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In machining industries, sustainable production activities are reduced because of the tool wear effect. The
machining input parameters are mainly responsible for the effect of flank wear attained in the tool and the
workpiece’s surface quality. This work aims to determine and predict the machining performances of EN2-
BS970/Mild steel by varying the input parameters such as cutting speed (V), feed (F), nose radius (r), and
depth of cut (d). The hybrid Deep Convolutional Neural Network-based Manta-Ray Optimization (DCNN-
MRO) is used to predict the machining outcomes, and it is performed in Matlab software version 2020a.
The input machining parameters are designed by response surface methodology of box behnken design
performed in Design-Expert software version 11. The experimented different cutting forces are feed force
(Fx), radial force (Fy), cutting force (Fz), and the machining performances are tool flank wear, surface
roughness, and Tool chip thickness. In which, the machining input parameter, namely cutting speed
effectively influences the turning outcomes. The effect of tool flank wear and surface roughness by varying
the cutting forces are also analyzed. The observed optimal surface roughness is 3.105 lm, tool wear rate is
0.139mm, and tool chip thickness is 0.11mm. The measured outcomes are closer to the predicted outcomes
obtained from hybrid DCNN. The average RMSE obtained from the proposed DCNN-MRFO is 0.03, and
the non-hybrid DCNN is 0.3.
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1. Introduction

Nowadays, modern industries face superior challenges to
achieve a better surface finish, high dimensional accuracy,
minimal wear, enhanced productivity, etc. In manufacturing
technology, the machining process is considered a common and
leading approach. The manufacturing and maintenance costs
are maximized during metal cutting operations due to tool wear
and surface roughness rate. This is because of surface
roughness and tool wear which is directly involved in
suppressing the work piece�s quality, productivity limit, etc.
(Ref 1). In lathe machining, turning is considered a superior
operation, and it allows the workpiece to plastic deformation
during machining. This effect promotes the formation of heat
on the surface of the materials.

In some cases, this may reduce the workpiece’s mechanical
behavior, namely fatigue strength and hardness (Ref 2). Mild
steel is mainly used in aerospace applications, especially

welding and fitting of aerospace components. Besides, the
deforming ability of Mild steel is more, and there is a chance
for forming tool flank surface wear and generating built-up-
edge (Ref 3). Normally, different tool materials such as steel,
tungsten, and tungsten carbide are used in turning operations.
Among them, tungsten carbide possesses better toughness,
resistance to impact, and is wear-resistant during machining.
Several researchers have focused on using the insert tool rather
than the solid tool for the turning operation in the lathe. This is
because of its higher cutting efficiency, enhanced production
rates. Rafighi et al. (Ref 4) conducted the machining of turning
in High Chromium AISI D2 steel with the ceramic and cubic
boron nitride (CBN) inserts with different nose radius. Surface
roughness is favorable using CBN inserts, and minimal cutting
forces are observed when using ceramic inserts. In another
work, Rajaparathiban et al. (Ref 5) utilized a carbide insert for
machining the EN 31 steel, and surface roughness is measured.
In another work, the carbide insert was used to machine the
AISI 1020 steel with the cryogenic application, in which gray
relational analysis was conducted to predict the machining
outcomes (Ref 6). AISI D6 alloy die steel was machined using
nanoparticles coated carbide tool, and positive outcomes such
as longer tool life and better surface finish were observed.
Besides, more wear rate and minimum surface roughness was
observed at the high cutting speed (Ref 7).

In the turning operation, the cutting force analysis is vital for
studying the machining performances. Forces consideration is
conveniently applicable for three components: radial, cutting,
and feed (Ref 8). The speed, depth of cut, and feed promote
cutting force are changes required for machining parameters.
Thus, the accuracy of the machining process gets enhanced
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through several cutting force applications (Ref 9). During
machining, the rubbing action is involved between the work-
piece and tool flank side, maximizing the effect of tool wear.
With the increasing feed rate and cutting force cutting velocity,
the temperature attained in the chip forming region increases
(Ref 10, 11). Many types of research are helping to study the
cutting forces of lathe machining operations. However, the
lathe machining of Mild steel is less contribute to force
analysis. Ghuge and Mahalle (Ref 12) have been conducted
experimentation to analyze the cutting forces while turning of
AISI 4130. The finding revealed that by the MQL application,
nearly 5 to 10% of cutting force gets suppressed.

Tool wear and surface roughness are important to enhance
the product’s quality and production and production process
planning in the machining industry (Ref 13-15). The attained
wear in the tool is an important factor for forecasting the tool
life. Tool flank wear is often used as the specification to
determine the precision and stability of machining. Flank wear
(VB) occurs primarily during turning operations. In the
machining process, the machining element’s reliability depends
on how much flank wear it is. It cannot be ignored because of
its primary influence on surface integrity and dimensionally
incorrectness (Ref 16). An increase in flank wear causes the
inserts to decrease their nose radius and reduces surface quality
(Ref 17). One way that the industry can reduce production costs
is through the maximum use of the cutting tool. Hence, the tool
wear must be controlled and kept within a limit for machining.
Therefore, a precise method model should be developed to
maximize the total economy by turning operations (Ref
18).Şahinoğlu, A., Rafighi, M (Ref 19) investigated the
performances such as sound intensity, surface roughness, and
vibration during AISI 4140 turning operation. In which the
effect of feed rate was the most influencing factor for the entire
performance.

In AISI 316 austenitic stainless steel, Atla, S. and Surya,
M.S (Ref 20) have been measured the surface roughness and
tool wear characteristics through turning. Authors proved that
better performances and machining efficiency had been pro-
vided when using oil-based coolant than in the dry environ-
ment. Mia and Dhar (Ref 21) studied surface finishing of steel
workpieces and found that surface finishing and interface
temperatures were affected the product hardness. The increas-
ing cutting speed resulted in the excellent finishing of the
surface with a high-pressure coolant value. Recently, Şahinoğlu
and Rafighi (Ref 22) proposed a research work to minimize
surface roughness and power consumption of AISI 1040 steels.
In this, the effect of machining inputs over output variables was
determined using RSM. The result proved that feed rate
negatively impacts the entire machine outcomes, such as power
consumption, sound level, and surface roughness. Besides, the
deep cryogenically treated tool and coolant are utilized by
several researchers for machining the steel material.

In the lathe operation, Furgan Bayraktar and Fuat Kara (Ref
23) utilized a cryogenically treated cutting tool to analyze the
surface roughness behavior of the Sleipner cold work steel. In
which the untreated tool promotes more surface roughness. Das
et al. (Ref 24) have been utilized the nanoparticles contributed
MQL approach for machining the AISI 4340 alloy steel. Even
though such cryogenic and MQL application promotes better
machinability, it may be quite cost expensive. The optimization
methods, namely Taguchi optimization, RSM method, are
utilized to design and optimize the turning parameters (Ref 25).
Fuat Kara (Ref 26) has been optimized the milling character-

istics using Taguchi L16 orthogonal array of Hardox 400 Steel,
and the outcomes are optimized based on the S/N ratio. At
cutting speed 120m/min, better surface roughness was
obtained.

The machining performances such as dimensional accuracy
and surface roughness of any lathe operation are predicted and
optimized using RSM (Ref 27). Kishore and Rao (Ref 28)
analyzed the influence of input parameters like speed, feed, and
depth of cut on the output parameter of cutting force flank wear
and surface roughness using Taguchi design for the design of
experiments. Kuntoglu and Saglam (Ref 29) have been
conducted the lathe turning operation on ALSI 1050 material
with different input parameters, namely the tip of the tool, feed
rate, and speed. The experimental plan was performed by
Taguchi, and ANOVA approach is used to validate the
machining performances. From the input turning parameters,
cutting speed is significantly effective, and it was determined
from ANOVA.D. Manivel and R. Gandhinathan (Ref 30)
experimentally investigated the Tool wear and surface rough-
ness of ductile iron by employing the Taguchi optimization
method. Carbide insert was employed for hard turning oper-
ations, and cutting parameters were optimized based on the
Taguchi method. Depth of cut, cutting speed, nose radius, and
feed rate was taken as input parameters. It was evident that the
surface roughness and tool wear are mostly influenced by
cutting speed. Mozammel Mia et al. (Ref 31) investigated tool
wear and material removal rate formed on Taguchi optimization
in hard turning under MQL conditions. Tool wear, surface
roughness, and material removal rate were optimized by
Taguchi signal to noise. It has been found the depth of cut
and feed rate of 1.5 mm and 0.2mm/rev, and cutting speed of
90m/min was responsible for maximum cutting rate and
minimum surface roughness.

Various Neural network-based methods in the past have
predicted the impact of the machining parameter. This tech-
nique is used to minimize the experimental program’s time,
cost, and accuracy, cross-examine the factor interaction and
effect of individual factors, execution, and careful planning
(Ref 32, 33). SK and Shankar (Ref 34) experimentally
investigated the surface roughness and cutting force of EN8
steel by using an artificial neural network. 27.7% cutting depth
strongly influenced the cutting force, and the cutting force was
slightly influenced by cutting speed. 41.67% cutting depth and
21.33 % feed highly influenced the surface roughness. Salimi
et al.(Ref 35) have been conducted the prediction analysis on
cutting tool wear utilizing Artificial Neural Network (ANN)
with the input parameters, namely cutting forces and vibration.
Such prediction process is achieved with the regression value
�1.� The accuracy of the mild steel turning performance is
predicted by Sada (Ref 36) using ANN and proved that the
experimented outcomes are highly significant to the predicted
values with RMSE<1.

Normally, in the existing works, the nose radius of the
carbide tool is kept as 0.4mm, 0.8 mm, and 1.2 mm during
turning operation. In this work, different nose radius values
are used instead of standard nose radius, and the turning
performances of mild steel are investigated. The contribution
of neural networks is rare to predict machining perfor-
mances. In our work, the hybrid Deep Recurrent Neural
Network (DCNN)-based Manta-Ray Foraging Optimization
is employed to forecast the experimented values. Besides,
the proposed predicted outcomes are compared with the
DCNN.

Journal of Materials Engineering and Performance Volume 31(6) June 2022—4849



The main contributions of this work are listed below:

• To forecast the experimentally analyzed parameters of the
workpiece during turning of mild steel, like cutting forces,
flank wear of tool, tool chip thickness, and surface rough-
ness.

• The lathe machining performances of the workpiece are
analyzed to vary the input parameters, namely speed, nose
radius, depth of cut, and feed.

• The hybrid Deep convolution Neural network-based Man-
ta-Ray Foraging Optimizer is used to forecast the machin-
ing performances and cutting forces.

2. Proposed Methodology

A study of feed, speed, and cutting depth has been
extremely active on the lathe machining. Still, this research
has continuously been needed for the various combinations of
tools and workpieces. During monitoring the cutting condi-
tions, the cutting forces are an important criterion to choose on
output parameters, such as tool life, surface roughness, and tool
wear. The Deep convolutional Neural network (DCNN)
includes three cutting force components and tool flank wear
(VB) to predict surface roughness. Therefore, the tool condition
monitoring system produces a signal to ensure that the surface
roughness is preserved in the desired range. In our work, the
Tungsten carbide tool is used to machine the EN2-BS970/Mild
steel-IS226 steel with different input of machining conditions
such as speed (V), depth of cut (d), nose radius (r), and feed (F).

Figure 1 demonstrates the proposed procedure of our work
as step by step manner. Initially, the feasibility analysis is
carried out to select the best input machining condition of EN2-
BS970/Mild steel-IS226 steel. The fixed machining input
parameters are speed, depth of cut, nose radius, and feed.
Box Behnken design is used to plan the experimental
parameters and is performed using Design-Expert software.
The experimentation is then carried out to determine the cutting
forces, tool wear, surface roughness, tool chip thickness during
machining. The hybrid DCNN-based Manta-Ray optimization
is used to predict the experimented machining performances
and cutting forces. The predicted outcomes obtained from the
proposed hybrid approach are also compared with the non-
hybrid Deep Convolutional Neural network-based prediction.

3. Experimentation

In our work, the machining parameters’ design is con-
structed by Response surface methodology with the help of
Box Behnken Design and is performed in Design-Expert
Software. Initially, a preliminary analysis is carried out to find
the superior range of input parameters. In our work, the existing
research papers majorly contribute to selecting the range of
input parameters except for nose radius (Ref 4-29). Normally,
the standard nose radius such as 0.4, 0.8, and 1.2 mm is used in
the existing papers. In the proposed work, nose radius such as
0.5 mm, 0.75 mm, and 1 mm are chosen. The obtained turning
performances for the selected range of nose radius are closer to
the standard nose radius values. Finally, the desired machining
performance was observed by conducting several experiments
with different input ranges. The selected machining parameters
levels are given in Table 1.

The model matrix chosen for the experiments was the
Box Behnken design, consisting of 25 coded conditions. EN2-
BS970/Mild steel-IS226 was machined using a carbide tool.
The dimension of the workpiece is 150 mm in length and 30
mm in diameter. The Kistler dynamometer (type 9257B) is
utilized to calculate the cutting force component and the three
orthogonal components of feed force (Fx or Ff), radial force (Fy
or Fr), and cutting force (Fz or Ft or Fc), were measured quasi-
statically. Certain constant secondary parameters are used,
namely tool height, tool geometry, tool overhang, and material
hardness. The first end of the workpiece is connected in the
chuck, and the second end remains uncontrolled. The chuck
was housed the 150 mm lengthened workpiece. For this
experiment, the turning of 30 mm on each specimen was
repeated for three repetitions to evaluate the tool flank wear.
The average VB width of the tool flank wear was measured by
the microscope of the toolmaker (Metzer, model METZ -1395).

Fig. 1 Proposed scheme of research work

Table 1 Levels and Factors of machining parameters

Parameter Factor Levels

1 2 3

Cutting speed (V), m/min 110 170 264
Feed rate (F), mm/rev 0.110 0.159 0.220
Depth of cut (d), mm 1.5 2.0 2.5
Nose Radius (r), mm 0.5 0.75 1
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The lathe machining of mild steel and utilized workpieces are
given in Fig. 2.

The workpieces’ surface roughness (Ra) is measured using
the SJ-400 Surftest Surface roughness tester with a cut-off
length of 0.8 mm. Using the surface tester, Ra is measured
periodically at three different places on the surface of the

specimen. Among these three measurements, the arithmetic
mean value is taken to select the final roughness values. By
varying the input variables, VB and Ra values were measured
in 25 tests. The lathe machining layout is provided in Fig. 3.
The specification of the lathe machining process is given
Table 2.

3.1 Hybrid Deep Convolution Neural Network-Based
Manta-Ray ForagingOptimization (DCNN-MRFO)

This work forecasted the machining performances using a
hybrid Deep Convolutional Neural Network (DCNN)-based
Manta-Ray Foraging optimization (MRFO). Two layers,
namely, the pooling and convolutional layers, are the leading
agents in DCNN (Ref 37) and are demonstrated in Fig. 4.
Normally, in the neural network, random weights are selected
to predict the desired performances. In our work, the optimiza-
tion method, namely MRFO, is utilized to optimize the desired
weight values and improve forecasting accuracy. The utilized
DCNN parameters are specified in Table 3.

The outputs in the training stage are formed by bias addition
with activation function, which is performed in the convolu-
tional layer. In this work, three different activation functions,
namely hyperbolic tangent (tanh), sigmoid, and Rectified
Linear unit (ReLU) are utilized to predict the experimental
outcomes. Such activation function helps provide the weighed
output (Ref 38) and takes place between 0 and 1. To avoid the
random weight updating process, Manta-Ray Foraging Opti-
mizer is used to optimize the weight values. The normalization
process helps to faster learning and minimizes the number of
epochs. In this work, normalization is taking place in the entire
dataset ranges from 0 to 1, to achieve the desired target.
Besides, superior activation function to be determined based on
the performance.

The outputs of the convolution layer are expressed below,

xlj ¼ ac ðzÞ ðEq 1ÞFig. 2 Lathe machining

Fig. 3 Machining layout
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tanhðzÞ ¼ ez � e�z

ez þ e�z
ðEq 2Þ

sigmoidðzÞ ¼ 1

1þ e�z
ðEq 3Þ

Re LUðzÞ ¼ maxðz; 0Þ ðEq 4Þ

z ¼
X

i

xl�1
i � wl�1

ij þ blj ðEq 5Þ

Where, the convolutional output and input values are denoted
as xlj and xl�1

j , the convolution operator is denoted as � ��,

Table 2 Machining condition used for the experimentation

Machine tool Bharat machine tools, type 175
Cutting tool Tungsten carbide (CNMG 1204 08.49), Rhombic insert, nose 800

Tool Geometry Tool size: 19mm X 19mm X90mm length. SR 90, BR 90, ER 60, ECEA 70,
SRF 70,Nose: 0.75 mm

Workpiece dimension 30 mm diameter with 150 mm length
Work Material EN24 Steel
Cutting Fluid Dry Condition

Fig. 4 Layout of deep convolutional neural network

Table 3 DCNN parameters during prediction

No. Of Convolution layer 2
No. of Pooling layer 2
No. of fully connected layer 1
Average training time 98 sec
Size of pooling layer 1x2
Size of convolution filter (layer 1) 27x4
Size of convolution filter (layer 2) 1x3
Learning rate 0.01
Epochs 35

Layers Weight parameters Bias parameters

Convolution layer 1 155 25
Convolution layer 2 320 54
Pooling layer 0 0
Fixed layer 10550 110
Total 11214
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sigm ðÞ represents the sigmoid function, and the non-linear
sigmoid input function is represented as zlj. blj and wl�1

ij
represents the bias and weight values. The filters size such as
Dx4 and 1x3 are used for the first and second convolution
layers.

The sub-sampling behavior of the input features is per-
formed in the pooling layer. In this, the overlapping activity is
not contributed to the average pooling approach. Here, the
pooling filters are the size of 1x2. From the pooling layers, the
obtained output features expressed below,

xlj ¼ down ðxljÞ ðEq 6Þ

In which, xlj and xlþ1
j represents the input and output of the

pooling layer. During average pooling, the sub-sampling
activity is denoted as down :ð Þ.

The predicted outcomes are gained from the training stage
through multilayer perceptron training, and this activity is
performed after feature extraction. The Multilayer perceptron
training is completely performed based on the squared error
loss function.

E ¼ 1

2
y tð Þ � y� tð Þð Þ2 ðEq 7Þ

The squared error loss function is denoted as �E�, and the
predicted and the target machining performances are denoted as
y tð Þ and y� tð Þ.

Usually, in the neural network, the prediction process is
achieved through a random weight-updating manner. Such
activity is expressed in the following equation,

wl
ij ¼ wl

ij � g
@E

@wl
ij

ðEq 8Þ

The learning rate in the training stage is denoted as g and the
influence of weight values on the experimented values is
defined. Certain alterations are required for the weights wij if
the gained learning rate is not usual or too large wij. In addition
to the random weight updating procedures, the MRFA based
optimized weight values are also utilized to enhance the
prediction performances. Such optimization procedures are
explained below.

3.1.1 Manta-Ray Foraging Algorithm (MRFA). In the
Manta-ray Foraging algorithm (MRFA), the manta-rays utilize
three different strategies: chain-based foraging, cyclone forag-
ing, and somersault-based foraging to select their suitable plank-
tons (Ref 39). In our work, Manta-Rays foraging are considered
weight values and used to determine the optimal minimal error
values.

3.1.2 Chain Foraging. This is the initial foraging pro-
cess, in which the weight values are assembled in the form of a
chain to reach minimal error. The final weight values can
determine the minimal error during chain action than proceed-
ings (Ref 40). In this case, there is a chance of missing the
selection of the best minimal error values. The end weight value
from the chain selects a random value, which is not an optimal
minimized error value. The mathematical model for this
strategy is given below,

xdi t þ 1ð Þ ¼ xdi þ n xdbest tð Þ � xdi ðtÞ
� �

þ b xdbest tð Þ � xid tð Þ
� �

; i ¼ 1
xdi tð Þ þ n xdi�1 tð Þ þ xdi tð Þ

� �
þ a xdbest tð Þ � xdi tð Þ

� �
; i ¼ 2; ::N

�

ðEq 9Þ

b ¼ 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log nð Þj j

p
ðEq 10Þ

Table 4 Machining characteristics

Test no Speed (V), m/min F, mm/rev d, mm R, mm Ff, N Fr, N Fc , N VB, mm Tch, mm Ra, lm

1 264 0.110 2.5 0.5 82 142 215 0.292 0.28 3.758
2 264 0.220 1.5 1 264 367 527 0.295 0.32 3.865
3 170 0.159 2 0.75 69 106 185 0.249 0.256 3.891
4 110 0.220 2.5 0.5 72 109 193 0.303 0.338 3.256
5 264 0.110 2.5 1 278 327 533 0.324 0.352 3.758
6 264 0.220 2.5 0.5 145 276 401 0.329 0.363 4.917
7 170 0.159 2 0.75 71 109 188 0.251 0.263 3.458
8 110 0.220 2.5 1 116 169 228 0.279 0.283 3.279
9 110 0.110 2.5 1 111 160 221 0.139 0.11 3.105
10 110 0.110 1.5 1 79 107 196 0.172 0.153 5.211
11 170 0.159 2 0.75 69 102 183 0.248 0.251 4.958
12 264 0.110 1.5 0.5 81 117 203 0.296 0.274 4.765
13 110 0.220 1.5 0.5 78 97 195 0.231 0.259 3.389
14 110 0.110 1.5 0.5 67 82 187 0.159 0.133 3.896
15 170 0.159 2 0.75 73 109 191 0.250 0.273 4.801
16 110 0.159 2 0.75 67 127 168 0.211 0.241 4.396
17 264 0.159 2 0.75 113 192 278 0.253 0.25 3.268
18 170 0.110 2 0.75 102 156 278 0.146 0.177 3.763
19 170 0.220 2 0.75 210 251 401 0.306 0.364 3.356
20 170 0.110 2 0.75 74 101 193 0.248 0.262 3.758
21 170 0.110 1.5 0.75 112 215 249 0.225 0.251 3.760
22 170 0.110 2.5 0.75 93 144 208 0.229 0.269 3.751
23 170 0.110 2 0.5 70 105 187 0.220 0.251 4.459
24 170 0.110 2 1 121 141 289 0.228 0.259 3.756
25 170 0.110 2 0.75 76 113 197 0.236 0.277 3.765
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At time t, the location of the individual at dimension �d� is
represented as xid , and the weight coefficient is expressed as �b�,
�n� represents the random number between [0,1], and the
optimal error value is denoted as xdbest tð Þ.

3.1.3 Cyclone Foraging. After the attainment of chain
motion, the spiral movement is achieved by the entire weight
values. The cyclone foraging strategy is given in the following
equation,

xdi t þ 1ð Þ ¼ xdbest þ n xdbest tð Þ � xdi ðtÞ
� �

þ a xdbest tð Þ � xid tð Þ
� �

; i ¼ 1
xdbest tð Þ þ n xdi�1 tð Þ þ xdi tð Þ

� �
þ a xdbest tð Þ � xdi tð Þ

� �
; i ¼ 2; ::N

�

ðEq 11Þ

a ¼ 2en1
T�tþ1

T sin 2pn1ð Þ ðEq 12Þ

The maximum number of iterations is denoted as T, a
representing the weight constantly and ’n1� is a random number
in between [0, 1].

In this stage, the weight values try to attain the different
minimized error values by providing a new search space
location. Thus, similar to the chain foraging, the failure of
optimal selection of minimal error values may be found in the
cyclone approaches.

Fig. 5 3-D Surface analysis for analyzing the influence of input parameters on cutting forces
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xdrand ¼ LBd þ n UBd � LBd
� �

ðEq 13Þ

xdi t þ 1ð Þ ¼ xdrand þ n xdrand � xdi ðtÞ
� �

þ a xdrand � xid tð Þ
� �

; i ¼ 1
xdrand þ n xdi�1 tð Þ þ xdi tð Þ

� �
þ a xdrand � xdi tð Þ

� �
; i ¼ 2; ::N

�

ðEq 14Þ

The random position is denoted as xdrand , LB
d , and UBd are

the lower and the upper limit of the dimensions.
3.1.4 Somersault Foraging. This stage helps to attain the

best optimal minimized error value by updating the locations.

xdi t þ 1ð Þ ¼ xdi tð Þ þ S n2x
d
best � n3x

d
i tð Þ

� �
; i ¼ 1; :::N

ðEq 15Þ

The somersault constant is denoted as’�, �n1 and n2� represent
the random number between [0, 1].

4. Result and Discussion

The cutting performances and the cutting force outcomes are
tabulated in Table 4.

4.1 Analysis of Forces on Turning Operation

The effect of cutting force majorly depends on the
interaction between the workpiece and the tool. In other words,
such contacting behavior happens with less time, and more
cutting forces are obtained. This is because the plastic
deformation of the material is happened because of the
increased force in less time. So, the feed and the transverse
speed of the tool get increase and contribute to removing
material. The feed and speed obtain the linear improvement of
Fc. The rubbing force between the tool and the workpiece is
called radial force (Ref 41).

The interaction between cutting forces and machining
parameters is given in Fig. 5. The interaction of V and F over
cutting force is given in Fig. 5(a). In this, the cutting force
obeys the speed value of the F. In other words, the cutting force

Fig. 6 Perturbation analysis for feed force

Fig. 7 Perturbation analysis for radial force

Fig. 8 Perturbation analysis for tool flank wear

Fig. 9 Effect of tool flank wear on cutting forces
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increase with the increasing in speed and feed rate. Normally,
maximum speed value promotes minimum cutting forces due to
the minimum chip thickness. In this work, an insufficient
cutting temperature makes the workpiece brittle and enhances
the tool wear nature. Besides, at increasing speed conditions,
maximum temperature occurs, and this suppresses the tool
properties. The chip load during machining increases because
of the effect of feed rate, which increases cutting force.

The interaction of depth of cut and speed over cutting force
is given in Fig. 5(b). In this, the depth of cut is directly
proportional to the Fc. When introducing the deeper cuts, more
amount of material is removed. Thus the energy dissipation and
the requirement of cutting forces tend to improve. In addition,
this results in BUE formation. The cutting force analysis by the
interaction of feed and nose radius is given in Fig. 5(c). In
which the cutting force get increases with the increasing of nose

radius and speed. The interaction between the depth of cut and
the feed rate for the Fc is given in Fig. 5(d). In this, the
increasing effect of both feed rate and depth of cut tends to
increase the cutting force. The overall interactions reveal that
the Fc superiorly depends on the speed value than ’F� and ’r’.

The perturbation effect for the feed force by relating the
machining input parameters such as feed, depth of cut, and
speed is given in Fig. 6. The maximum feed force is obtained
by the influence of speed and feed rate than the other machining
parameters. Besides, the input parameters ’d� and �r� get
decrease with the increase in feed force. The interrelation of
radial force based on machining parameters is given in Fig. 7.
In this, the nose radius is indirectly proportional to the feed
force. Similar to the feed force analysis, cutting speed gets
directly influenced for enhancing the radial forces. The minimal
amount of radial force is obtained from the influence of the
nose radius. From the experimentation, the obtained optimum
radial force is102.2N, feed force is 155.44N, and cutting force
is102.2N.

4.2 Tool Flank Wear

During machining, tool flank wear is caused because it
enhances the chip tool interface temperature, and the tool flank
wear is considered a temperature-dependent factor. Besides, it
improves the interaction area connecting the tool and the
workpiece. The cutting forces are increased due to the
machining tool’s friction action and wear rate. Thrust force is
contributed to the formation of wear rate on the tool because of
its rubbing action. At maximum, V and F, the minimal rate of
tool wear occurs, resulting in an improvement in tool life and
enhanced productivity. Cutting force signals are highly sensi-
tive information carriers on the process’s status and are thus the
best options for wear monitoring devices. The amount of wear
initially depends on the cutting conditions, according to the
fraction between the machine’s surface and the tool’s flank
wear. The cutting force is directly proportional to the flank
wear. The increasing value of cutting force results failure of the
tool. Thus flank wears help in the estimation of tool life.

The perturbation analysis for the flank wear by interrelating
input machining parameters is given in Fig. 8. In this, a
minimal amount of flank wear is obtained due to the
contribution of the nose radius. The input parameter speed

Fig. 10 Influence of input machining conditions on surface
roughness

Fig. 11 Perturbation analysis of tool chip thickness Fig. 12 Effect of tool chip thickness on cutting forces
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and feed rate are mainly involved in increasing the level of tool
flank wear. Besides, the tool flank wear is just moderately
impacted by the depth of cut. The increased rate of tool flank
wears results in a moderate level of elastic modulus and
stiffness rate. At the beginning of the cutting, the flank wear is
null and void. Consequently, the tooltip radius must be
increased gradually because of gradual tool wear, and the
vibration of the tool will dominate rather than the ideal cutting
chatter.

Figure 9 reveals the influences of flank wear over three
different cutting forces. Here, the flank wear is minimal at the
initial cutting force conditions, and then the flank wear is higher
with maximum cutting forces. The minimal VB of 0.1mm is

obtained for the minimal cutting conditions of the radial force,
147N, the feed force is 100N, and the cutting force is 300N.

4.3 Surface Roughness

Surface roughness is measured to analyze the performance
of the machined surface. The surface roughness calculation
depends on the VB. The life of the tool may be suppressed due
to the insufficient quality of the surface. The enhanced behavior
of wear increases surface roughness and damages on the
tooltip. It is considered an important machining index, and the
service life of the machined workpiece is superiorly dependent
on the surface roughness. The machined workpiece tends to the
presence of microcracks on its surface. Generally, the surface
finish is enhanced by using a finishing operation called
grinding, and it helps to minimize the abrasive surface defects
of the workpiece. During turning, the major causes for the
availability of surface roughness are vibration attained in the
machining operation, built-up edge formation on the tool, and
certain fractures attained in the tip of the tool.

At minimal machining conditions, the obtained surface
roughness is 3.105 lm. By inducing the speed rate, the Ra
value increases up to 5.2 lm.The perturbation effect of
machining parameters on the surface roughness is given in
Fig. 10. The graph, reveals that the Ra increases with the
decrease in the machining parameters except for speed. This is
because, at minimal time duration, more machining is possible
due to increased speed, which increases Ra and reduces tool
life. Besides, surface roughness is unaffected due to the
contribution of F and d. Thus, the cutting speed is effectively
attained to improve the surface roughness of the workpiece
(Ref 16, 17). During increasing feed rates, continuous chip
formation happens because of increased speed conditions. This
leads to maximizing the temperature level and provides
unfavorable surface quality. In this, minimal surface roughness
is appeared because of the thermal behavior of tungsten carbide
tool material. It can work at elevated temperatures (Ref 23, 24).
At maximum nose radius, minimum surface roughness to be
achieved, this agrees that in the contact between the workpiece
and cutting edge minimum force to be achieved. Surface
roughness is at first increased and then decreased to the
minimum value, which increases until it reaches a catastrophic
failure. The increased feed rate also causes an increment in feed
force (Ff) and surface roughness because increasing feed force
depends on the feed rate. Besides, surface roughness is more
effective with feed force and also cutting tip radius. At a certain
point, the Surface roughness increases. Therefore, flank wear
changes regularly, and the feed force continuously can be
monitored to control Surface roughness.

Table 5 Training and testing parameters

VB, mm Tch, mm Ra, lm

Training Testing Training Testing Training Testing

0.297 0.378 0.231 0.265 3.958 4.61
0.30 0.375 0.30 0.37 4.0 4.77
0.251 0.324 0.25 0.312 3.591 3
0.308 0.378 0.340 0.398 3.556 3.98
0.322 0.412 0.350 0.30 3.958 4.55
0.33 0.402 0.368 0.412 4.6717 5.23
0.2565 0.333 0.266 0.302 3.558 4.44
0.28 0.22 0.2862 0.367 3.179 3.75
0.138 0.144 0.151 0.157 3.205 3.88
0.170 0.1788 0.155 0.162 5.411 6.012
0.250 0.31 0.257 0.31 5.15 5.95
0.2978 0.234 0.271 0.32 4.965 4.32
0.236 0.199 0.256 0.199 3.189 3.67
0.161 0.21 0.136 0.144 3.996 4.77
0.253 0.302 0.278 0.331 4.601 5.18
0.215 0.276 0.246 0.302 4.596 5.33
0.256 0.33 0.22 0.287 3.368 3.91
0.148 0.155 0.1796 0.233 3.963 4.59
0.309 0.366 0.362 0.412 3.056 4.23
0.251 0.323 0.2676 0.322 3.958 4.66
0.2274 0.230 0.2566 0.323 3.860 2.95
0.231 0.199 0.273 0.36 3.951 3.25
0.2245 0.220 0.2554 0.201 4.359 3.77
0.230 0.237 0.261 0.20 3.556 2.87
0.2399 0.2477 0.279 0.21 3.565 4.188

Table 6 Regression analysis of different activation function in DCNN

Activation models

Regression MSE

Training Testing Validation Training Testing Validation

Random weight+tanh 0.951 0.881 0.9021 1.50 2.37 1.709
MRFO+tanh 0.9845 0.9134 0.942 1.26 1.72 1.562
Random weight+ReLU 0.968 0.887 0.9301 1.47 2.34 1.62
MRFO+ReLU 0.9932 0.923 0.963 1.24 1.68 1.49
Random weight+sigmoid 0.943 0.853 0.899 1.58 2.45 1.78
MRFO+sigmoid 0.9812 0.896 0.931 1.32 2.16 1.61
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4.4 Tool Chip Thickness

The energy efficiency of the machining system is analyzed
based on the thickness of the chip. During turning, the energy
consumption get increases for the maximum thickness of the
chip. In other words, less amount of energy is required for the
minimum chip thickness. Besides, the chip thickness has a
supreme effect on cutting forces. The tool-workpiece interfacial
temperature gets enhanced when higher the cutting speed,
which reduces the cutting forces and minimizes the thickness of
the chip. This action results in minimizing the shear strength of
the workpiece.

The thickness of the equivalent chip is increased with an
increase in the depth of cut and cutting speed. The tool chip’s
contact area is increased with an increase in the value of the
depth of the cut; hence, tool chip thickness is increased. The
higher temperature is produced at maximum cutting speed,
which leads to rapid tool wear. Because of the produced higher
temperature, the manufactured chip also has a high temperature.
The thickness of the chip is increased due to the adhesion of the
tool. The tool material’s adhesion leads the tool material to
place over the back chip�s surface at high temperatures. It
decreased the depth of cut and increased the speed of the cut
resulted in maximum vertical force.

Figure 11 demonstrates the perturbation effect of chip
thickness based on machining parameters. In this, the chip
thickness increases with the decreasing in nose radius and
increases with the remaining machining performances. At the
rate of speed 187 m/min, the maximum amount of chip
thickness is obtained.

The relationship between chip thickness and cutting forces
is given in Fig. 12. In this, the cutting force is optimal than the
radial and the feed force. The thickness of the chip gets
increases due to the influence of cutting force enhancement.
The chip with the maximum thickness of 0.352mm is obtained
due to the maximum cutting forces such as 278 N of Feed
force, 327N of radial force, and 533 N cutting force.

4.5 Prediction by Hybrid DCNN Based MRFO:

After analyzing the experimental outcomes, the prediction
behavior is achieved using Hybrid DCNN Based MRFO. In
this, the hybridization activity helps to optimize the superior
weight values from the neural network. Normally, in Neural
networks, the prediction activity is done by training the actual
values with random weight values. Such randomized activity is
suppressed using Manta-Ray Foraging Optimizer. The random
selection of weight values may be missed to promote accurate
prediction due to error. The training and the testing parameters
are given in Table 5.

The regression analysis of DCNN with different activation
functions is given in Table 6. In which, MRFO based optimized
weight contributed DCNN promotes superior regression per-
centage with minimal error than the random weight functions.
In RSM, the obtained R2 values are in the ranges of 0.91 to
0.962. In the view of activation functions, ReLU promotes
better performances than the rest of the functions, namely tanh
and sigmoid. ReLU conveniently helps to backpropagation of
errors and enhance the convergence rate.

The predicted outcomes when using ReLU-based activation
functions are given in Fig. 13 and 14. Figure 13 explains the
predicted values of the cutting forces by using hybrid DCNN-
MRFO and non-hybrid DCNN. In this, the predicted outcomes

Fig. 13 Predicted outcomes for cutting forces
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are nearly closer to the experimented outcomes of cutting force.
Compared with the non-hybrid DCNN, the variations attained
between the experimented and the proposed hybrid DCNN-
based MRFO are lesser. So, we conclude that our proposed
DCNN-based MRFO promotes better and accurate predicted
values than the non-hybrid prediction model. The optimized
weight values are selected using hybrid DCNN-MRFO and are
used to provide an accurate prediction. The prediction analysis
for the machining performances is demonstrated in Fig. 14. The
prediction results for the minimal flank wear using DCNN-
MRFO is 0.133 mm, and DCNN is 0.149 mm. The DCNN-
MRFO based predicted surface roughness is 2.778 and 3.678 l
m.

The correlation analysis of experimented and the hybrid
DCNN-based MRFO-based predicted outcomes for cutting
forces are given in Fig. 15. Figure 16 explains the fitness
analysis of machining performances are flank wear, chip
thickness, and surface roughness. The target values are more
fitted to the experimented values in both the training and the
validation analysis. Thus errors obtained from the hybrid
DCNN-based MRFO are less than the non-hybrid DCNN.

The Root Mean Square Error (RMSE) analysis of hybrid
and non-hybrid prediction models is compared in Fig. 17. In the
view of cutting forces, the obtained error values for the hybrid
DCNN-based MRFO are in the range of 0.17 to 0.48. When
using DCNN with random weights, the error values range from
0.4 to 0.68. During DCNN-MRFO prediction, the obtained
RMSE for the flank wear, chip thickness, and surface roughness
are 0.003, 0.005, and 0.006. Besides, the RMSE obtained from
the non-hybrid DCNN is 0.008, 0.012, and 0.085. The results
proved that the errors are more random than the MRFO-based
optimum weights during prediction. This is because in MRFO
based optimization the weight values are selected closer to the
target.

5. Conclusion

The mild steel turning with a tungsten carbide tool is
conducted in this research work. The turning operation is
performed by varying the input parameters such as V, d, F, and
r. The different cutting forces, VB, Ra, and Tch, are analyzed
and predicted with the help of DCNN based Manta-Ray
Foraging optimization. The effect of cutting forces on VB and
tool chip thickness is also analyzed in this study.

• The maximum amount of obtained feed force is 67N, cut-
ting force is 82N, and radial force is 187 N. The cutting
speed is more effectively influences the radial, feed, and
cutting forces. At minimal machining conditions, DCNN-
MRFO based predicted radial, cutting force, feed forces
are 67.23, 82.3, and 186.21N.

• In the tool flank wear analysis, the nose radius helps to
minimize the tool wear. Besides, the wear rate tends to be
maximum because of the contribution of cutting speed.
The obtained minimal tool flank wear is 0.139mm. In the
view of cutting forces, the contribution of feed force pro-
motes less amount of wear. The prediction results from
DCNN-MRFO are 0.133 mm, and DCNN is 0.149mm.

• In the view of Ra, resistance to surface roughness is maxi-
mized due to the effect of depth of cut. Similar to VB
analysis, the effect of cutting speed superiorly contributes
to enhancing the workpiece’s surface roughness. From the
overall experimentation, the gained minimal surface
roughness is 3.105 l m. The DCNN-MRFO based pre-
dicted surface roughness is 2.778 and 3.678 l m.

• The chip thickness gets improved due to the speed, and
its effect is minimized because of the nose radius. Be-
sides, Tch is increased with the increasing of cutting
forces. The obtained chip thickness is in the ranges of

Fig. 14 Predicted outcomes of flank wear, chip thickness, and surface roughness
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Fig. 15 Regression plots for cutting forces
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Fig. 16 Regression plots for machining performances
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0.11 to 0.363 mm. The prediction results from DCNN-
MRFO are 0.132 mm, and DCNN is 0.143 mm.

• The root mean error range observed for the hybrid
DCNN-MRFO is 0.0005 to 0.06, and the non-hybrid
DCNN is 0.16 to 0.5.

From the overall analysis, it concludes that the cutting speed is
involved in affecting the machining conditions. Our proposed
hybrid DCNN -MRFO predicted outcomes are nearly closer to
the experimented outcomes than the DCNN predicted results.
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