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Fatigue damage of critical components and structures is an important phenomenon in engineering practice
where service loads are normally much lower than the strength of materials. Few past studies focused on the
correlation between macroscopic fatigue residual life and the micro-/meso-scale defect evolution He (Fa-
tigue Fract. Eng. Mater. Struct. 36: 102-114, 2013), Shanyavskiy (AIP Conf. Proc. 2167: 020324, 2019),
Tang (Int. J. Fatigue 70: 270 277, 2015). This study explores the fatigue damage with three significant
contributions: (1) one of the first studies on predicting fatigue residual life at different load stages without
prior knowledge of the load history, (2) a new multiscale fatigue damage index for linking of micro-/meso-
scale defects and damage to macroscale high-cycle fatigue life, and (3) a novel incremental evaluation
method for fatigue damage. A series of coordinated materials tests were conducted along with the corre-
sponding numerical simulations. Experimental results indicate that our multiscale fatigue damage index
(MFDI) is significantly better than the state of the art in terms of the correlation with actual fatigue life of
test specimens and MFDI may serve as an ideal fatigue damage signature for nondestructive inspection of
fatigue residual life. Our MFDI can also be potentially utilized to evaluate the impact of micro-/meso-scale
defects and damage in new manufacturing processes of materials such as additive manufacturing and
nanomaterials manufacturing.
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1. Introduction

Fatigue damage and related life are crucial to the safety of
important products or infrastructures in engineering practice
where the service loads are frequently much lower than the
strength of materials. Although many studies have been
conducted on the fatigue damage and life at either macroscale
or microscale, few focused on the correlation between macro-
scopic fatigue life and the micro-/meso-scale defect evolution
(Ref 1-3). Existing stress-life or strain-life models presume that
the load history of components or structures is known. It would
be a daunting task to record an entire load history over 10 years.
Then, a natural question to ask is ‘‘Can the residual life of a
component be predicted without knowing its load history?’’

Additive manufacturing and nanomaterials manufacturing
represent a trend of developing or manufacturing new materials
in the 21st century. However, the drawbacks of current 3D
printing technologies include (1) defects introduced during the

printing process, and (2) larger variation of the material
properties. In order to quantify the fatigue performance of parts
manufactured from 3D printing processes, another question that
we would like to ask is ‘‘Can we predict the fatigue life of a
component with many microscale defects embedded from a 3D
printing process?’’

The aforementioned problems and challenges call for a
study on a new methodology to precisely predict the fatigue life
of components or structures without knowing load history
information and without assuming that the manufactured
material is defect free.

2. Literature Review

Fatigue of engineering materials is caused by gradual
material degradation under cyclic loads that are smaller than the
material yield strength. Studies on fatigue dated back to 1837
when Wilhelm Albert developed a test machine for conveyor
chains (Ref 4). Over the years, different concepts and methods
were introduced to address this important problem. A log-log
relationship for S-N (stress-life) curve was proposed by O. H.
Basquin in 1910 via using Wöhler’s test data (Ref 5). Because
of the proportionality between stress and strain in elasticity,
high-cycle fatigue can also be approximated by an e-N (strain-
life) curve. Complex loading can be decomposed into a series
of simple cyclic loading via a rainflow counting algorithm (Ref
6). Miner (Ref 7) proposed a Miner�s rule to account for the
accumulative damage of different stress levels. A critical plane
method was developed by Brown and Miller (Ref 8) for
handling the fatigue life under multiaxial conditions. Both
tension and shear loads on this plane should be considered.
Furthermore, the effect of mean stress on fatigue damage can be
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corrected by several methods, including Morrow�s method (Ref
9).

Coffin and Manson explained a fatigue crack-growth in
terms of plastic strain at the crack tips. Coffin-Manson law (Ref
10-13) reveals that the number of cycles to fracture in low-cycle
fatigue is related to the amplitude of cyclic plastic deformation.

In fracture mechanics approaches (DK or DJ), a macro-crack
is normally considered, and it likely corresponds to a very late
stage of the entire fatigue damage process before rupture. The
critical plane approach (Ref 10, 14) can be used to predict the
crack propagation direction. Damage mechanics is another way
to predict the behavior of fatigue damage accumulation (Ref
15-18). In these methods, damage variables were used as
internal state variables for characterizing the progressive
degradation of materials (Ref 15, 17-24). In conventional
micromechanics, materials defects are frequently simplified as
spheres or ellipsoids. Such inaccurate simplification can
provide only a low-quality estimation of the mechanical
properties of materials. Since cracks and smoothly shaped
voids play a totally different role in materials degradation,
porosity is indeed an inaccurate metric for fatigue damage.

All the aforementioned approaches demand the load history
as a precondition to predict fatigue residual life. This may not
be easily realized in engineering practice over a timespan of 10
years for many components or structures. To acquire the
material degradation state at any service point, several nonde-
structive methods were used, including ultrasonic wave prop-
agation (Ref 25-27), vibration (Ref 28), and acoustic emission
(Ref 29-31). But, these methods are not precise in describing
exact spatial damage distribution. Some two-dimensional
image processing protocols (Ref 32-34) and three-dimension-
ally reconstructed microstructures (Ref 35-38) were based on
single or serial cross-sectioning, which is not suited to
investigating fatigue damage evolution. Three-dimensional
computed tomography (gamma ray (Ref 39), neutron (Ref
40), synchrotron (Ref 40), ion beam (Ref 38), and x-ray (Ref
41-49)) were a more accurate method in determining the
material defects. Unfortunately, little success has been reported
in using the computed tomography data to accurately predict
the macroscopic fatigue residual life via micro- and meso-scale
materials defects in existing public literature (Ref 50-52).

Since the existing methods are inaccurate to predict the
fatigue residual life of materials without prior knowledge of
load history, the main objective of this paper is to develop an
accurate methodology to predict the fatigue residual life of
materials test specimens based on x-ray CT data without
needing the information of load history. This methodology is
crucial to any further development in multiscale nondestructive
prognosis for the residual life of critical components or
structures.

The rest of this paper is organized as follows. In section 3,
the methodology of our approach is described. The introduction
to coordinated materials testing is provided in section 4. The
simulations and the analyses of experimental results are given
in section 5, followed by some concluding remarks in section 6.

3. Methodology

Table 1 shows a flowchart of our main algorithm to this
problem. There are several important technical components in
this approach, as detailed in each sub-section.

3.1 A New Physical-Virtual System on Fatigue Life
via Coordinated Materials Testing and Numerical
Simulations

Our key idea is that material testing and x-ray scanning are
interleaved for each test specimen during its high-cycle fatigue
test. First, several specimens are tested to determine the fatigue
life for a specified loading condition. Then, about five
important loading stages are computed and each of those
corresponds to a certain number of loading cycles such as
20,000 or 40,000 to cover the entire fatigue lifespan of the
specimens. Next, a new multiscale fatigue damage index
(MFDI) is computed, and a new incremental prognosis method
is proposed to predict the residual life of the specimens. Last, a
comparison is made with materials testing results.

3.2 A Voxel-based Denoising Method for CT Data

Measurement noise due to optical scattering or instrument
vibration is an issue that may have an impact on the accuracy of
reconstructed model. In this paper, a voxel-based method is
proposed to perform a denoising process on the x-ray CT raw
data, as described in Table 2. Herein, the denoising is a process
that removes measurement noises generated from x-ray CT
scans. Step 4 is useful only for the cases where light scattering
is caused by surface roughness of the materials specimens. At
the end of step4, MATERIAL and BOUNDARY elements are
considered as material elements, BACKGROUND elements
denote background space, and DEFECT elements refer to
interior defects.

As to step 5, as long as there is no entire rupture in a material
domain, we define the largest material volume as the domain for
the material specimens. All the other smaller volumes are
eliminated. Figure 1 demonstrates the effect of our method.

One benefit of our approach is the integration of x-ray data
input, denoising, segmentation, and finite element meshing into
a seamless process without labor-intensive editing. This is
reflected by a new defect-sensitive volume reconstruction and
meshing method in the next sub-section.

3.3 A New Defect-Sensitive Volume Reconstruction
and Meshing Method

The projection data of x-ray scanning are first converted into
a volume data model of the materials test specimens. It is
essentially a stack of section images. When this volume model
is transformed into a 3D finite element model, three issues need
to be paid special attentions:

(1) Small voids and cracks should not be filled by some
graphics processing softwareMany existing graphics algo-
rithms tend to fill in small holes or cracks for the sake of
visual perfection. In the context of material sciences, these
small defects are vital information to determine which
manufacturing process should be selected over other pro-
cesses or over the same process with different manufactur-
ing parameters. In this study, a special treatment of
measuring the size of each defect was imposed to main-
tain those small material defects during simulations.

(2) Boundary smoothing should be avoided for the accurate
analysis of crack propagation or damage evolutionThe
boundary smoothing alters the stress concentration in a
material domain. This will in turn affect the accuracy of
predicting the fatigue life. In the cases where a remesh-
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ing is needed, we developed a special feature-preserving
remeshing algorithm, which is capable of maintaining
the zigzagged features (Ref 53).

(3) Many existing software tools (Materialise 3-matic, Sca-
nIP, DragonFly, ITK-snap, iso2mesh and Dream3D) are

based on the processing of a set of 2D cross section im-
agesWhen a 3D model is processed, the procedure be-
comes tedious; for some other software tools (Mesh3D
and VTK), a surface mesh is generated first. Normally,
some small surfaces (voids or defects) will be lost. It
needs to be connected to a volume meshing software
like Hypermesh in a labor-intensive process.

In addition, with the fast advanced of x-ray computed
tomography technology, the total number of voxels for each test
specimen could be over 8 billion elements, which exceed the
limit of 32-bit integers and cause a big data problem.
Consequently, we propose a new defect-sensitive volume
reconstruction and meshing method, as described in Table 3.

Mesh sensitivity is an important issue for any finite element
analysis in which cracks are involved. In the cases where only a
few large cracks exist, a nonlocal analysis can be applied as in
our previous study (Ref 54). For the problem in this study, the
number of materials defects is a variable, which is dependent
upon mesh density and the original x-ray CT scanning
resolution. It is difficult, if not impossible, to have a theoretical
proof on the convergence of the finite element analyses with
respect to mesh density because the number of materials defects
dynamically changes with the mesh density. With different

Fig. 1 The effect of our scan-line denoising algorithm

Table 1 An algorithm for computing a new multiscale fatigue damage index and fatigue life

Algorithm 1: computation of multiscale fatigue damage index and fatigue life

Step 1 pretest materials specimens to experimentally estimate the fatigue life of specimens
under a set of load conditions

Step 2 Determine critical load stages for an incremental coordinated physical-virtual test
Step 3 Loop over the critical load stages obtained from step 2

Step 3.1 Read in x-ray CT data
Step 32. Conduct a new voxel-based denoising process on CT data
Step 3.3 Convert the CT data to volume model via a new defect-sensitive method
Step 3.4 Compute our new multiscale fatigue damage index (MFDI)
Step 3.4.1 Perform microscale finite element analysis in each representative volume
element

Step 3.4.2. Conduct macroscale finite element analysis on the material domain
Step 3.5 Predict the residual life of materials via a new incremental prognosis method

Table 2 An algorithm for denoising x-ray CT data

Algorithm 2: denoising of x-ray CT data

Step 1 Convert x-ray CT data to a 3d array
Step 2 Establish Element-element neighbor relation via face connection
Step 3 Remove all the elements with less than 2 face connections
Step 4 Use a scanline pass along each coordinate direction (positive and negative) to process noise caused by

surface roughness.
Label all the elements into two categories: DEFECT and MATERIAL
Step 4.1 Scan along a coordinate direction, assigning the label of each element to BACKGROUND
till an element with label MATERIAL is encountered

Step 4.2 Change the label from MATERIAL to BOUNDARY
Step 4.3 Change the label from MATERIAL to BOUNDARY if it is before the first BOUNDARY of
the next line

Step 5 Conduct a volume propagation to remove small isolated material volumes
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mesh densities given in Figs 2 and 3 numerically shows the
variation of maximum strain with respect to mesh density in the
context of this study. A plateau is observed between 100,000
and 400,000 elements. The mesh domain in Fig. 2 corresponds
to the middle section of material test specimens in Fig. 7 at the
later part of this paper. If the number of finite elements is too
small (e.g., less than 100,000), many material defects are
filtered out; if the number of elements is too large (i.e., more
than a million), the computed stress and strain become greater
unless a nonlocal analysis is used. It is recommended that a
mesh density of 0.5 to 1.0 million elements for a material
domain to be investigated. The execution time of finite element
analysis at different mesh densities is given in Fig. 3 as well.

Based on the above analysis on mesh density, the plateau in
Fig. 3(a) and (b) represents a desired mesh density range to
cover most defects within the domain of test specimens without
incurring high computational costs. An adaptive sampling
scheme (step 1 in Algorithm 3) is designed to convert a volume
model with several billion elements to a simplified model with
less than a million elements. The simplified model is still
complex enough to retain a majority of defect features of the
material domain, as illustrated in Fig. 4. This approach
facilitates the comparison of our super representative volume
element with the existing methods (the Brown-Miller model
and principal stress/strain model for fatigue life).

In steps 3 and 4 of Algorithm 3, marching cube algorithm
(Ref 55, 56) is implemented and directly coupled with a volume
meshing algorithm (Ref 57) to form a seamless process without
losing small voids/defects and without boundary smoothing.
Figure 5 shows two results of running our method on small
material defects. The left image of Fig. 5 depicts two small
defects: One is located near a side surface, and the other is at an
edge. The marching algorithm works properly in constructing
the concave faces of the defects; the right image of Fig. 5
demonstrates a large irregular defect surface to show the
effectiveness of surface meshing.

To compute our multiscale fatigue damage index in Sect. 3.4,
multiple local microscale finite element mesh models are indepen-
dently constructed for microscale analysis. Figure 6 illustrates the
meshing models of three representative volume elements (RVEs) at
different locations within a material domain and with different
degrees of material damage. At a macroscopic level, only one
integrated volume model is used for macroscale analysis.

The criterion to select the size of RVEs is that the minimum
size should be 15x15x15 voxels. There is no upper bound for
the size. Few limitations are the constraints from the memory,
computational power and time.

3.4 A New Multiscale Fatigue Damage Index

The computation of our new multiscale fatigue damage
index (MFDI) relies on the following two stages:

(1) A multiscale finite element analysis
(2) Formulation of MFDI at macroscopic scale

First, with a framework of multi-level finite element method,
a direct multi-resolution analysis of volumetric material domain
is used. At each fine level, only local finite element analyses are
performed. Consequently, only local finite element meshes are
needed on the fly in a sequential or parallel order. This solves a
big data problem. For the small materials test specimens, two-
scale bridging is sufficient. The mechanical property at
microscale is estimated by Ref 58:

Cmicro
ijpm ¼ CRVEk
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ðEq 1bÞ

where superscript and subscript ‘‘micro’’ refers to quantities at
the microscale. VRVE is the domain of RVE (Representative
Volume Element). RVEk represents the k-th RVE in a test
specimen or a structural domain. n is the number of sampling
RVEs inX, which refers to the domain of a specimen or structure.
Cijkl represents a stiffness tensor, and Lklpm can be calculated by
using a weak form of the RVE equilibrium equation:

Table 3 An algorithm for defect-sensitive volume reconstruction and meshing

Algorithm 3: defect-sensitive volume reconstruction and meshing method

Step 1 Perform adaptive sampling of x-ray CT data based on our study on mesh density
Step 2 Construct a volume model via a scanline method without eliminating interior defects
Step 3 Reconstruct a free-form surface mesh model via the marching cube method without eliminating the

surfaces of material defects
Step 4 Conduct a volume meshing via the wavefront method
Step 5 For calculating our multiscale fatigue damage index in Sect. 3.4, skip steps 1 through 4

Step 5.1 Mesh each representative volume element (RVE) independently at a fine level
Step 5.2 Construct a volume model at a coarse level
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Z
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CijpmeijðvÞeqspmðuÞdVRVEk

¼
Z

@VRVEk

kviðuqsi � dqsi Þd@VRVEk ; ðk ¼ 1; nÞ;
ðEq 1cÞ

where k refers to a penalty parameter. u and v stand for the
displacement and virtual displacement, respectively. d is the
specified displacement, and @V refers to the boundary surface
of V. ekl ¼ Lklpmepm. ekl and epm represent strain and average
strain tensors in VRVEk . Equation 1c can be used to determine
these two strains.

Equation 1a describes the way to compute the microscopic
stiffness tensor in an RVE based on the equilibrium at local
microscale Eq 1b. After the microscale finite element analyses
are completed within the material domain among all the RVEs,
the computing results are passed to macroscale:
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Fig. 2 Various mesh densities used to study mesh dependence
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where emacro
kl ¼ Lmacro

klpm emacro
pm . Superscript and subscript ‘‘macro’’

represent quantities at the macroscale. X is the domain of
material specimens at the macroscopic scale.

Chow and Lu (Ref 59) proposed an elastic energy equiv-
alence hypothesis: A damaged volume of material under the
applied stress has the same elastic energy as the undamaged one
submitted to the effective stress, ~r . After the effective Young’s
modulus of the specimens is computed at the macroscopic

scale, our multiscale fatigue damage index based on this
hypothesis is defined as

MFDI ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
Emacro

E0

s
ðEq 3Þ

where MFDI is our fatigue damage index for quantifying the
damage degree of materials due to fatigue. E0 stands for the

Fig. 3 The relationship between the maximum principal strain and mesh density in the context of reconstructed meshes with various material
defects. (Computation was conducted on an ASUS G752VT computer with 32GB RAM, 8 processors, and an NVIDIA Geforce GTX.)

Fig. 4 Adaptive volume meshing of a material domain (216,353 elements)
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Young�s modulus in the undamaged state, and Emacro refers to
the effective elastic modulus computed from the aforemen-

tioned multiscale finite element analysis through Cmacro
ijpm in

Eq. (2a). Equation (3) is for single axial cases. In multiaxial
cases, multiple MFDIi (i=1,2,3) can be obtained with different
loading conditions.

One way to represent fatigue material damage is the use of a
3 x 3 matrix, [MFDI], which is similar to a 3 x 3 damage
matrix [D] in Ref 60, 61. The eigen-values of [MFDI] are

written as MFDIk (k=1,2,3), which denotes the fatigue damage
values in three orthogonal principal directions of [MFDI]. The
damage effect matrix, M½ �, is a 6 x 6 matrix representation for
effective stress equation:

~rf g ¼ M MFDIð Þ½ � rf g; ðEq 4aÞ

where �
r

� �
and rf g are two 6 x 1 vectors for effective stress

and conventional stress, respectively. These two vectors take
the following forms:

~rf g ¼ ~r11 ~r22 ~r33 ~r23 ~r13 ~r12½ �T ;

rf g ¼ r11 r22 r33 r23 r13 r12½ �T :

MðMFDIÞ½ � means that M½ � is dependent upon MFDI and
could at most have 21 independent components if symmetry of
M½ � is taken into account. To another extreme it may depend
upon only one scalar value (MFDI ¼ MFDIk; k ¼ 1; 3) in
isotropic cases. In anisotropic damage, [M(MFDI)] in its
principal directions could be simplified into the form below by
following the spirit in Ref 62:

where MFDIi (i=1,2,3) refer to the fatigue damage indices in
three principal directions.

3.5 A New Prognosis Method for Fatigue Residual Life

Let Nr be the fatigue residual life at a particular damage
state after a part or structure undergoes a certain number of
loading cycles. Here, the fatigue residual life denotes the

Fig. 5 Results of meshing small defects

Fig. 6 Local volume models of three RVEs with different degrees
of material damage. (D is defined as 1.0-effective area/total area.)
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0 1
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;

ðEq 4bÞ
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remaining number of cycles before the final rupture of the part
or structure. Let Nf be the fatigue life of a part or structure
under a certain load condition. Then, we propose the following
formula to predict Nr under the same load condition:

Nr ¼ Nf � ð1�MFDIÞ; ðEq 5Þ

whereMFDI is ourmultiscale fatigue damage indexdetermined by
Eq. 3. This equation facilitates us to perform the digital diagnosis
of fatigue residual life basedonx-rayCTdata. It has also apotential
to be applied in other nondestructive inspection methods.

3.6 Existing Models for Fatigue Life

The Brown-Miller model is a reputed method for predicting
fatigue life. The key idea of this approach is that the maximum
fatigue damage occurs on a critical plane on which the
maximum shear stress or strain is located, and the material
damage is contributed by both shear strain and normal strain on
this plane. One version of the Brown-Miller model (Ref 63) is
expressed by

Dcmax

2
þ Den

2
¼ 1:65

r
0
f

E
2Nf

� �bþ1:75e
0

f 2Nf

� �c
; ðEq 6Þ

where Dcmax and Den are the increments of shear and tensile
strains with respect to the critical plane. E is Young�s modulus,
and 2Nf is the endurance in reversals. r

0
f and e

0
f are the fatigue

strength and ductility coefficients, respectively. b and c are,
respectively, the fatigue strength and ductility exponents.

The principal strain model is another typical criterion, which
assumes that fatigue cracks initiate from the plane where the
largest principal strain is located. It can be expressed as

De1
2

¼
r

0
f

E
2Nf

� �bþe
0

f 2Nf

� �c
; ðEq 7aÞ

where De1 is the increment of the largest one among three
principal strains. Morrow (Ref 9) proposed a mean stress
correction based on an observation that the mean stress effect is
more predominant in high cycles, i.e., in elasticity. Equa-
tion (2a) is then modified into

De1
2

¼
ðr0

f � rmÞ
E

2Nf

� �bþe
0

f 2Nf

� �c
; ðEq 7bÞ

where rm denotes the mean stress. A similar correction can be
applied to Eq. (6).

In this paper, for the first time, we utilize our new virtual-
physical system (Sect. 3.1) to provide a coordinated compar-
ison between these two models and our new multiscale fatigue
damage index.

4. Experiment

4.1 Test Setting

A GE Nanotom x-ray CT system was used for acquiring the
defects and damage distribution within each material test
specimen. It is a sub-micro computed tomography system with
a 2300-by-2300 pixel flat panel detector and a 180 kV x-ray
source. With the size of samples in Fig. 7, the scanning
resolution is about 2.5 lm per pixel. Two types of aluminum
alloys (AL 3003 and 6061) were tested on an MTS machine.

The overall coordinated testing procedures in this study are
given below:

(1) For each type of aluminum alloy, several material speci-
mens were tried to determine the fatigue failure cycles at
different loading conditions (load-controlled). Based on
the test results, a loading condition is selected to target
the fatigue failure cycles beyond 50,000 cycles for AL
3003 and 100,000 cycles or 160,000 cycles for AL 6061.

(2) Thirteen materials specimens were tested with the de-
tailed settings shown in Table 4. Each material specimen
underwent 4 or 5 different fatigue loading stages, which
correspond to x-ray CT inspection points.

(3) In the first group of AL 3003 specimens, 10,000,
20,000, 30,000, 40,000, and 50,000 cycles were used as
designated loading stages where the specimens were un-
loaded from the MTS machine for x-ray CT scanning
and then reloaded to the MTS machine for continuing
the fatigue test till the next inspection point.

(4) For the second group of AL 6061 specimens, two differ-
ent fatigue loadings were used. With loading 1, 20,000,
40,000, 60,000, 80,000, and 100,000 cycles were used;
under loading 2, 40,000, 80,000, 120,000, and 160,000
cycles were chosen. These cycles corresponded to XCT
inspection points.

Figure 7 shows a set of test specimens and the geometric
specification of test specimens. Since it is quite time consuming
and costly with the XCT scanning, we conducted coordinated
tests on only 13 specimens (listed in Table 4) from a batch of 55
specimens (shown in Fig. 7). The design of the materials test
specimens was carried out according to Section 03—Metals
Test Methods and Analytical Procedures, ASTM standards,
with the actual size of specimens being scaled down slightly.
Table 5 gives some parameters of these two materials.

4.2 A New Incremental Evaluation Method for Different
Methods of Fatigue Life

In detail, the material domains of each test specimen at
different loading stages are explicitly described in terms of
material defects (voids and cracks). Then, different fatigue life
models are incrementally applied to evaluate the accuracy of
predicting the fatigue life.

In terms of fatigue damage evaluation, it is difficult to determine
the exact fatigue life of each specimen before real materials testing
because of the variation of material properties (fatigue scatters). In
this study, we devise an incremental evaluation scheme. The basic
idea is that we set the x-ray CT inspection intervals at a certain
number of cycles (e.g., 10,000 cycles). If we have an inspection
sequence: n1, n2, …, nt, then we can approximately assume the
fatigue life for this particular specimen is

Nf ¼ nt þ m; ðEq 8Þ

where m refers to half of the cycles between two consecutive
inspection points. Given Nf ¼ nt þ m, we are ready to evaluate
different prediction methods for fatigue life over the results of
real materials tests. For the convenience of correlation study in
section 5, we introduce a normalized life, which is defined as

bni ¼ ni
Nf

; i ¼ 1; 2; . . . ; t; ðEq 9Þ

where t refers to the last inspection point before rupture.
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5. Simulation and Discussion

All the computation in this paper was conducted on an
ASUS G752VT computer with Intel i7-6700HQ CPU (4 cores
and 8 logical processors) and 32 GB RAM. VG Studio 3.3 was
used to visualize x-ray CT data. An in-house C++ code was
developed to compute our new multiscale fatigue damage index
and predict the fatigue life of the specimens. We weighed the
high computational efficiency of C++ language over other
programming languages such as Python and Java. Our program

contains several modules: a) file I/O of XCT scanning images,
b) noise filtering, c) defect detection, d) finite element meshing,
and e) digital prognosis. In addition, Abaqus software was also
used for finite element analyses.

Figure 8 illustrates x-ray CT models and reconstructed finite
element models of two specimens at their final inspection
points, which are close to rupture during the high-cycle fatigue
tests. The load and boundary conditions as well as von Mises
stress distribution are given in Fig. 9. Note that the stress levels
in this figure are directly dependent upon the magnitude of the

Fig. 7 Materials specimens for the fatigue tests (Dimensions in mm)

Table 4 test setting of AL 3003 and 6061 specimens

material Load, n stress ratio, r load frequency, hz # of specimens loading stages (1000 cycles)

AL 3003 1500 0.1 55 5 10, 20, 30, 40, 50
AL 6061 3600 0.1 55 4 20, 40, 60, 80, 100
AL 6061 3300 0.1 55 4 40, 80, 120, 160

Table 5 material parameters of AL 3003 and 6061

material
Young�s

Modulus, GPa
Poisson�s
ratio

yield
strength,
MPa

Ultimate
strength, MPa

Density,
g/cm3

fatigue
strength, MPa

Elongation,
%

fracture toughness,
MPa M1=2

AL 3003 70 0.33 186 200 2.8 55 10 62
AL

6061-
T6

68.9 0.33 241 290 2.7 96.5 12-17 29
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pseudoloads applied at the far end of the material domain and
the fictitious loads in the analysis are used only for the sake of
digital prognosis.

From Fig. 10, through 12, we can make the following
comments:

Comment 1 The study in this paper represents one of the first
attempts to utilize the methodology in Table 1 for a precise
investigation on the correlation between fatigue residual life
and measured micro- and meso-scale voids and cracks.

Comment 2 Our multiscale fatigue damage index (MFDI) is
very strongly correlated with the fatigue life at a confidence
level p = 0.01 (2-tailed). MFDI is determined by Eq. (3) and
related multiscale analyses.

Comment 3 The Brown-Miller model with Morrow�s mean
stress correction is fairly related to the fatigue life with AL
3003 but not AL 6061. Overall, the Brown-Miller model is one
of the best existing models and can produce some reasonable
prediction of fatigue life of AL 3003 without any normaliza-
tion. On the contrary, the principal strain criterion with
Morrow�s mean stress correction performs poorly even with a
normalization (Fig. 11a). In that case, the principal strain
criterion tends to have an unclear pattern with the normalized
cycles. Both the Brown-Miller model and the principal strain
criterion perform poorly with AL 6061, no matter in the format
of log life or just estimated life, as shown in Fig. 12.

Comment 4 For the conventional damage mechanics (Ref
30, 64), we use the following formula to calculate the damage
variable:

dc ¼
A� A

A
; ðEq 10Þ

where dc is a damage variable, A is the initial cross section
of a part, and A represents an effective cross section area after
deducting the damaged regions. In this paper, we search a plane
where dc becomes the maximum. dc ranges between 0.0 and
1.0, corresponding to no damage and full damage, respectively.
In terms of correlation with the fatigue damage, the conven-

tional damage mechanics, dc, performs reasonably well. But,
the value of the damage variable is just 0.34 for only 9% of
fatigue life to be remained, as illustrated in Fig. 11(b).

Comment 5 By considering not only the correlation but also
the value range of each fatigue damage predictor, our ranking
on the sequence of excellence from the best to the worst is our
multiscale prognosis method, the Brown-Miller model with
Morrow�s correction, conventional damage mechanics, and
principal strain model with Morrow�s correction.

Comment 6 It is true that a monotonic pattern should be
there if a pure theoretical model is used because fatigue damage
is monotonically increasing. This paper focuses on the cases
where the prior knowledge of past loading or displacement
history is not available. We rely upon a nondestructive
measurement to estimate the current state of material fatigue
damage. Different models would cause a zigzag pattern to a
certain degree. It is our effort to design one method that causes
the smallest magnitude of zigzags in the context of predicting
residual life.

Comment 7 For AL 3003, Fig. 11(a) shows almost no
correlation between principal strain method with Morrow�s
mean stress correction and the normalized life cycles, while
Fig. 11(b) indicates that conventional damage mechanics is
insensitive to the normalized cycles during its first half range
[0.0, 0.5]. As to AL 6061, our multiscale fatigue damage index
has a clearly linear relation with the normalized cycles
(Fig. 12a), compared to the poor correlation between the
Brown-Miller method (Fig. 12b)/principal strain (Fig. 12c) and
the normalized cycles.

Comment 8 Fatigue damage at each XCT inspection point
(such as 200,000 cycles in Fig. 13) is estimated by the
numerical result of our digital prognosis method based on a
material domain model with internal damage information that is
determined from XCT scanning results. Our XCT-predicted
fatigue damage was compared to the real fatigue damage
obtained from MTS testing of the specimens, as shown in
Fig. 12(a). In this figure, the horizontal axis refers to the real

Fig. 8 X-ray CT models and finite element models of two materials test specimens (volume of material domain: 2x5x6.5 mm3)
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MTS fatigue test result, while the vertical axis denotes our
XCT-predicted fatigue damage.

Comment 9 Note that the stress distribution in Fig. 9 was the
result of a linear elastic analysis that was purely used to
estimate the damage state at each XCT inspection point. In
other words, we did not use an elasto-plastic analysis to
estimate the damage stage or to simulate a damage evolution

process (i.e., crack propagation). Therefore, some stress levels
in Fig. 9 are greater than the yield stress/ultimate stress of the
material because only the Young�s modulus is involved in the
linear elastic analysis. The reason why we chose the linear
elastic analysis is that our index (MFDI) is stress-invariant. In
summary, the stress in Fig. 9 does not represent a real stress
distribution in an elasto-plastic analysis, and it is just a by-

Fig. 9 Load and boundary conditions as well as von Mises stress distribution of two specimens (stress unit: Pascal; a single-step vertical load;
volume of material domain: 2x5x6.5 mm3)

Fig. 10 Bivariate correlation between fatigue life of AL 3003 and different prediction indices. (r refers to Pearson correlation, and p denotes
confidence level.)

8078—Volume 31(10) October 2022 Journal of Materials Engineering and Performance



product in our digital prognosis scheme for estimating the
current fatigue damage state.

Figure 13 and 14 demonstrates the measured evolution of
fatigue damage of AL 3003 in the form of finite element
models. The results from AL 6061 are illustrated in Fig. 15 in a
format of volume rendering. The visual inspection of Fig. 15
through 15(c) could not provide a difference of the material
domain that has underwent 40,000 cycles through 120,000
cycles. During this period, the fatigue damage is microscopic
and occurs at the interior of the material domain. It shows the
importance of an effective digital diagnosis method for early
forecasting of the residual life.

Fatigue damage is a complex process due to various failure
patterns (brittle, ductile, rheological, strain-rate-dependent, and
temperature-dependent). Furthermore, fatigue life depends
upon many factors such as manufacturing defects (fatigue
scatters), mean stress level, compressive/tensile stress range,
and high-cycle/low-cycle fatigue. Although our method was

tested only in a limited scope, the evaluation results are very
promising. From Fig. 10 through 12, it can be inferred that our
new multiscale fatigue damage index may serve as an ideal
fatigue damage signature to predict the fatigue residual life
based on Eq 5. According to the best knowledge of the authors
in this paper, this is the first successful case in which the
authors accurately predicted the fatigue residual life without
prior knowledge of load history. This advance may open
avenues for precise nondestructive prognosis of fatigue residual
life of different materials.

From a scientific point of view, although many experimental
standards and data are available in the public domain and very
useful in engineering practice, little information is known about
the exact void and crack evolution inside a fatigue specimen
and how it contributes to the change in its fatigue life in a
precise way. The authors hope that our method will serve as a
tool to facilitate and promote research activities in such
directions.

Fig. 11 Bivariate correlation between fatigue life of AL 3003 and different prediction indices (principal strain criterion and conventional
damage variable) with the vertical axis rescaled to a range [0.0, 1.0]

Fig. 12 Bivariate correlation between fatigue life of AL 6061 and different prediction indices. (r refers to Pearson correlation, and p denotes
confidence level.)
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Our ultimate goal is to develop an onsite nondestructive
method to interrogate the current damage state of parts or
components in service. Since the lifespan of many parts or
components is over 10 years and the past service data may be
incomplete or missing, it is crucial to have an onsite
measurement method to estimate the current state of these
parts or components. In these cases, the exact location at S-N
curves is not known because we do not have prior knowledge
of past loading or displacement history. How to extend
expensive x-ray measurement to inexpensive ultrasonic sensing
or other measurement modes will be a study subject in the
future. Nevertheless, this study provides the first step toward
this direction.

6. Conclusions and Future Research

In this paper, we developed a novel digital prognosis
method for predicting the fatigue residual life based on
materials defects and damage via a new multiscale fatigue
damage index. We also designed an effective way to handle
multi-billion-element x-ray CT models and implemented it as
an in-house C++ code. A series of coordinated materials fatigue
tests and numerical simulations were conducted. The experi-
ment results indicate that our proposed digital prognosis
method is significantly better than the state of the art (the
Brown-Miller model with Morrow�s mean stress correction,

principal strain model with Morrow�s mean stress correction,
and traditional damage mechanics). In a more accurate term,
our computational methodology in this paper is the only
numerical scheme that has a very strong relationship with the
normalized fatigue residual life (|Pearson correlation coeffi-
cient| > 0.9). For the first time, the authors numerically and
experimentally prove that it is feasible to precisely predict the
macroscopic fatigue residual life at any service point of test
specimens without relying on the availability of load history. In
the evaluation, a new incremental fatigue life evaluation was
devised for our coordinated multi-stage testing.

We limit our effort on single-constituent materials, but this
method is ready to be applied to evaluate composites as one of
our future research activities. Moreover, the evaluation on 3D-
printed specimens or samples from any additive manufacturing
would be another interesting endeavor to explore. Although we
limit ourselves to x-ray CT scanning in this study, the
methodology developed here can be equally applied to process
a stack of images from SEM or FIB scanning. Due to the
restriction of time and funding, this study made only an
explorative investigation on the proposed approach. Note that
any definitive conclusion should be drawn from a large scale of
tests with statistical nature estimated. This will be a topic of
future work. Furthermore, it is a well-known fact that
considerable changes of residual fatigue lives are observed
with random sequence of fatigue loading. Further work is
needed to determine how well the proposed MFDI method can
be applied to this situation.

Fig. 13 Fatigue damage evolution of AL 3003 specimen 3 in the format of finite element models with respect to loading and boundary
conditions (fatigue load: 1,500 N; fatigue stress ratio: 0.1; fatigue load frequency: 55 Hz; volume of material domain: 2x5x6.5 mm3)
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Fig. 14 Fatigue damage evolution of AL 3003 specimen 3 in the format of finite element models with respect to maximum principal strain
(fatigue load: 1,500 N; fatigue stress ratio: 0.1; fatigue load frequency: 55 Hz; volume of material domain: 2x5x6.5 mm3)
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