation mechanism
is proposed.

2. Materials and Methods

For assessing the flow stress by an Arrhenius relation and
ANN model, experimental flow stress data of hot compression
tested samples of studied EHEAs with different hot working
conditions (temperature range 1073-1273 K and strain rate
range 0.001-1 s�1) were collected from our previous study of
hot workability of Co25Fe25Mn5Ni25Ti20 EHEA (Ref 16). For
the flow curve prediction in the present study, MATLAB 9.6

(R2019b) version has been used. Before performing the
training, the data are first normalized in a range of 0-1 for
accurate predictions. But the deviation in strain rate is found to
be large, and after normalization, the amount of strain rate is
minimal, which is not appropriately learned by ANN in the
present study. Further, the logarithm equation is used to
normalize the strain rate. The normalization procedure of data
for training purposes is given in Table 1 (Ref 17).

The ANN model is established to examine the flow curve by
using the neural network using the L-M training algorithm. The
input of that model is the strain, temperature, and strain rate,
and the outcome is flow stress. A total of 624 data points were
employed for the ANN model.

3. Result and Discussion

3.1 Flow Curve Prediction Using Constitution Model
for Co25Fe25Mn5Ni25Ti20 EHEA

Many researchers currently use the constitutive relation
based on the Arrhenius relation to estimate the flow stress
during hot working (Ref 18), but accuracy usually is limited.
Further, the improvement in the model is by considering the
Zener–Holloman parameter (Z) (Ref 19). The respective
governing equation is given as:

Z ¼ A0 � sinh arf
� �� �n¼ _e� exp

Qh

RT

� �
ðEq 1Þ

_e ¼ A0 � sinh arf
� �� �n� exp � Qh

RT

� �
ðEq 2Þ

where _e represents the strain rate (s�1), Qh represents the
activation energy (J/mol) during hot working processing, R
represents the universal gas constant 8.314 J/(mol.K), T is the
temperature in K, rf represents the flow stress (MPa), and A0,
a, and n are the material constants. Constant a is estimated by
the ratio of b/N, where b and N are the slopes of the lnr vs. ln _e
and r versus ln _e plot with a linear fit. The value of n is the
slope of ln _e versus ln[sinh(ar)] plot with a linear fit. Qh is
expressed in equation 5. In equation 3, the value of s is the
slope of the linear fit of 10,000/T versus ln[sinh(ar)].
Figure 1(a)-(d) shows the plots for calculation of constant b,
N, n, and s, respectively. Constant A0 can be estimated by
taking the logarithm of Eq 1 can be given in Eq 4 (Ref 19).

Qh ¼ 10; 000� R� nð ÞT� sð Þ_e ðEq 3Þ

Table 1 Performance of the model

Model performance R AARE (%)

Sine hyperbolic Arrhenius model 0.9769 11.50
ANN model 1
Xnor: ¼ 0:1þ 0:8� X�Xminð Þ

Xmax�Xminð Þ 0.9897 3.45

Normalization of all input parameters (r, T, and _e)
ANN model 2

_enor: ¼ 0:1þ 0:8� log _e�log _eminð Þ
log _emax�log _eminð Þ 0.9997 1.52

Normalization of Strain rate _eð Þ, while Stress (r) and Temperature (T) normalized by as per the ANN model 1
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Fig. 1 Plots for different material constants (a) b, (b) N, (c) n, (d) s, and (e) lnA0
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ln Z ¼ lnA0 þ n ln sinh arf
� �� �

ðEq 4Þ

The intercept of the linear relation between the ln[sinh(arf)]
versus lnZ provides the value of ln A0(as given in Fig. 1(e)).
Lastly, the relationship of rf, Z, A0, and a can be written as:

rf ¼
1

a
� ln

Z

A0

� �1
n

þ Z

A0

� �2
n

þ1

" #1
2

8
<

:

9
=

;
ðEq 5Þ

The n is calculated as an average of the slopes of
@ ln _eð Þ=@ ln sinh arf

� �� �� 	
at different temperatures because

the n is dependent on strain rate and temperature. Qh is
calculated by putting a value of R, n, and s in Eq 3 at strain 0.5
(at strain 0.5 value of b = 0.024, a = 0.0076, N = 3.23, n = 2.25,
and s = 1.64), which is approximately 308468 J/mol. The
parameters Z, _e and r at strain 0.5 can be expressed as the
following equation:

Z0:5 ¼ _e� exp
308468

RT

� �
ðEq 6Þ

_e ¼ 8:91� 1011 � sinh 0:0076rf 0:5
� �� �2:25�_e� exp

308468

RT

� �

ðEq 7Þ

rf 0:5 ¼
1

0:0076

� ln
Z0:5

8:11� 1011

� � 1
2:25

þ Z0:5
8:11� 1011

� � 2
2:25

þ1

" #1
2

8
<

:

9
=

;

ðEq 8Þ

Figure 2 shows the variation of strain on constant (a, Q, n,
and A0). For calculating the flow stress at different strains, the

Fig. 2 Variation on material constant (a, Q, n, and A0) with strain
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material constant (a, Q, n, and A0) is calculated by the
polynomial fitting and is fitted by sixth order, which is found to
be a good correlation with strain and can be expressed as:

lnA0 ¼� 1398:168eþ 10936:386e2 � 42533:268e3

þ 87846:688e4 � 92303:215e5 þ 38800:137e6

þ 98:276

ðEq 9Þ

Q ¼� 13773:473eþ 107945:454e2 � 42:663:603e3

þ 870539:300e4 � 916452:012e5 þ 385959:408e6

þ 994:608

ðEq 10Þ

a ¼� 0:03011eþ 0:42851e2 � 1:6888e3 þ 3:0726e4

� 2:5599e5 þ 0:74712e6 þ 0:00282

ðEq 11Þ

n ¼� 305:584eþ 2385:786e2 � 9362:457e3 þ 19592:326e4

� 20831:632e5 þ 8823:861e6 þ 17:339

ðEq 12Þ

3.2 Flow Behavior Prediction Using the ANN Model

The 3-15-1 network system of ANN model predicts flow
stress with optimum accuracy after several trains, where the 15
shows neurons in the hidden layer. The network with 15
neurons in the hidden layer gives the best possible result (mean
square error and coefficient of correlation). For ANN modeling,
156 datasets are used; among these, 110 datasets (70 %) are
used in training, 23 datasets (15%) are used for validation, and
23 datasets (15%) are used in testing.

3.3 Performance of the Models

Finally, Fig. 3 and 4 shows the predicted flow stress (dotted
line) with actual flow stress (solid line) at different hot working
conditions using the Arrhenius relation and ANN model 2.

Fig. 3 Representation of predicted flow stress (dotted line) and actual flow stress (solid line) using the Arrhenius model
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Fig. 4 Representation of predicted flow stress (dotted line) and experimental flow stress (solid line) using the ANN model 2

Fig. 5 Mean square error during the training of the model (a) ANN model 1 and (b) ANN model 2
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Figure 5(a) and (b) shows MSE convergence plot for ANN
model 1 and model 2, respectively. Convergence to mean
square error is 0.0027 saturated at epoch 29 for model 1, and
1.6062 9 10�4 is saturated at epoch 113 for model 2. The
predictability of models is assessed by R and AARE. The R and
AARE for models are formulated by equations (Ref 20):

R ¼
PN

i¼1 rief � ref

 �

� ripf � rpf

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 rief � ref

 �2

�
PN

i¼1 ripf � rpf

 �2

r ðEq 13Þ

AARE %ð Þ ¼ 1

N
�
XN

i¼1

rief � ripf
rief














� 100 ðEq 14Þ

where rief and ripf are the experimental and predicted value of
flow stress, respectively; ref and rpf are the mean values of rief
and ripf , respectively. N is the total number of datasets used in
the study. In the present study, results (R and AARE) obtained
from different models are represented in Table 1. Figure 6(a)-
(c) represents the variation between the targeted and predicted

flow stress for CoFeMnNiTi EHEA developed by the Arrhenius
relation, ANN model 1, and ANN model 2, respectively.

3.4 Compressive Behavior of Co25Fe25Mn5Ni25Ti20 EHEA

The true stress vs. strain plot is given in Fig. 3 (solid line
represents the experimental flow curve for different thermome-
chanical processing parameters), which indicates the first stress
value increases and reaches a peak value than a continuous
reduction in stress values. The flow curve behavior is correlated
to a mechanism of DRX or globularization of laves phase. It is
mentioned in the author’s previous work in HEA (Ref 16) that
the initial microstructure contains a-phase (FCC), b-phase
(BCC), and Ti2 (Co, Ni) laves phase. The volume fraction of b-
phase is very low compared to a-phase and laves phases. At the
large strain, a saturation of flow curve occurs due to the DRX
mechanism. In Fig. 3, experimental flow curve indicates a
constant drop in stress values with further straining except at
0.001 and 0.01 s�1 at 1273 K, indicating the globularization of
laves phase during thermomechanical processing. The strength
of materials can be improved by an interaction of dislocations
or parent atoms/foreign phase particles, which can be obtained

Fig. 6 Performance of models, (a) sine hyperbolic Arrhenius model (b) ANN model 1, and (c) ANN model 2
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by drawing the softening rate with stress values. The maximum
stress value is subtracted to exclude the temperature effect on
the microstructure and plotted in Fig. 7, which shows the

softening rate with stress values. Each sample shows two
softening values after the maximum stress. The values of
softening rate are documented in Table 2.

It is noted that the initial softening rate is less compared to
the softening rate values at a later stage. The softening rate
depends on the grain’s initial orientation with respect to the
compression axis, resulting in the variation in softening rate
either with rise in temperature at a fixed strain rate or with rise
in strain rate at a fixed temperature. However, no regular trend
in the values of softening rate is observed because of the
variation in initial grain orientation with respect to the loading
axis. The plot between mean free path and stress represents in
Fig. 8, Bishoyi et al. (Ref 21) and Sahoo et al. (Ref 22)
documented the details for the calculation of softening rate and
mean free path. The mean free path of dislocation indicates a
continuous increase in the value with strain which can be
attributed to the breakdown of laves phases during deformation,
which is attributed to cross slip of dislocations and the climb of
dislocations. The climb and cross slip of dislocations increase
the mean free path of dislocations with further deformation.
The drop in the mean free path to zero value indicates that the

Fig. 7 Plot between rate of softening and stress

Table 2 Rate of softening values at different hot working
conditions

Strain rate, s21 Temperature, K h1 h2 h2/h1

0.001 1073 � 8.32 � 14.92 1.79
1173 � 12.38 � 26.05 2.1
1273 � 10.94 � 20.68 1.89

0.01 1073 � 2.67 � 5.65 2.11
1173 � 6.31 � 9.37 1.48
1273 � 5.2 � 8.15 1.56

0.1 1073 � 1.17 � 3.23 2.76
1173 � 3.85 � 6.61 1.71
1273 � 3.85 � 7.04 1.82

1 1073 � 1.14 � 3.7 3.24
1173 � 4.2 � 8.51 2.02
1273 � 3.49 � 5.99 1.71
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completeness of globularization phenomenon during deforma-
tion, which is observed for the specimen deformed at 1273 K
(strain rate range of 0.001-1 s�1).

4. Microstructural Features of Deformed Sample

Microstructural characteristics of the hot deformed EHEA
samples were carried out at different processing conditions of
hot deformation. That study was considered for recognizing
homogeneous and inhomogeneous deformation (pores, local-
ized plastic flow, and adiabatic shear banding). The microstruc-
tural feature of deformed samples of EHEA deformed at
different hot working conditions (1173 K and strain rate 1 s�1,
(b) 1173 K and strain rate 0.01 s�1, (c) 1273 K and strain rate 1
s�1) is represented in Fig. 9.

5. Mechanism of Microstructure Evolution

The starting microstructure contains the mixture of a-phase
(white space present between the purple colors) and laves phase
(purple color) as alternate lamellae in the grain (Fig. 10a).
Reliance et al. (Ref 23) (Ref 6) reported the deformation

mechanism for single-phase Co25Cr20Fe25Ni25V5 FCC high-
entropy alloy and (CoCrFeNi)90Zr10 quasi-peritectic high-
entropy alloy. The orientation of lamellae varies from one
grain to next grain. Further, the microstructure contains the b-
phase (see black color marks in Fig. 10a) randomly distributed
in the grains. During deformation at high temperature, laves
phase bends within the grains, and the extent of bending
depends on the orientation of laves phase with respect to the
loading axis. The bended laves phase of a grain (Fig. 10d) is
shown in the magnified form in Fig. 10(e) where it is clearly
observed that dislocations are piled up at the nose of the bend
region. It is well known that atomic potential of laves phase is
the maximum in the tip of the bend region and decreases
towards its lateral sides. Since the deformation was done at high
temperature, the high atomic potential of the tip of the bend
region along with the enhanced pipe diffusion by the presence
of dislocation breaks the single lamellae of laves phase into two
lamellae (see Fig. 10f). This procedure is observed in the other
grains of the microstructure during deformation. This breaking
of laves phase lamellae facilitates the movement of dislocation
further in the a-phase and enhances the dislocation–dislocation
interaction. This breaking of laves phase at high temperature
during deformation reflects in the drop of strength with an
increase in the strain of the material. However, the breaking of
the laves phase is incomplete in all the grains when deformation

Fig. 8 Plot between mean free path and stress
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was carried out at a high strain rate or low temperature. The
above observation is consistent with the microstructure
obtained after deformation (see Fig. 9).

6. Conclusion

In Summary, the general framework is provided for
predicting the flow curve during thermomechanical processing
in EHEA using the empirical Arrhenius relation and the ANN

models. It is noted that the ANN model with appropriate
normalization of datasets can be utilized to predict the flow
curve accurately at different ranges of temperatures and strain
rates during the processing of materials as compared to the
Arrhenius relation. Also, the proposed deformation mechanism
indicates the breaking down of laves phase lamellae due to the
pipe diffusion mechanism. Finally, the current study provides
future opportunities to design new HEA materials using ANN
approach for high-temperature applications.

Fig. 9 SEM micrograph of deformed specimen (a) at temperature 1173 K and strain rate 1 s�1, (b) at temperature 1173 K and strain rate 0.01
s�1, (c) at temperature 1273 K and strain rate 1 s�1
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