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High strength, high ductility, low thermal conductivity and high work hardening effects of austenitic
stainless steels are the foremost factors that make their machinability difficult. Machining, especially dry
machining of such steels, has been one of the most significant challenges for carbide cutting tools. In this
research study, TiAlN, AlTiN and TiAlSiN coatings were successfully employed through HiPIMS coating
system on cutting tools for dry machining of AISI 304 stainless steel. As-deposited coatings were confirmed
through FESEM and XRD analysis. The input process parameters including coating material have been
considered for optimizing the multiple objectives such as surface roughness Ra, Rz, tool wear rate and
material removal rate. Multi-criteria decision making involving grey fuzzy coupled Taguchi method was
adopted to solve the optimization for multiple response characteristics. Analysis of variance was conducted
to analyze the contribution percentage of each process parameter. From the results of MCDM-based GFCT,
the optimized setting for best output responses was determined as coating: TiAlSiN, cutting speed: 180 m/
min, feed rate: 0.1mm/rev and depth of cut: 1.5 mm. Feed rate had significantly contributed about 42.74%
on the output measures, followed by coating, depth of cut and cutting speed. The responses were predicted
with an accuracy of 96.5% through GFCT technique. Finally, a confirmatory experiment was carried out to
support the accuracy of optimal process parameters.
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1. Introduction

Among different steel grades, AISI 304 grade holds
excellent corrosion resistance and hence employed in wide
variety of applications such as vaporizer coils, kitchen sinks,
food handling units, chemical processing units, automotive
exhausts, cooking pans, pressure vessels and mining materials
handling equipment. Machining of AISI 304 stainless steel is
quite tedious process, due to its high strength and higher work
hardening rate. This might lead to shorter tool life, high tool
wear, higher machining time and machining cost. The tool life
phenomenon and unpredictable cutting forces have direct
impact on overall machining cost and dimensional accuracy
of machined work piece. Several attempts were carried out in

reducing the cutting forces with the view of achieving better
machinability (Ref 1, 2).

Super hard thin-film surface coating on cutting tool inserts
makes them more resistant to abrasion and oxidation. These
coatings also act as solid lubricant at the tool–workpiece
interface, which led to a decrease in temperature at cutting
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Abbreviations

WC Tungsten carbide
ANOVA Analysis of variance
DoE Design of experiments
FESEM Field emission scanning electron microscope
HiPIMS High-power impulse magnetron sputtering
MRR Material removal rate
S/N Signal-to-noise ratio
SEM Scanning electron microscope
SR Surface roughness
TW Tool wear
XRD X-ray diffraction analysis
MCDM Multi-criteria decision making
GRA Grey relational analysis
GRG Grey relational grade
GFRG Grey fuzzy relational grade
GFCT Grey fuzzy coupled Taguchi
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zone. Various materials were utilized as coating material for
cutting tool inserts, among them titanium aluminum nitride-
coated tool inserts exhibit better machinability than titanium
nitride-coated tools (Ref 3-5). These surface coatings indirectly
improve the working life of tool and reduce tool wear
especially at increased machining speed (Ref 4, 6). As
compared to single- and double-layer surface films, multilayer
films experience enhanced hardness and reduce the possibility
of tool failure (Ref 5, 7-10).

Themachining parameters such as feed rate, cutting speed and
depth of cut also influence the degree of machining in addition to
surface coatings of tool insert. However, further optimizing the
machining parameters will surely increase the tool life and
quality of machining (Ref 11-18). It was indicated that cutting
speed has greatest influence on cutting force, cutting temperature
and tool life but feed rate has a significant influence on surface
roughness. Furthermore, titanium oxide was present on the worn
surface, which helps to increase the hardness of cutting zone,
lower the friction coefficient and act as an insulator. As a result,
the wear rate is reduced (Ref 10, 19). The machining parameters
were optimized in turning of AISI 316L steel for attaining
maximum material removal rate and surface roughness (Ref 20).
For optimizing tool wear, cutting pressure, surface roughness and
material removal rate, Taguchi technique and grey relational
analysis were found to be more effective (Ref 21). Adoptive
modeling was implemented for the prediction and validation of
input to output relation with experimental outputs during turning
of AISI 202L steel (Ref 22). The multi-response optimization of
parameters was performed with the combined effect of Taguchi,
regression analysis, response surface methodology and grey
relational analysis (Ref 23-25). The optimal machining param-
eters on wet machining of F55 steel were achieved through
Taguchi-grey relational analysis (Ref 26).

During machining of AISI 304 steel, the influence of cutting
velocity on various output parameters such as tool wear and
surface roughness was premeditated (Ref 27). The effect of
various coolants during machining of AISI 304 steel on cutting
tool performance was examined by Xavior (Ref 28). A
technique of sound processing was incorporated in evaluating
the optimized machining parameters such as surface roughness,
formation of chip, built-up-edge formation and flank wear (Ref
29). Through design of experiments, the most reliable tech-
nique for optimizing various engineering problems is found to
be Taguchi method (Ref 18, 30, 31). Design of experiments was
most helpful in recognizing and optimizing machining param-
eters and predicting optimal combinations (Ref 32-35). Multi-
output response optimization can be easily carried out with
various techniques such as grey relational analysis, data
evaluation and ranking, genetic algorithm, response surface
methodology and artificial neural network (Ref 1, 9, 36-38).

Optimizing multiple output parameters with the view of
attaining maximum performance was evaluated through various
advance optimization tools such as artificial intelligence, grey
relational analysis and fuzzy logic. The fuzzy logic might be
helpful in addressing the indefinite and uncertain experimental
values (Ref 39). For achieving effective weldability, fuzzy logic
approach was applied for obtaining optimal welding parameters
(Ref 40). Application of fuzzy logic approach with the grey
relational analysis shall enhance degree of machining parameter
optimization with the view of surpassing multi-response issues
(Ref 41). Many research works were carried out in elevating the
cutting tool performance through surface engineering of tool
inserts. From various studies, it is evident that turning parameter

optimization and input parameter influence over output machin-
ing responses were extensively explored. In addition to this,
certain optimization techniques are found to be more effective in
determining the optimal solution of both single and multi-
response problems such as Taguchi technique, fuzzy logic and
grey relational analysis (Ref 1, 32, 33, 37, 41-43).

Although numerous optimization tools are used to optimize
manufacturing process parameters, there is still a high expecta-
tion of a simplified and more efficient multi-criteria decision
making methodology (MCDM). The grey fuzzy technique in
connection with the same method has shown itself to be efficient
for the simplest methodology and similar results in accordance
with the output values derived from other optimization tools.
Several researchers used this approach to optimize various
machining operations. Since the use of grey fuzzy-based Taguchi
technique to optimize machining parameters during dry machin-
ing of AISI 304 steel was unexplored, this research study
addresses the research gap by studying the same by employing
the coated TiAlN, AlTiN and TiAlSiN tungsten carbide (WC)
inserts. Moreover, the research study also extended in employing
a simplified optimizing tool, namely grey fuzzy coupled Taguchi
technique, for achieving appropriate machining process param-
eters in an efficient manner. The aim and objective of the research
work is to deposit hard TiAlN, AlTiN and TiAlSiN coating on
cutting tool insert and to perform multi-criteria decision making
for identifying best optimal parameters in dry turning AISI 304
steel through grey fuzzy coupled Taguchi technique.

2. Experimental Detail and Methodology

2.1 Hard Coating on Cutting Tool

In this research study, uncoated tungsten carbide CNC
cutting tool inserts were procured from Usman Tools, Coim-
batore, Tamil Nadu. The insert is in the form of 4 cm diamond
bar and width of the cutting-edge is 12 mm. The negative rake
angle inserts have 8 mm nose radius (80° diamond sized insert)
and conform to ISO CNMG 120408 standard geometrically.
The hardness of uncoated insert was found to be 19.1 GPa.

Thin-film TiAlN, AlTiN, and TiAlSiN coatings were
adhered to the surfaces of uncoated tungsten carbide turning
tool inserts using commercially available high-power impulse
magnetron sputtering system (HiPIMS) at Famex Coating India
Pvt. Ltd., Coimbatore, Tamil Nadu, as shown in Fig. 1. The
sputtering targets such as TiAl, AlTi, and TiAlSi were procured
from Sigma-Aldrich (99.99% purity). The operating conditions
for the coating deposition are listed in Table 1. The deposition
was carried out in a hybrid deposition setup at a base pressure
of 2 x 10−3 Pa (Ref 44). The operational parameters for
deposition such as bias voltage, pressure and supply voltage
were set to 400 V, 0.8 Pa and 950 V, respectively.

To ensure high level of cleanliness, all uncoated inserts were
manually polished and ultrasonically cleaned prior to deposi-
tion. The substrates were cleansed for another 30 minutes using
glow discharge at 1000 V substrate bias voltage and 1.5 Pa
argon pressure. The high purity argon and nitrogen gas (99.99
percent) were utilized, and the temperature for deposition was
regulated at 510 °C. The deposition chamber comprises 99.99%
pure TiAl (Ti: 0.60 Al: 0.40), AlTi (Ti: 0.40, Al: 0.60) and
TiAlSi targets (Ti: 0.64, Al: 0.3, Si: 0.06), which are mounted
on the internal walls of deposition chamber in rectangular form.
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In HiPIMS coating technique, nitrogen was used as reactive
gas, which has the flow rate of approximately 94 sccm.
Nitrogen ion implantation was exploited to strengthen adhesion
between coating and substrate before deposition. The substrate
holder was continuously rotated through the stepper motor
between the sputtering targets. The substrates were rotated three
cycles to aid in the uniform distribution of depositing flux
throughout the surface of substrates. Thin-film TiAlN, AlTiN,
and TiAlSiN layers were sputter-coated on cutting tool inserts
by employing the process parameters as listed in Table 1 (Ref
45). The photographic images of coated tools are shown in Fig.
2. The coated inserts were firmly fixed to ISO PCLNR 2525
M12 assigned tool holder for Jobber XL CNC turning center as
shown in Fig. 3.

2.2 Characterization of Coated Inserts

The coated tools were sectionally divided into two halves by
wire cutting EDM machine to measure the thickness of coating.
In addition to sample cleaning and assembly, coated tools
require little special preparation. When scanned through the

electron beam, specimens get charged and in turn create
scanning error and other picture artifacts, especially in the
secondary electron imaging area. Before the analysis of FE-
SEM, a thin layer of conductive gold was sputter coated to the
external surface in order to evade the effects of scanning errors.
By exposing the cross section through Carl Zeiss’ MERLIN
Field Emission Scan Electron Microscope (FE-SEM, Model:
ZEISS EVO60), the thickness of coated tools was determined.
X-ray diffraction (XRD, D8 Advance) with Cu K radiation

Table 1 HiPIMS deposition parameter

Parameters Base pressure Pulse width Frequency Bias voltage Supply voltage Pressure

Setting 2 x 10 −3 Pa 200 µs 50 Hz 400 V 950 V 0.8 Pa

Fig. 2 Images of coated tools

Fig. 1 Schematic diagram of HiPIMS coating process
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(0.15406 nm) was performed at 40 kV and 40 mA with a fixed
incidence angle of 1° and scanning from 30° to 90° with a step
size of 0.02°. A scratch tester was used to determine the
adhesion strength between the coating and the substrate (CSM,
RST). Scratch tests were performed at a maximum force of 100
N and a scratch length of 3 mm. The microhardness of TiAlN,
AlTiN, and TiAlSiN coatings was measured by Vickers micro
hardness tester (Wilson 400 series), which was guided by
ASTM E384 Standard. The microhardness tests were carried
out with an applied load 1 kg, and an indentation time of 10 s.
Final microhardness result was calculated by taking average of
5 measurements on each specimen.

2.3 Workpiece

In this research work, AISI 304 SS rods of 40 mm diameter
were procured from Usman Tools, Coimbatore, Tamil Nadu.
The chemical composition of AISI 304 austenitic stainless steel
is depicted in Table 2.

The long SS rod was cut into 9 small pieces of length 100
mm using cutting machine, and its end was faced using manual
lathe as shown in Fig. 4.

2.4 Sustainable Hard Machining of AISI 304 SS

The turning experiments were carried out in dry conditions
on a circular rod of AISI 304 austenitic stainless steel. As
shown in Fig. 3, the experiments were carried out in computer
numerical control (CNC) Lathe machine (Model: JOBBER
XL). TiAlN-, AlTiN-, and TiAlSiN-coated CNC turning inserts
specified in Table 3 were used. The tests were conducted three
times for each cutting speed.

The experiments were designed based on the L9 orthogonal
array to perform optimization study. Surface roughness (Ra and
Rz), wear rate and MRR were considered as the output

responses. Each experiment is performed three times, and the
mean value of the output results was reported. To determine
surface roughness, Mitutoyo surface tester with a travel length
of 2.54 mm in the X-axis and a velocity of 0.05 cm/s was used.
Wear rate was measured based on the mass difference of coated
CNC tool insert before and after machining. Material removal
rate was measured based on the mass difference of work piece
before and after machining.

2.5 Multi- Criteria Decision Making-GFCT

In order to solve the simultaneous optimization of four
quality characteristics such as Ra, Rz, wear rate and MRR,
MCDM-based Grey fuzzy coupled Taguchi (GFCT) technique
was employed. The multiple responses were first optimized by
utilizing GRA (grey relational analysis) and then followed by
fuzzy logic approach. Results of the fuzzy relationship grade
have been optimized using S/N analysis in Taguchi single
response optimization approach. The level, which has highest
value for average grey fuzzy grade, is the optimum ideal
condition for the output responses. ANOVA has been carried
out to determine the influence and contribution by each
parameter on multiple responses. Confirmation experiments
were carried out to validate the optimal environment. The
representation of proposed MCDM-based GFCT method is
depicted in Fig. 5.

2.5.1 Grey Relational Analysis. GRA was selected to
multiple such as Ra, Rz, wear rate and MRR. The optimization
process in GRA constitutes three phases.

● Normalization
● Computation of grey relational coefficient
● Grey relational grade

Fig. 3 Machining in CNC lathe

Table 2 AISI 304 steel—chemical composition

Element Cr Ni Mn N S C Si P

% 18 8 2 0.10 0.33 0.08 0.75 0.045

Fig. 4 AISI 304 steel work piece

Table 3 Machining data

Parameter Levels

Actual Coded Level 1 Level 2 Level 3

Coatings A TiAlN AlTiN TiAlSiN
Cutting speed, m/min B 140 180 220
Feed rate, mm/rev C 0.1 0.15 0.2
Depth of cut, mm D 0.5 1.0 1.5
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Normalization. First step in GRA is to standardize the
measured data in order to reduce difference, which is referred
to data pre-processing. It is normally articulated as a range, and
the unit of response varies from one individual to the next. Pre-
processing of data is a better strategy for converting all original
series into a relative one. The data pre-processing methods used
for grey relational evaluation are as follows:

● To normalize the initial data sequence of the measured
data for “higher-the-better” features (MRR), the following
equation was adopted.

x � j ¼ ðx�j kð Þ �min x�j kð ÞÞ=ðmax x�j kð Þ �min x�j kð ÞÞ
ðEq 1Þ

● The “lower-the-better” features of measured data (Ra and
Rz, wear rate) were normalized through the formula.

x � j ¼ ðmax x�j kð Þ � x�j kð ÞÞ=ðmax x�j kð Þ �min x�j kð ÞÞ
ðEq 2Þ

● If a specific target value (preferred) is to be met, the origi-
nal data set will be standardized using the following for-
mula:

x � j ¼ 1� ð x�j kð Þ � x�jð Þ=ðmax x�j kð Þ � x�j kð ÞÞÞ ðEq 3Þ

x°j(k)—original set of data, x*j(k)—next set to data pre-
processing, max x*j(k)—maximum of x°j(k), min x*j(k)—
minimum of x°j(k), x°j—expected value.

Calculation of Grey Relational Coefficient. The grey con-
textual evaluation is used to determine the relevance of two
structures. A grey relational coefficient is used to describe the
sequences. It could be calculated as (k):

n kð Þ ¼ DminþnDmaxð Þ= Doj kð Þ þ nDmaxð ÞÞ ðEq 4Þ
Δoj(k)—absolute quantity of deviation from x°j(k) and x*j

(k) (series of deviation);
ξ—coefficient of distinguishing=0.5.

The distinguished potential would be higher if the magni-
tude is smaller.

Doj kð Þ ¼ x � o kð Þ þ x�j kð Þj jj j ðEq 5Þ

Grey Relational Grade (GRG). The grey relational grade was
calculated by the average of coefficients.

2.5.2 Grey Fuzzy Relational Analysis. The following
four steps as part of the fuzzy rule system are shown in Fig. 5
(Ref 46).

● Fuzzification of input data
● Determination of rule base
● Decision making based on rule
● Defuzzification of data

Membership functions are established via database that are used
to produce fuzzy rules. The implications of the developed rules
are obtained by a decision-making unit. The fuzzy interface
then turns the input into linguistic items based on their
corresponding degree. The defuzzifing unit then transforms the
fuzzy outputs into crisp result (Ref 46, 47). The generation of
fuzzy rules is governed by if-then control principles. Table 4
portrays fuzzy technique for 2-input and 1-output system (Ref
46, 47 ).

Xi, Yi and Zi are fuzzy subsets that are clearly derived
through their membership, for example μXi, μYi and μZi. Table
4 shows the fuzzy rule that if the inputs (A1, A2) are X1, Y1,
the output B becomes Z1 and the same n number of rules can
be created. The Mamdani fuzzy inference engine employs
fuzzy logic technique to develop crisp results through fuzzy
rules.

2.5.3 Analysis of Variance. The signal-to-noise (S/N)
ratio is an efficient analysis tool for the Taguchi method to
depict a quality characteristic, and higher S/N value stands for
the preferred process parameter level. GFRG results were feed
as single response and optimized by Taguchi method. Larger
the better condition was selected for analysis grey fuzzy grade.
ANOVA was used to estimate the contribution of individual
parameters for selected inputs on the determined output

Fig. 5 Grey fuzzy coupled Taguchi method. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Struc-
tural and Multidisciplinary Optimization, Achieving machining effectiveness for AISI 1015 structural steel through coated inserts and grey-fuzzy
coupled Taguchi optimization approach, C. Moganapriya et al.,
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responses. ANOVA observations could be used to determine
the responsible parameters for the specified process output and
can analyze parameters for best outcomes (Ref 47).

3. Results and Discussion

3.1 Characterization of Coating

The cross sections of TiAlN-, AlTiN- and TiAlSiN-coated
inserts are represented in Fig. 6. The deposition of coating on
cutting tool is clearly evident in the cross-sectional SEM image.
From Fig. 6, coating thicknesses were measured using Image J

software. The average thickness of TiAlN, AlTiN and TiAlSiN
coatings is equivalent to 22.81 μm, 27.71 μm and 30.08 μm,
depending on the cross section correspondingly as listed in
Table 5. Figure 7 depicts the XRD patterns of deposited TiAlN,
AlTiN and TiAlSiN coatings. TiAlN and AlTiN coating reveals
the crystal structure of NaCl. However, there was no nitride
phase observed regarding TiAlSiN coating, which is owing to
the low content of Si that could replace Ti atoms in TiN lattice
(FCC) and forms metastable phase of Ti(Al Si)N (Ref 48). It
may also result in the formation of amorphous Si3N4 accumu-
lated at the grain boundaries of nanocrystalline TiAlN (Ref 49).
TiAlN and AlTiN have adhesion strengths of 45 N, 47 N, and
TiAlSiN coating has a greater adhesion strength of 53 N as
compared to other coatings.

Table 5 indicates an excellent bonding between the substrate
surface and the deposited layer, thereby improving adhesive
strength. This shows that physical trapping and mechanical
locking have been developed and play a significant role in
bonding TiAlSiN coating with tool substrate (Ref 49).

Figure 8 portrays the hardness of as-deposited TiAlN, AlTiN
and TiAlSiN coatings. It was evident for Fig. 8 that TiAlSiN-
coated insert possesses higher hardness of 33.67 GPa as
compared to TiAlN- and AlTiN-coated inserts. The augmented

Table 4 Fuzzy rules

Rule No. Input, A1 Input, A2 Output, B

1 X1 Y1 Z1
2 X2 Y2 Z2
3 X3 Y3 Z3
n Xn Yn Zn

Fig. 6 Cross section FESEM image of coated tools (a) TiAlN, (b) AlTiN and (c) TiAlSiN
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hardness of TiAlSiN-coated insert could be linked with the
development of nanocomposite structure consisting of nc-TiAlN
embedded in a Si3N4 amorphous matrix that can refine grain
structure (Ref 50). Furthermore, solid solution hardening can also
contribute to improved hardness. The enhanced hardness of the
TiAlSiN coating can be due to the combined solid solution
hardening and grain boundary refinement (Ref 48).

3.2 MCDM - GFCT Method

The output responses like Ra, Rz, wear rate and MRR were
measured and are listed in Table 6 based on the designed array.
Each experiment was repeated three times in order to evade the
inaccuracy of measurements, and the average value is reported
in Table 6. In order to optimize several responses like Ra, Rz,
wear rate and MRR, MCDM technique has been selected. At
first, GRA has been employed in which the measured output
responses (surface roughness—Ra, Rz and tool wear) were
preliminary normalized using Eq 2, whereas MRR was
normalized using Eq 1. Subsequently, absolute values were
estimated. By substituting normalized values for all the
responses in Eq 5, grey relation coefficients were obtained as
listed in Table 6. The average of all the grey relational
coefficients was determined, and it is termed as grey relational
grade (GRG). The experiments had been ranked based on
calculated GRG. From the table, experiment 8 - A3B2C1D3
(TiAlSiN, cutting speed: 180, feed rate: 0.1 and depth of cut:
1.5) attained highest rank and it was found to be the best
combination of input parameters for the outputs. Moreover, the
weight assignments for individual responses in GRA may result
in inappropriate values. The grey fuzzy relational grade
(GFRG) was subsequently implemented to mitigate these

Table 5 Properties of deposited coating

Coating
Average

Thickness, μm
Hardness,

GPa
Adhesion
Strength, N

TiAlN 22.81 22.21 45
AlTiN 27.71 26.15 47
TiAlSiN 30.08 33.67 53

Fig. 7 XRD of base and coated inserts

Fig. 8 Variation of hardness
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consequences. The machining parameters were set as input, and
GFRG was considered as output for fuzzy system as depicted in
Fig. 9. Linguistic membership functions such as low, medium
and high were employed to define the input variables. Also,
output of the fuzzy logical system was set by averaged grey
grade, and the performance of related grey grade is represented
by their attributes as depicted in Table 7. In this investigation,
the triangle membership function was utilized for input and
output variables. A series of fuzzy guidelines were allocated
based on rules as shown in Table 4.

Maximum and minimum synergistic action is generated by
managing the fuzzy logic rules. In the end, the defuzzifier
translates the anticipated fuzzy outputs into GFRG using fuzzy
logic toolbox in MATLAB (R2016b). Table 8 encapsulates the
acquired GFRG data and sample outputs from GFRG.

As described in Table 8, the optimum parameters were
perceived for experiment number 8 - A3B2C1D3 (TiAlSiN,
cutting speed: 180, feed rate: 0.1 and depth of cut: 1.5). The
relative assessment for all GRG investigations and the accom-
panyingGFRG is illustrated in Fig. 10. In comparisonwithGRG,
the GFRG is enhanced by 3.53%, which reduces fuzziness. The
results are consistent with the previous work (Ref 2, 51).

3.3 S/N Analysis for GFRG

The data from GFRG analysis were considered as the output
response for selected process parameters, and it was optimized
by Taguchi method. Since it is the most appropriate tool for
optimizing single responses, augmented GFRG was optimized
through Taguchi’s S/N analysis.

The optimum range of process variables is the highest ratio
of S/N (Ref 52). The impact of every input factor was shown
more clearly in the response graph of S/N ratio. As depicted in
Fig. 11, the feed rate and coating have a substantial influence on
GFRG and its S/N ratios. These findings are consistent with the
earlier report (Ref 33). From the S/N ratio plot, the parameter
setting—A3B2C1D3 (TiAlSiN, cutting speed: 180, feed rate:
0.1 and depth of cut: 1.5)—was estimated as the best optimal
parameter for GFRG and in turn for the output responses.

3.3.1 ANOVA for GFRG. The percentage contribution
for GFRG was estimated, and it was observed that feed rate
contributes 42.74% on the measures of GFRG as shown in
Table 9. It is the most influencing parameter, which predom-
inantly determines the value of output responses. Followed by
feed rate, coating material contributes about 32.05%, whereas
cutting speed and depth of cut nominally influence GFRG by
11.97 and 13.90%, respectively. From the results of S/N ratio
and ANOVA, feed rate and coating have played a substantial
role in enhancing the GFRG, thereby minimizing wear rate, Ra,
Rz and increasing MRR. The R2 value of ANOVA for
regression of GFRG was found to be 93.47%.

It is attributed to the higher hardness of surface coating
(TiAlSiN: 33.67 GPa) as illustrated in Fig. 8. The findings are
in line with the Arcades rule, which stipulates that wear is
exactly proportionate to the hardness of cutting tools (Ref 53).
Regression equations of GFRG for TiAlN-, AlTiN-, TiAlSiN-
coated inserts were determined as listed in Eq 6, 7, 8.

TiAlN : GFRG ¼ 0:605 þ 0:00012Cutting speed

� 1:44Feed rate þ 0:0164 Depth of cut

ðEq 6Þ
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AlTiN : GFRG ¼ 0:639 þ 0:00012Cutting speed

� 1:44Feed rate þ 0:0164Depth of cut

ðEq 7Þ

TiAlSiN : GFRG ¼ 0:697 þ 0:00012Cutting speed

� 1:44Feed rate þ 0:0164Depth of cut

ðEq 8Þ
Figure 12 depicts 3D surface plots of GFRG with respect to

cutting speed, feed rate and depth of cut. From Fig. 12a, GFRG
is higher at higher depth of cut with respect to lower and higher
cutting speed. Feed rate at lower level tends to produce higher
GFRG as shown in Fig. 12b. It possesses higher value at lower
feed rate for low and high cutting speed. Figure 12c portrays
the relation between feed rate and depth of cut with reference to
GFRG. With higher depth of cut, GFRG possess higher values
with respect to low and high feed rate.

3.4 Confirmation Test

An experiment on the optimum combination (A3B2C1D3)
of parameters was conducted to validate the outcomes of
MCDM method (TiAlSiN, cutting speed: 180, feed rate: 0.1
and depth of cut: 1.5). The results were measured and
summarized as presented in Table 10.

The next step following the identification of optimal process
variables is to forecast and assess the improvements in
performance of optimum process parameters. Table 10 shows
a comparison of several objectives with initial and optimal
processing parameters. The initial level of optimal machining
parameters from GFRG and GRA is A3, B2, C1 and D3, and it
matches with experiment number 8 in Table 6. The optimum
results were predicted, and the anticipated test results with an
average error of 3.54% and an accuracy of 96.5% are validated.

These findings substantiate and validate the adopted
MCDM–GFCT method. Multiple objectives have been opti-
mized simultaneously in the turning process, and this strategy is

Table 8 Comparison of GRG and GFRG

Sl. No. GRG Rank GFRG Rank

1 0.511 6 0.541 5
2 0.498 7 0.501 8
3 0.544 4 0.551 4
4 0.567 3 0.579 3
5 0.473 8 0.509 7
6 0.587 2 0.608 2
7 0.523 5 0.531 6
8 0.821 1 0.875 1
9 0.452 9 0.464 9

Table 7 Intervals for sorting grade

Linguistic attributes Lower range Higher range

Very very small 0.452426128 0.493407686
Very Small 0.493407686 0.534389244
Small 0.534389244 0.575370802
Small medium 0.575370802 0.61635236
Medium 0.61635236 0.657333918
Medium high 0.657333918 0.698315476
High 0.698315476 0.739297034
Very high 0.739297034 0.780278592
Very very high 0.780278592 0.82126015

Fig. 9 GFRG system—Mamdani approach
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Fig. 10 Relative evaluation of GRG and GFRG

Fig. 11 Mean effects plot of S/N ratio
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Table 10 Confirmation test

Initial parameters Optimal parameters

Predicted value Experimental value Difference in values % Error

Levels A3B2C1D3 A3B2C1D3
Surface roughness Ra (µm) 0.2083 0.2163 0.008 3.84
Surface roughness Rz (µm) 1.1421 1.1757 0.0336 2.94
MRR (g/s) 0.6886 0.6628 0.0258 3.75
Wear rate (m3/s) 1.92E-12 1.99E-12 7E-14 3.65
Avg. Error 3.54
% Accuracy 96.5

Fig. 12 3D surface plot of GFRG vs. input parameters

Table 9 Analysis of variance for regression of GFRG

Source DF Adj. SS Adj. MS F-Value p-value % Contribution

Regression 5 0.08463 0.01693 1.57
Coating 1 0.03013 0.03013 2.01 0.029 32.05
Cutting speed 1 0.01125 0.01125 0.47 0.048 11.97
Feed rate 1 0.04018 0.04018 3.74 0.021 42.74
Depth of cut 2 0.01307 0.00653 0.61 0.041 13.90
Error 3 0.03227 0.01076
Total 8 0.12689
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clearly displayed. These results are consistent with the prior
investigations (Ref 51).

4. Conclusion

Hard TiAlN, AlTiN and TiAlSiN coatings were successfully
deposited on the surface of cutting tool insert through HiPIMS
system. As-deposited coatings were confirmed byXRD analysis,
and their coating thickness was determined by FESEM. The
average thickness of TiAlN, AlTiN and TiAlSiN coatings was
equivalent to 22.81, 27.71 μm and 30.08 μm. From the results of
hardness measurements, TiAlSiN-coated insert exhibits higher
hardness of 33.67 GPa. MCDM technique has been adopted for
optimizing multiple responses like Ra, Rz, wear rate and MRR.
The measured data were normalized and ranked through GRA,
and the same has been fuzzified through GFRG. From ANOVA
results, it was found that feed rate and coating have played a
substantial role in enhancing the GFRG, thereby minimizing
wear rate, Ra, Rz and increasing MRR. It contributes 42.74% on
the measures of GFRG, followed by coating which contributes
about 32.05%, whereas cutting speed and depth of cut nominally
influence GFRG by 11.97% and 13.9%, respectively. The
optimized parameters of MCDM–GFCT are TiAlSiN-coated
insert, cutting speed: 180m/min, feed rate: 0.1 mm/rev and depth
of cut: 1.5 mm. The confirmation experiment has been con-
ducted, and the results of MCDM were validated with a
prediction accuracy of 96.5%. These findings confirm and
substantiate the implemented MCDM–GFCT method.
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